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Abstract 

INTRODUCTION: Climate smart agriculture (CSA) which involves the integration of IoT and cloud computing is an 

emerging agricultural paradigm that is foreseen to be the main driver of agriculture as the 21st century progresses. Sub-

Saharan Africa lags in this regard and therefore deserves a special focus. 

OBJECTIVES: This paper presents an overview of Internet-of-Things (IoT) solutions in CSA in the context of food security 

in sub-Saharan Africa (SSA) 

METHODS: An overview of the status of food insecurity in SSA and associated factors is presented. The paper then focused 

on IoT as a technology and how it can be used for CSA in SSA through use cases; possible challenges were also examined. 

RESULTS: The paper showed that with CSA, SSA can become a net exporter of food. 

CONCLUSION: The paper concludes with open issues like the funding of research and development which must be 

addressed if SSA is to leverage IoT technology to attain food security. 
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1. Introduction

The projected rapid growth in the continent of Africa has 

made agriculture one of the most critical components in the 

economics of nation-states that aspire to attain an 

acceptable level of food security and food sufficiency. 

According to a UN report on world population prospects 

(1), and the report by the Food and Agricultural 

Organization (2), Africa’s population will be much higher 

than the one billion mark by 2050. This exponential 

increase in population alongside the simultaneous 

transition in technology, socio-economic policies, rural-

urban migration, and infrastructure will continue to have 

implications for sustainable agriculture if food security is 

to be achieved. In the light of this changing reality, sub-

Saharan Africa (SSA) in particular must make a 

* Corresponding author. Email: Yoksa77@gmail.com 

fundamental paradigm shift in the practice of agriculture 

through the involvement of technology that is reliable, 

robust, and affordable. This brings in the notion of climate 

smart agriculture (CSA) which is the integration of 

agriculture with cloud computing, mobile broadband 

technologies, and Internet-of-Things (IoT) to make 

agriculture less vulnerable to climate change, and 

sustainably produce sufficient food. 

At the heart of this integration is an agricultural practice 

that can monitor, predict, and control environmental 

parameters like soil moisture, humidity, wind speed, and 

the amount of sunlight which when properly harnessed 

guarantees a very high yield. To successfully make 

accurate predictions and estimations of these factors, large 

volumes of data must be collected and processed over time 

to discover hidden patterns of changes in these factors. The 
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collection of these data over time generates a large amount 

of data which could be in petabytes ( )1510 bytes or exabytes

( )1810 bytes . As a result of this, big data analytics becomes 

inevitable and an integral part of the CSA scheme that is 

driven by IoT and cloud computing to yield a high volume 

of production. To this end, vast computational processing 

power and storage infrastructure must be available if the 

huge amount of data generated from CSA is to be processed 

in a stipulated time and decisions made to meet critical 

deadlines. However, the cost implication of such 

infrastructure is prohibitive for developing regions like 

SSA whose farmers barely have access to credit. 

Fortunately, cloud computing and IoT are mitigating this 

challenge by making available powerful computer systems 

with large processing power and large data centers which 

can store vast amounts of data for big data analytics at a 

fraction of the price that it would cost to set up these 

infrastructures. The only challenge will be learning and 

utilizing the cloud access technology as it applies to 

agriculture to address the problem of food insecurity in 

SSA.  

This paper presents an overview of the problem of food 

insecurity in SSA with its aggravating factors. The paper 

looks at the role of trade and post-harvest activities and 

how they impact SSA’s drive to achieve food sufficiency. 

The paper also examines CSA and its associated 

technologies of cloud computing, IoT, and Big data 

analytics and how this new paradigm can be applied to 

revolutionize agricultural production in SSA. Hence, the 

paper is organized as follows: Section 2 looks at the status 

of food insecurity in SSA and the aggravating factors; 

section 3 examines CSA and how IoT is playing a central 

role in making it a reality. Section 4 presents the 

application of IoT in agriculture within the context of the 

types of data measured by IoT devices and use cases; the 

section also reviews irrigation with IoT devices which 

yields better results than traditional irrigation. Section 5 

looks at the challenges associated with the application of 

IoT and cloud computing in SSA, its possible solutions, 

and open issues. 

2. Food Insecurity Status in Sub Saharan
Africa and Aggravating Factors

Food security as defined by the 1996 world food summit 

organized by the food and agriculture organization (FAO) 

of the United Nations (UN) is a situation where all people 

irrespective of time and geographic location have physical, 

social, and economic access to sufficient, safe and 

nutritious foods that meets their dietary needs and food 

preferences for a healthy life (3). Food security is 

composed of four components i.e. food availability, food 

access, utilization, and stability (4). Food availability deals 

with the availability of food in sufficient quantity and 

quality; food access is the ability of people to acquire 

appropriate foods in the context of nutritious diets through 

adequate resources within the community in which they 

live; food utilization deals with the ability to utilize food 

through adequate diet, clean water, sanitation, and health 

care to reach a state of nutritional well-being which meets 

all physiological needs; stability is when a population have 

access to adequate food at all times (4). For these four 

components to be fully satisfied, a lot of objectives must be 

met. The challenges associated with meeting the objectives 

that will guarantee food security varies from one region of 

the world to another owing to differences in weather, 

climatic conditions, and other natural factors. However, 

proper utilization of modern technologies such as IoT, 

broadband, cloud computing, Big Data Analytics and AI 

will go a long way to providing optimal solutions. 

In this section of the paper, attention will be focused on 

sub-Saharan Africa (SSA) as a region where we will 

discuss the factors that have made it very challenging for 

SSA to meet all the four components of food security 

despite the abundance of arable lands and favorable 

climatic conditions as shown in Fig. 1(5), which shows that 

temperature changes in SSA have been minimal for almost 

60 years; this failure has made SSA an “insecure global 

region” in terms of food insecurity as shown in Fig. 2(6) 

which shows that moderate and severe food insecurity is 

very prevalent. 

Figure 1. Global temperature changes from 1961 to 
2019 

Figure 2. The global prevalence of food insecurity 
from 2014 to 2018 

Numerous research articles have been published by 

agricultural scientists on the current status of food security 

in SSA; a common denominator to all research findings in 

literature is that the major persistent issues that have been 

exacerbating food insecurity in SSA include lack of access 

to modern technologies like Broadband, IoT, Cloud 
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computing, Artificial Intelligence (AI), and Big Data 

Analytics (7).  

Broadband internet technologies are vital in establishing 

automated agricultural processes, especially irrigation so 

that high yield can be achieved through optimal utilization 

of resources with minimal environmental impact (8). 

IoT is a key enabling technology in climate smart 

agriculture (CSA), as it provides a mechanism by which 

remote control of farm equipment and devices with remote 

monitoring and data acquisition from farms can be 

achieved. This reduces the operating costs of running 

modern farms and also reduces the carbon footprint of farm 

machinery associated with logistics (9,10). 

Cloud computing provides a platform where remote and 

intensive computing can be performed at a cheap rate (11). 

Considering that SSA has the highest poverty rate in the 

world (12,13), cloud computing has a central role to play 

to make computing services and systems affordable in 

SSA; this reality has a direct effect on the productivity of 

farmers in SSA, especially when farms are connected to 

IoT Platforms. 

AI provides a means by which accurate predictions can 

be made on environmental factors which directly impact 

the level of productivity in agriculture; this is achieved 

through mining Big data to establish patterns. The 

availability of AI systems to farmers in SSA has the 

potential to reduce losses by SSA farmers as accurate and 

guided decisions are likely to always be made (14,15).  

Big data is a revolutionary computing paradigm where 

rapidly changing data are collected over time and analyzed 

to establish hidden patterns in observed phenomena. This 

has the potential to aid in achieving better performance by 

farmers in SSA as the large volume of data collected in 

farming processes by SSA farmers can be analyzed to 

establish areas of strength and weaknesses so that proper 

allocation of resources can be made (16,17). 

Timely input intervention is a critical factor that is 

central to the success of any agricultural output, and IoT 

aided with broadband internet access has a central role to 

play. A typical scenario is when soil data such as nutrients 

and moisture are acquired by sensors and IoT devices and 

sent to the internet for analysis; the outcome of the analysis 

typically prompts the optimal application of required 

nutrients. Naturally, over-and under-application of farm 

inputs impact negatively on outputs. Without the aid of 

digital technology, it is difficult to always gauge the 

optimal input. The use of various sensors via IoT enables 

real-time data acquisition, analysis, and controlled 

application of farm inputs. 

 A major advantage of timely input intervention via IoT 

is that farmers can maximize profit due to high yields and 

also breed a large amount of livestock because of the 

abundance of animal feeds derivable from high yields. On 

the other hand, if timely and optimal input interventions 

like fertilizers to meet soil nutrient requirements are not 

met, low productivity occurs which can also harm the 

production of animal feeds which in turn causes a depleted 

capacity in the breeding of livestock like chickens and pigs 

as shown in Fig. 3(18); the value for cattle is referenced 

from the left y-axis, and other livestock are referenced from 

the right y-axis. 

The lack of technical know-how among SSA farmers 

on modern irrigation systems using IoT and broadband 

internet has resulted in significant underdevelopment of 

Sahelian water basins with only 20% of their irrigation 

potential realized (19). As a result of this, farmers have 

been deprived of the impressive rate of return in irrigation 

as a business; analysis shows that the rate of return in large-

scale irrigation ranges from up to 12% in central Africa and 

33% for small-scale irrigation in the Sahel (20).  

Figure 3. Livestock patterns across global regions 
from 2000 to 2017 
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3. Climate Smart Agriculture 

Climate Smart Agriculture (CSA) can be defined as an 

integration farming technique by which agricultural 

resources and products including croplands, forests, 

livestock, crops, and fisheries are managed efficiently in a 

systematic procedure that mitigates the interlinked 

challenges of climate change and food security (26–32). It 

can also be defined as the approach by which agricultural 

strategies can be developed to guarantee food security 

under a changing climate (27). Accordingly, CSA aims to 

achieve the objectives of increasing productivity and 

incomes sustainably, making agriculture adaptive to the 

changing climate, and where possible reducing the 

emissions of greenhouse gases (27). To realize these 

objectives, CSA is divided into four important components 

which include(27): 

• The management of crops, farms, livestock and 

aquaculture to achieve a near-term balance in food 

security and livelihoods. 

• The management of landscapes and ecosystems to 

preserve ecosystem services that are critical for 

agricultural development, food security, adaptation, 

and mitigation. 

• Enable better farm and land management by providing 

services on climate impacts and mitigation actions to 

managers of these resources. 

• Enhancing the derivable benefits of CSA through 

demand-side measures and value chain interventions. 

To achieve these four components, agriculture in SSA 

must transform to meet the dual challenges of climate 

change and population growth; this is important as Africa 

has the highest rate of global population growth as shown 

in Fig. 4. Having 60% of the world’s uncultivated arable 

land (33) which is quite suitable for the production of 

crops, SSA has the potential to improve productivity 

through CSA and become a net exporter of food. This will 

entail the adoption and enhancement of CSA approaches 

and practices to guarantee better production systems and 

farmers' confidence through policies and concrete actions. 

For this paper, the first and third components are tangential, 

and one effective way they can be achieved is the 

deployment of the digital technologies in agriculture which 

comprise IoT, broadband technologies, cloud computing, 

Big data analytics, and AI. 

 

 

 
 

Figure 4. The global annual rate of population 
change 2010 – 2019 

3.1. Internet-of-Things Technology 

IoT can be defined as the internet connection of physical 

devices and systems which are actively involved in the 

collection and the sharing of data. Cheap processors and 

wireless networks have been the key enablers of this 

emerging technology. As of 2017, 20.35 billion devices 

were actively involved in IoT (34), and these devices are 

being used in the development of intelligent transportation, 

agricultural, environmental protection, positioning, and 

public safety systems. Devices involved in IoT are 

interconnected to each other and the internet through 

communication techniques like RFID, GPS, infrared, and 

wireless sensor networks (35). The connection with the 

internet makes it possible to perform cloud computing on 

the vast amount of data generated by IoT devices. The 

conceptual connection between IoT devices to each other 

and the internet is shown in Fig. 5. 

 
 

Figure 5. IoT interconnectivity and cloud computing 
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In literature, three main forces have been identified as 

the main drivers behind the strong emergence of IoT as an 

indispensable technology of the future; these include 

people, society, and businesses (36). From the perspective 

of people, the end-users of IoT are always in search of new 

things and new ways of doing things which leads to a busy 

lifestyle that is constantly impacted by digital technologies. 

Hence, new applications will have to be continuously 

developed to meet the demands of future lifestyles. Food 

security, affordable and reliable health services, and 

personal safety are among the key demands from a people's 

perspective concerning IoT. From the perspective of 

society, the interconnectivity provided by IoT technologies 

will lead to better and more efficient management of scarce 

resources. Data generated from IoT technology and 

analyzed by professionals will guarantee the formulation of 

policies and the setting of agendas that are grounded in 

contemporary reality by government agencies and 

legislative bodies for the benefit of sustainable societies. 

From the perspective of businesses, IoT will improve the 

efficiency of operational processes thereby bringing down 

the cost of doing business and increasing the 

competitiveness of businesses. Also, IoT will enable data-

driven decisions by managers of enterprises and 

institutions, which in turn will reduce risks that lead to 

losses in business. 

One of the desirable features an IoT system must 

possess is a seamless operation of all its components. To 

achieve this, utmost attention must be given to the IoT by 

designing a comprehensive architecture that will guarantee 

smooth communication between IoT components and the 

cloud as depicted in Fig. 5. Two well-known architectures 

in literature are service-oriented architecture (SOA) and 

application programming interface (API) oriented 

architecture (37). The following subsections will present an 

overview of these architectures as well as an overview of 

the technology associated with communication and sensing 

in IoT technology which includes radio frequency 

identification (RFID), wireless sensor network (WSN), 

middleware, near field communication (NFC), machine to 

machine (M2M) communication, vehicle to vehicle (V2V) 

communication. The following subsections will give an 

overview of these technologies. 

3.2. Service-Oriented Architecture (SOA) 

The SOA architecture is made of different subsystems 

which are not tightly coupled to ensure future reusability 

and compartmentalized maintenance. The arrangement of 

the subsystems as shown in Fig. 6a(38) ensures that in the 

event of a component failure, the other parts of the system 

will function as expected. This is very important if minimal 

downtime is to be maintained. Due to the robust structure 

of its abstraction and the immense benefits of the modular 

approach inherent in its structure, SOA has been 

extensively applied in wireless sensor networks, and its 

deployment in IoT enhances scalability and 

interoperability between IoT objects. The heterogeneous 

nature of IoT where the accomplishment of different tasks 

is predicated on different services in multiple geographic 

locations makes SOA an ideal architecture because SOA 

allows the building of different functions and services 

which are remote from each other but can be accessed 

through service composition. 

 

 
 

Figure 6. Types of IoT architectures 
 

The SOA architecture as shown in Fig. 6a has five 

layers. The topmost layer is applications, which makes all 

system functionality available to the client user. This is 

achieved through the use of web services and applications. 

The service composition layer brings together the functions 

offered by different network objects to achieve a specific 

service function. Services are the only visible entities in 

this layer. The service management layer is responsible for 

ensuring that all necessary functions are made available for 

all objects involved in the management of resources in IoT. 

Typical services include status monitoring, service 

configuration, and dynamic discovery of objects. On a 

demand basis, the system management layer also performs 

remote deployment of new services to meet the 

requirements of applications. The object abstraction layer 

provides a mechanism by which all objects in the IoT can 

be communicated seamlessly. This is done by harmonizing 

the access to different devices using a common language 

and procedure. Embedding TCP/IP stacks in devices have 

been proposed in the literature (39); these include 

TinyTCP, IwIP, and mIP. These stacks provide a socket-

like mechanism for interfacing with embedded 

applications. Object abstraction is then achieved through 

the integration of embedded web servers in the objects. The 

final layer is the objects which are networked together in 

the IoT scheme. 

3.3. Application Programming Interface 
(API) – Oriented Architecture  

The API architectures based on Representational State 

Transfer (REST)-based methods were developed as an 

alternative to SOA and remote method invocation (RMI) 
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schemes, and their major requirements are network 

bandwidth, computational capacity, and storage capacity. 

This architecture is well-suited for building IoT 

applications that connect to physical systems and devices 

differently. Consider a typical scenario as shown in Fig. 

6b(40) in which two different IoT objects with different 

protocols are connected to the same IoT service platform 

through the API architecture based on REST. The REST-

based API takes care of the different communication 

protocols from IoT objects making the job of the IoT 

service platform easier. As a result of this, the API 

architecture based on REST enables service providers to 

focus on the functionality and the performance of their 

products and services rather than presentation. This 

architecture also allows multitenancy because it offers 

efficient service monitoring and tools for pricing which are 

better than service-oriented approaches (37). 

3.4. Radio Frequency Identification (RFID)  

RFID is an electronic tag equipped with a microchip and 

an antenna. It is usually tagged to a real-world object for 

tracking and identification. It uses radio waves in sending 

information about an object in the form of a serial number 

attached to the tag. The RFID performs limited tasks which 

are only identification and tracking, and the frequency 

range of its operation is limited (41). In an IoT scenario, 

RFID can be used to assign unique digital identities to IoT 

objects participating in the network so that the data being 

generated can be uniquely identified to a particular IoT 

object. This is very important in data-driven decisions 

when big data analytics are performed on a large set of data 

from different sources. Fig. 7(36) shows the working 

principle of the RFID. 

  
 

Figure 7. Working principle of RFID 
 

3.5. Wireless Sensor Network (WSN)  

WSN can be defined as a network of embedded devices 

called sensors that monitor and control an environment and 

also perform wireless communication in an ad hoc 

configuration. The sensors in a WSN are usually 

distributed spatially as autonomous sensors and can be 

equipped with RFID tags for better identification and 

tracking (42–46). WSNs usually generated a large amount 

of data that aids data-driven decisions in important fields 

like agriculture, healthcare, defense, and environmental 

services. A particularly important feature of WSN is its 

ability to send data in real-time. This is very important in 

systems where preventive maintenance is critical; in 

agricultural irrigation, for example, the maintenance of soil 

moisture level is important if a high yield is to be achieved, 

hence, using WSN to monitor the water supply system will 

prevent excessive downtime in water supply because the 

status of equipment is constantly being monitored, and this 

makes it possible to conduct preventive maintenance at the 

right time. Fig. 8a(45) shows a typical WSN and how real 

data can be obtained from it. 

 
 

Figure 8. A typical WSN and Role of Middleware in 
IoT 

3.6. Middleware 

The middleware is software that operates between different 

software applications with the sole aim of making it easier 

for writers of device drivers to perform all the necessary 

input/output when writing software applications for 

devices. Middleware is indispensable in an IoT system 

because of the large number of heterogeneous devices 

participating in the network. The main role played by 

middleware in IoT is the abstraction of functional and 

communication capabilities of the devices involved in IoT. 

The abstraction includes storage, and processing of data 

since IoT devices are usually characterized by limited 

storage and low processing power (47–52). A typical 

middleware is a global sensor network (GSN) which is an 

open-source middleware sensor platform that enables the 

deployment of sensor devices with minimal programming 

effort (35). Fig. 8b shows how the middleware makes it 

easy to develop software applications for the end-users in 

an IoT network. 

3.7. Near Field Communication (NFC) 

NFC is a short-range wireless communication system that 

provides a safe and convenient way of communication 

between electronic devices. It operates based on RFID 

technology, and its frequency of operation is 13.56MHz 
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with a maximum data transfer rate of 424kbps. In an IoT 

network where eavesdropping can be a security risk, NFC 

comes in handy because its short transmission range of 4cm 

prevents eavesdropping. NFC exchanges data based on the 

ISO 14443 A, MIFARE, and FeliCa standards, and it 

requires no configuration for session initiation for sharing 

of data. This is ideal in IoT when excessive overhead can 

be a challenge since most IoT objects have low memory. 

An important feature of NFC devices is their ability to 

emulate transponders by reading them (53–56). In 

communication, two classes of NFC devices are involved: 

devices that have computing capabilities and an active 

power supply, and devices having passive tags and are 

powered separately (56). 

3.8. Machine-to-Machine Communication 
(M2M) 

M2M communication is a situation where multiple 

electronic systems perform autonomous communication 

without human intervention. It is a form of communication 

that is fast becoming ubiquitous because of the expansion 

in the number of wireless communication devices and the 

increase in the complexity and power of software systems. 

Owing to its autonomous mode of operation, M2M is 

making major inroads into the world of IoT as more 

research is being made to make IoT networks as smart and 

efficient as possible. M2M makes it possible to develop 

applications that optimally monitor and manage smart 

buildings, healthcare services, smart irrigation in 

agriculture, smart transport systems, and public safety (57–

62). 

Based on the spectrum of operation, M2M 

communications are broadly classified into cellular M2M 

communications and capillary M2M communications (59). 

The cellular M2M communications are based on standards 

that use the resources of the LTE-A licensed spectrum, 

while the capillary M2M communications operate in the 

unlicensed ISM bands like Wi-Fi (59). Fig. 9a(58) and 

9b(63) respectively show the cellular M2M 

communications and capillary M2M communications 

concepts. 

 
 

Figure 9. Types of M2M communications concept 
 

3.9. Vehicle-to-Vehicle Communication 
(V2V) 

V2V communication is one of the basic communication 

types in vehicular ad hoc networks (VANET), and it plays 

a central role in autonomous driving systems. However, 

because V2V communication is not tangential to the focus 

of this paper, attention will not be given to it beyond this 

point. The reader can refer to (64–66) for more information 

on V2V communication. 

Having looked at IoT with its architectures and 

underlying technology, attention will now be focused on 

the application of IoT in agriculture to see how 

improvement in crop and livestock production can be 

attained with minimal impact on the environment. 

4. Application of IoT in Agriculture 

IoT in agriculture involves the integration of sensors, 

information, and communication technology (ICT) driven 

machinery and equipment into the entire agricultural 

production process from planting to harvest, processing, 

and storage; with this transformation, cloud computing, 

robotics, and artificial intelligence (CCRAI) is central, and 

data upon which CCRAI operates and make decisions are 

primarily generated by IoT devices (67–70). Key features 

in the application of IoT in agriculture are data 

transmission, data processing, data analysis, and data-

driven decisions. This approach makes it possible for 

resources to be managed efficiently while at the same time 

guaranteeing the large production of food owing to the use 

of data analytics which has transformed agriculture from 

an input-intensive activity to a knowledge-intensive 

activity. 

In this paper, we take the approach that the application 

of IoT in agriculture can be divided into four use cases as 

shown in Fig. 10. The types of sensors that can be used in 

the four use cases are shown in Table 1 (71), while Table 2 

shows the types of data that are measured by the sensors 

(68). 
 

 
 

Figure 10. Use cases for the application of IoT in 
agriculture 
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Table 1. Types of sensors for IoT application in 
agriculture 

Category Functional description 

Temperature 
sensors 

Monitoring temperature variation in the 
environment of interest. 

Location 
Sensors 

These sensors measure the geographical 
position of any object within the area of 
interest. They rely on GPS for effective 
functionality. 

Electro-
Chemical 
Sensors 

These sensors measure the chemical data 
of soils by detecting specific ions in the soil. 
The data they provide is used in 
determining the pH and soil nutrient levels. 

Optical Sensors These sensors are used in determining the 
amount of light within an environment. 
From the data obtained, decisions are 
made either to increase or decrease the 
intensity of light. 

Mechanical 
Sensors 

These sensors measure the mechanical 
resistance of the soil. 

Motion sensors They are used in monitoring the movement 
of mechanical parts in machinery. The data 
obtained is used in determining how fast 
machines operate in specific farming 
processes. 

Dielectric Soil 
Moisture 
Sensors 

These sensors enable the control of soil 
moisture levels by determining the 
dielectric constant of the soil being 
monitored. 

Air Flow 

Sensors 

The permeability of air is measured with 
these sensors, and they are usually 
operated in a fixed position or mobile 
mode. 

Water sensors Measures water levels in crop farming and 
aquaculture. 

Climate sensors Measures atmospheric parameters like 
wind speed, direction, and humidity to 
determine the condition of weather. 

Plant growth 
sensors 

Monitors the growth of plants by 
determining the wellness and size of 
leaves periodically 

Livestock 
sensors 

Provides data about the state of livestock. 
These data can be used in determining the 
optimum time for activities like milking 
cows. 

 

 

Table 2. Types of data measured by agriculture 
sensors 

S/N Measured data type S/N Measured data type 

1 Environment 
temperature 

15 Wetness of leaf 

2 Environment humidity 16 Evaporation level 
3 Soil moisture 17 The volume of milk 

production 
4 Soil pH 18 Effective fertilizer 

utilization 
5 Water level 19 Health of plant 
6 Light intensity 20 Electrical conductivity 
7 Volume of CO2 21 Solar radiation 
8 Volume of rain 22 Fertility of soil 
9 Wind direction & speed 23 Weight of animal 

10 Soil nutrient 24 The volume of O2 flow 
11 Soil temperature 25 Livestock size 
12 Level of soil 26 Livestock health 
13 Humidity of soil 27 Livestock activity 
14 Pressure of air   

 

In SSA, using the types of sensors in Table 1 and 

measured data in Table 2, food production and processing 

can be significantly improved upon to meet international 

standards in safety and quality. This can be achieved by 

using IoT as a solution in monitoring soil pH, nutrients, and 

toxins optimally to ensure they are maintained within 

acceptable limits of safety and consumption and exports. 

Hence, the acceptability of cash crop exports from SSA 

will improve, which will in turn reduce the current trade 

imbalance. 

Using livestock sensors an IoT solution can be used in 

tracking the movement of livestock to mitigate the problem 

of cattle rustling which is rife in SSA. Secondly, using IoT 

solutions, the detection of disease outbreaks can be made 

much earlier so that effective quarantine measures can be 

taken. 

The application of the IoT solution in Figure 23 has the 

potential to address the trio challenges of political disputes 

over natural resources, agricultural productivity, and the 

agriculture value chain. This is especially important due to 

the potential political disputes which exist over natural 

resources because of the critical nexus between food, 

water, and energy. A noteworthy reality is a current drive 

by SSA countries to meet the ever-increasing demand (72) 

for energy through dam construction for electricity at the 

expense of the available freshwater resources for other 

sectors like agriculture and industries. This has led to 

geopolitical disputes between SSA countries; a typical 

example of this is the current political dispute between 

Ethiopia and Egypt over the Nile river (73,74); Egypt relies 

on the Nile for irrigation, while Ethiopia which has the 

fountainhead of the Nile wants to generate electricity from 

the Nile to meet its growing energy demand. However, the 

application of IoT will mitigate such disputes because 

desired agricultural production can be attained with 

minimal dependence on natural resources. 

On the agricultural productivity front, the application of 

IoT has the potential to increase food production 
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significantly and bring about improvement in SSA’s 

performance in livestock food supply and crop production. 

Such improvement will reduce the prevalence of 

malnutrition and other Sustainable Development Goal 

parameters, and break the low productivity levels which 

trap SSA farmers in poverty. An increase in productivity as 

a result of the application of IoT will also make it possible 

for SSA farmers to feed the rapidly expanding urban 

populations and at the same time generate exports capable 

of meeting demands in the global markets; this will be a 

strong impetus in the reduction of poverty, enhancement of 

food and nutrition security, and support for a more 

inclusive pattern of economic development. Another 

desirable application of IoT in agriculture in SSA is that 

farmers’ productivity will become less vulnerable to the 

effects of climate change because the technology will 

ensure that all environmental parameters necessary for high 

productivity are closely monitored and maintained as much 

as possible with minimal impact on the environment. 

IoT is a technology that is predicted to play a central 

role in realizing the worth of the agriculture value chain 

shown in Fig. 11. This is because each of the branches of 

the agriculture value chain on a global scale is estimated to 

be worth billions of dollars (75). The application of IoT in 

these branches will make it possible for SSA countries to 

generate and share data on their performance in the 

agriculture value chain; this will enable joint planning and 

resource development between SSA nations which in turn 

will enable SSA to shift focus from a trade-only region to 

an industrialized region capable of producing and 

processing its agricultural output. Such an achievement 

will further galvanize African regional integration, which 

is one of the objectives of the African Union (AU). 

 

  
 

Figure 11. Agriculture value chain 
 

As an example, consider the application of IoT in the 

crop production value chain and livestock value chain as 

depicted conceptually in Fig. 12. Information from the 

crops and livestock arrives at the data center via cell towers 

and satellites; they are then processed using artificial 

intelligence (AI) techniques to predict the best approach to 

use to get the best out of irrigation, harvesting, and also 

achieve precision feeding and wellness of livestock. Such 

an approach guarantees a significant increase in crop 

production and livestock production, thereby increasing the 

worth of the associated agriculture value chains. 

A potential game-changer in SSA’s quest to achieve 

self-sufficiency in food production is irrigation farming, 

and the deployment of IoT in irrigation will yield the 

desired level of productivity. The next section will look at 

irrigation in SSA and how IoT can be applied to it. 

4.1. Irrigation and IoT Technology 

According to (76), irrigation is one of the most effective 

ways of increasing national food supplies. This is because 

irrigation guarantees that all-year-round farming can be 

performed, which leads to all-year-round productivity and 

supply of food to meet the growing demand for essential 

foods and nutrition. Such all-year-round activity reduces 

the risk of drought and encourages crop diversification 

hence enhancing the income of rural farmers (77). SSA 

with the highest prevalence of food insecurity as shown in 

Fig. 2 and a high poverty rate stands to benefit most from 

irrigation if it is to meet its projected increase in demand 

for food and poverty reduction. However, to derive the 

maximum benefits from irrigation, SSA must practice what 

is known as “enhanced irrigation” which is a point of 

convergence between technology and irrigation practices. 

 

 

Figure 12. Application of IoT in crop production and 
livestock value chains 

 

 

Enhanced irrigation involves the use of IoT in the 

effective management of natural resources associated with 

irrigation. This is very important because the water 

footprint associated with irrigation of crops, watering of 

livestock, and aquaculture accounts for 70 percent of total 

global water withdrawals (76). Enhanced irrigation is one 

sure way to reduce this footprint. While most global 

regions have shifted from traditional irrigation to enhanced 

irrigation using IoT, SSA is yet to make that shift as shown 

in Fig. 13(77), where the total land area in SSA equipped 

for irrigation is negligible in comparison to other global 

regions.  
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Figure 13. Total land area equipped for irrigation across 
global regions 1995 – 2016 

4.2. Example of Application of IoT 
Technology in Irrigation 

The role IoT solutions are envisaged to play in irrigation 

in combination with cloud computing systems includes 

optimal management of fresh water and other resources in 

real-time which will reduce the impact of irrigation on the 

environment. An example of such a solution is the IoT 

Cloud-Based Smart Irrigation System (IoT-CBSIS) which 

the authors developed to assist local farmers to attain 

optimal management of natural resources in our local 

environment. Fig. 14 shows the general concept of an 

automated smart irrigation system while Fig. 15 depicts the 

actualization of the concept. The system uses IoT devices 

to collect data from the connected irrigation farm and 

transmits the same through the gateway to the cloud. These 

data are analyzed via set algorithms, and output is used to 

control inputs in the farm. Users can view and manage their 

farms remotely. 

 

 

Figure 14. Automated smart irrigation conceptual 
diagram 

In comparison to traditional irrigation, enhanced 

irrigation using IoT has numerous benefits as shown in 

Table 3. Despite its few disadvantages, the benefits of 

enhanced irrigation far outweigh that of traditional 

irrigation.  

It should be noted that to maximally derive the benefits 

of enhanced irrigation through the application of IoT, a lot 

of data must be collected and analyzed frequently to ensure 

optimum decisions about the actions and control of IoT 

devices at all times. To achieve this feat, big agro-data 

collection, analytics, and prediction are involved in the 

acquisition and processing of data. The following 

subsections discuss these techniques in IoT agriculture. 

 

 

Figure 15. Developed IoT solution for optimal 
irrigation 
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Table 3. Comparison between traditional irrigation 
and enhanced irrigation in terms of advantages and 

disadvantages 

 

Traditional Irrigation Enhanced Irrigation 

Advantages Disadvantage
s 

Advantages Disadvantage
s 

It is cheap Susceptible to 
the effects of 
climate 
change 

Guarantees 
high 
productivity 

It is expensive 
to start 

Requires a 
few inputs 

Leads to 
water scarcity 

Has minimal 
impact on 
environment
al resources 

Requires a lot 
of input to 
integrate the 
system 

Maintenanc
e is not 
frequent 

Remote 
monitoring is 
not possible, 
and it is also 
labor-
intensive 

Very resilient 
against the 
effects of 
climate 
change 

Requires 
routine 
maintenance 

  It is 
predictable 

 

  Remote 
monitoring is 
possible, and 
it also 
conserves 
water. 

 

 

4.3. Big Agro-Data Collection, Analytics, 
and Statistical Operations  

4.3.1 Big Agro-Data Collection 
Big agro-data collection can be defined as the collection of 

a large volume of data associated with agriculture which is 

wide in variety and at a high rate such that the creation and 

capture of such data are beyond the ability of relational 

databases to process and manage them without huge 

latency. Big agro-data is a special type of Big data whose 

primary source is derived from agricultural activities. Big 

data is broadly classified as structured or unstructured. 

Structured Big data which is often numeric is composed of 

information pre-processed by organizations, while 

unstructured Big data, which is not pre-processed is mainly 

obtained from social media sources and natural phenomena 

(78,79). As such, Big agro-data is unstructured Big data. 

4.3.2 Big Agro-Data Analytics 
One of the most important features of Big agro-data is that 

it contains a variety of unseen information, and the 

collection of such data provides critical insights into 

patterns and behaviors capable of enhancing irrigation if 

properly understood and harnessed. Table 2 shows the 

sources of a variety of information in Big agro-data. The 

analysis of the Big agro-data through the extraction of 

valuable patterns and hidden useful information is how 

such an unseen variety of information and phenomenon are 

usually discovered; as a result of this, Big agro-data 

analytics is one of the most important operations performed 

in data-intensive-driven agriculture. The extraction process 

begins with a preprocessing step which removes 

redundancy in data thereby increasing the quality of data. 

To be able to perform Big agro-data analytics, the 

architecture of the Big data must be supported by the 

infrastructure of the organization using such. To this end, 

organizations are constantly deploying open-source Big 

data tools to perform Big data analytics (79,80). 
A leading open-source tool for Big data analytics is 

Hadoop which is a software framework written in Java and 

can operate on a chunk of a given data set. A desirable 

feature of Hadoop in Big data analytics is its ability to 

process a large set of data spread across clusters of 

computers (80). This is ideal for CSA because it is powered 

by IoT and cloud computing whose data sources originate 

from different geographical locations operating with 

different servers. A well-known Hadoop architecture is a 

V1.x architecture as shown in Fig. 16; it consists of two 

parts: the Hadoop Distributed File System (HDFS) which 

has a storage part and a data processing part, and the 

management (MapReduce) part (79). 

Two processes make up the master node in Fig. 16 i.e. 

the job tracker and the name node. The job tracker is 

responsible for managing a given set of tasks, while the 

name node is responsible for the storage of the tasks. In the 

slave node, the task trackers are responsible for receiving 

tasks from the job tracker and processing them while the 

data nodes perform a similar task to that of the name node. 

The MapReduce layer is the data processing engine and it 

is also used for the management of cluster resources, while 

the HDFS layer is primarily responsible for handling the 

file-system component in the Hadoop ecosystem (79). 

Using this architecture, Hadoop can perform complex data 

analytics and statistical operations on Big data especially 

Big agro-data from which predictions can be made. These 

statistical operations include data mining, predictive 

analytics, machine learning, and deep learning.  

 

 
 

Figure 16. Hadoop V1.x architecture 
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4.3.3 Big Agro-Data Statistical Operations 

Big agro-data statistical operations involve the use of 

artificial intelligence techniques on Big agro-data to predict 

environmental parameters which have a direct effect on the 

well-being of crops and livestock. Data mining, predictive 

analytics, machine learning, and deep learning are typical 

operations performed in statistical operations. 

Data mining is the process of sieving through Big data 

to establish the existence of certain patterns and 

relationships. Data mining enables classification and 

clustering in Big data, and it also enables the development 

of association rules for members of Big data. In critical 

fields like agriculture with Big agro-data, data mining is 

extensively used for anomaly detection to forecast the 

occurrence of undesirable events and make proper planning 

for mitigating measures. There are three steps involved in 

data mining and they include exploration – this is the 

process of cleaning the data by removing redundancies and 

transforming it into a suitable form to extract important 

variables concerning the problem being solved. The second 

step is pattern identification – this is the process of 

selecting a pattern that makes the best-fit prediction of the 

data. The last step is deployment - this is the process of 

utilizing the data in an algorithm to obtain the desired 

outcome (81–85). To perform data mining, algorithms play 

a critical role. These algorithms are developed using 

different methods which include clustering, regression, 

artificial intelligence, neural networks, decision trees, 

genetic algorithm, and the nearest neighbor method 

(84,85). 

Predictive analytics is a data mining technique that uses 

current data and historic data to make predictions about the 

likelihood of the occurrence of a future event. Large 

amounts of data with different variables as in the case of 

Big data are analyzed during predictive analytics, and the 

most common approach used includes: genetic algorithms, 

hypothesis testing, text mining, decision analytics, 

regression modeling, market basket analysis, and decision 

trees, and clustering. At the core of predictive analytics is 

a predictive variable that represents an entity whose future 

behavior can be predicted. When a combination of multiple 

predictors occurs, then a predictor model is said to be in 

existence that forecasts future probabilities within an 

acceptable level of error tolerance (86–91). 

Machine learning is a field in computer science a 

technique in which existing data are used to predict or 

respond to future data by deriving a model from the data. 

Machine learning makes it possible to solve problems for 

which analytic models are difficult to develop. Fig. 17a 

depicts how a model is derived during a machine learning 

process, while Fig. 17b shows how the derived model is 

applied to field data. 

 
 

Figure 17. Machine learning processes 
 

Broadly speaking, there are three types of well-

established algorithms in machine learning enumerated 

below (92–94); these algorithms have their variants and 

hybrid. 

• Unsupervised learning – this is when machine 

learning occurs by discovery and adaptation based on 

the observed pattern of input. The learning process 

occurs using clusters of data that have relationships 

between their members. 

• Supervised learning – this is when machine learning 

occurs through the comparison of the computed 

output to the expected output. The error obtained from 

this comparison is adjusted using optimization 

techniques so that the computed output will be close 

as possible to the expected output. 

• Reinforcement learning – this is learning based on 

long-term rewards. A reward is given when a correct 

output occurs and a penalty occurs when the output is 

wrong. This type of learning differs from (i) and (ii) 

in the sense that sub-optimal actions are not corrected, 

and a correct pair of input/output are never presented 

(92). 

It should be noted that in machine learning, the 

consistency of the model irrespective of the training data 

relies heavily on the process called generalization. 

Deep learning is a special group of machine learning 

algorithms and techniques which exploit a large number of 

possible layers in a non-linear information processing 

procedure for the sole purposes of pattern analysis and 

classification, supervised feature extraction, and 

unsupervised feature extraction. Deep learning 

distinguishes itself from other machine learning techniques 

in the sense that it does not require domain expertise in the 

design of feature extractors; it can in its activities as a 

feature extractor by automatically transforming low-level 

features into higher-level features by identifying very small 

and “irrelevant” variations in a Big data. This makes deep 

learning far more accurate than other machine language 

techniques. At the heart of deep learning is the technique 

called representation learning, and it is a process of 
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autonomous feature selection through the multi-layered 

representation of input data (95–99). 

At the heart of deep learning is a special class of neural 

networks called deep neural networks, and they are defined 

as neural networks that have two or more hidden layers. 

The deep neural network is equivalent to a model in 

machine learning, and it is usually derived from a set of 

learning rules. Fig. 18 illustrates this concept, where it can 

also be seen how field data is applied in deep learning. 

 

 
 

Figure 18. Deep learning process 
 

Multivariate adaptive regression splines are a data-

driven modeling technique that is based on a multivariate 

nonparametric regression approach and it does not take into 

account the functional relationship between the input and 

output data. Through a divide-and-conquer approach, 

training data sets are broken into separate piecewise linear 

segments called splines with differing slopes. Knots are 

used in delimiting the segments by marking sub-divisions 

between any adjacent data regions in such a way that it is 

possible to obtain piecewise curves called basis functions 

(BFs) (100–103). Mathematically, MARS can be 

expressed as (102): 

( )( )0 ,
1 1

jkN

i ji j i
i j

y C C b x
= =

= +     (1) 

where y is the output variable, 0C is a constant, iC is the 

vector of coefficients associated with basis functions which 

are not constant, ( )( ),ji j ib x is the basis function with 

truncated power and having ( ),j i as the index of the 

independent variable used in the 
thi term of the 

thj  

product, and jk is a parameter that limits the interaction 

order.  

 

 

For any spline jib , it can be defined as (100–103): 
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where jit is the knot of the spline, ( )0q q  represents 

the spline power and the degree of smoothness of the 

resultant function approximation. The determination of the 

basis function to be included in the model is done by 

generalized cross-validation (GCV) which is the mean of 

the squared residual error divided by a penalty whose 

complexity depends on the model and is mathematically 

expressed as (102): 
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where M is the number of bases functions, d is the 

penalty for each basis function in the sub-model, N is the 

number of data sets, and ( )if x the predicted values by 

MARS. 

Sections 5.0, 5.2.1, 5.2.2, and 5.2.3 all point to the 

enormous benefits that can be derived from the application 

of IoT and cloud computing in agriculture which will 

ultimately lead to CSA and quite several researches have 

been made in this direction as discussed in section 5.3. 

However, the application of such technologies in SSA 

comes with certain challenges as will be shown in section 

5; nevertheless, such challenges are surmountable.  

4.3.4 Review of Current and On-going Research in 
the Application of Cloud Computing, IoT, and Big 
Data Analytics in CSA  
IoT has been successfully applied in the smart monitoring 

of agricultural land which has resulted in the efficient 

maintenance of critical parameters like temperature level, 

water level, and humidity level (104). To perform smart 

monitoring, three important sensors were deployed: 

temperature sensor, water flow sensor, and soil moisture. 

Data obtained from these sensors were centrally controlled 

by a PIC microcontroller which was programmed to 

activate and deactivate subsystems necessary for the 

maintenance of the parameters being monitored. 
In (104), the authors fully automated a farm with an 

array of sensors and actuators all connected to an Arduino 

microcontroller. In their arrangement, temperature and 

humidity information was collected by the sensors and sent 

to a web server which then compared the information with 

the forecasted rainfall for the region. Depending on the 

outcome of the comparison, a report is sent to the user on 
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whether or not to activate the irrigation system on the farm. 

Optimum water utilization was achieved by the automated 

farm. 

A technique called FarmBeat was proposed in (105) to 

boost agricultural productivity by reducing losses and 

increasing yields. It is an end-to-end IoT platform for 

agriculture that makes it possible to perform seamless data 

collection from cameras, drones, and sensors. FarmBeat is 

a robust design that has been shown to support agricultural 

activity for almost six months in the presence of power and 

internet outages. Connectivity on the farm was achieved by 

utilizing unlicensed TV white spaces for the establishment 

of a high bandwidth link from the farmer’s home internet 

connection to an IoT base station located on the farm. From 

this connection, the IoT was able to push data to the cloud 

which was accessible to farmers at remote locations from 

the farm.  

Using Fipy board, Pysense board, Pycom expansion 

board, and Raspberry Pi, the authors in (106) created an 

IoT system that consisted of two nodes i.e. node 1 and node 

2, and a gateway which was all formed using Pysense, 

Fipy, external LoRa antenna, and a Raspberry Pi 3 

application processor. Node 1 was used in communicating 

temperature and humidity data, while node 2 was used in 

communicating barometric and ambient light data. Using 

MQTT protocol, a server that acted as a cloud received 

information from nodes 1 and 2 for processing and storage. 

A farmer with either direct or remote access to the server 

could obtain critical information about the environmental 

condition to make data-driven decisions that will impact 

positively on productivity.  

AGRIoT was proposed in (107); the system had three 

units which include a fertilizer sanction unit based on soil 

nitrogen, potassium, and phosphorus values, an estimation 

unit for water cropping, and an irrigation scheduling unit. 

For any crop type selected, AGRIoT used an 

evapotranspiration algorithm to determine the desired 

water level for the crop. 

IoT and machine learning were combined by (108) to 

achieve automation in agriculture. Their technique 

automated the monitoring of soil conditions by monitoring 

parameters like temperature and humidity, water level, and 

moisture content. To perform this automation, Arduino 

UNO was used for the collection of sensor values and then 

transmitted to a Raspberry Pi in which an Apache Web 

server was set up. The Raspberry Pi also had an SQL 

database of data storage. Communication between the 

sensors and the server was established using the Zigbee 

module; this enabled the transmission of data in real-time 

to the server which a farmer can access anytime thereby 

reducing the required amount of man-hour needed for farm 

monitoring. 

Smart irrigation and agriculture-based monitoring were 

performed (109) using Raspberry Pi which was used to 

control an array of monitoring sensors. The sensors 

monitored important parameters like soil moisture, 

humidity, and temperature. An irrigation system was 

triggered when the soil moisture level goes low. Data from 

the sensors and processes by Raspberry Pi was retrieved by 

ThingSpeak which is an open-source cloud platform. The 

application of IoT and related digital solutions is still in its 

infancy. Therefore, there are attendant challenges that 

indigenous research and policies are yet to solve in this 

area, especially as it concerns sub-Saharan Africa. 

5. Challenges, Solutions, and Open 
Issues in Application of IoT in 
Agriculture in SSA 

In the application of IoT in agriculture in SSA, several 

challenges must be overcome if IoT is to become 

ubiquitous with universal penetration across the continent. 

These challenges include finance, illiteracy, technical 

skills, and local content. 

Finance is a major determinant in the success of the 

application of IoT in agriculture because the cost of 

commercial IoT devices is on the high side for most low-

income countries, especially in SSA (110). As a result of 

this, any attempt by SSA countries to deploy IoT in 

agricultural programs may be impeded by finance. 

Illiteracy is another challenge that undermines the 

successful implementation of IoT in agriculture in SSA in 

the sense that about 37% of the adult population in SSA 

still lacks basic literacy skills which translates to 170 

million people (111),(112). By implication, this staggering 

figure imperils the digital literacy level in SSA; hence the 

ability to effectively analyze and create digital content 

among SSA farmers is lacking in most cases. As a result of 

this, maximum benefits and ease of information access 

through IoT deployment are yet to be achieved in SSA.  

Technical skills are tangential to the success and 

widespread acceptability of IoT in agriculture in SSA 

because they keep IoT in a functional state in which the IoT 

can meet the wide spectrum of demands in agriculture in 

SSA. Sadly, in most SSA countries, the requisite technical 

skills to ensure the availability of IoT as a technology is 

lacking (112); the implication is that frequent down-time is 

experienced in the most application of IoT in agriculture, 

and this has dampened the enthusiasm of SSA farmers to 

fully embrace IoT. 

Local content is a challenge in the application of IoT in 

SSA because the development of mobile applications and 

digital content in almost all cases does not take into account 

the contemporary reality of the African end-user (110–

112). These applications and digital content which are 

mostly developed in advanced countries do not make 

provision for customizations of content that suit SSA’s 

peculiar needs and languages. As a result of this, most SSA 

farmers view IoT technology from an unfriendly 

perspective. 

5.1 Proposed Solutions to the Challenges in 
the Applications of IoT in Agriculture in SSA 

The challenges highlighted in section 5.0 are not 

insurmountable as long as the right steps in the right 
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direction are taken. In this section, we propose a three-

prong approach as depicted in Fig. 19 which can effectively 

mitigate the challenges associated with the application of 

IoT in agriculture in SSA. 

 

 

Figure 19. Solutions to the challenges in IoT 
application in agriculture in SSA 

Finance as a solution to the challenge in IoT application 

in agriculture in SSA deals with making commercial IoT 

devices affordable through subsidies and single-digit loans 

from financial institutions. This will encourage SSA 

farmers to become more active players in the application of 

IoT in agriculture. The subsidy is envisaged to come from 

SSA governments through ministries and departments of 

agricultural development while single-digit loans are 

envisaged to come from specialized financial institutions 

like agricultural development banks. Also, international aid 

should not come in terms of food aid to SSA but in terms 

of financial and advisory aid to enable SSA to produce their 

food and become self-sufficient in food. 

Education addresses the problem of illiteracy by 

making sure the adult population has access to basic 

education. This will, in turn, have a positive impact on 

digital literacy especially among SSA farmers; accessing 

and analyzing digital content will thus become easier and 

hence deriving maximum benefits from the application of 

IoT amongst SSA farmers will be achieved.   

Human capacity development addresses the problem of 

technical skills and local content development in the sense 

that specialized and targeted training can be made which 

addresses specific manpower gaps in the maintenance of 

IoT systems. This will go a long way in ensuring that IoT 

systems can be adequately maintained within the local 

environment. On the local content front, human capacity 

development will enable the training of local digital 

content developers who will develop digital contents and 

solutions which are native to the challenges faced by SSA 

farmers. These contents can even be developed in local 

languages that are mostly understood by the end-users. 

 
 

5.2 Open Issues in the Application of IoT in 
Agriculture in SSA 

Despite all the identified challenges and associated 

solutions to the application of IoT in SSA, there are still 

several open issues and areas which need to be addressed 

if SSA is to make the necessary quantum leap in food 

security. A well-known open issue is research and 

development (R&D) in agriculture (113). SSA needs to 

make concerted efforts in research and funding research in 

agriculture if SSA is to address its peculiar environmental 

challenges using IoT as it affects agriculture. Fig. 20(113) 

shows that in comparison to other global regions, SSA 

public spending on agriculture and funding of research in 

agriculture is abysmal. This situation needs to be reversed 

by deliberate government policies and interventions.  

 

 

Figure 20. Public agriculture-related expenditures 
across developing regions 

Conclusion 

The quest to achieve global food security is no doubt a long 

and odious task, but it is also achievable. This can be done 

if vulnerable regions of the world are carried along and 

encouraged to also achieve self-sufficiency in all 

developmental indices. SSA is one particular region that 

falls into this category. Despite having the largest arable 

land in the world, SSA's performance in its attempt to 

achieve food security has at best been abysmal and 

unacceptable. In this paper, an overview of the problem of 

food insecurity in SSA was presented by first appraising 

the current status of SSA’s food insecurity and the 

aggravating factors. The paper also examined how trade 

and post-harvest activities have affected SSA’s ability to 

achieve food sufficiency. Considering the impact of 

prevailing climate change on food security, the idea of 

climate smart agriculture (CSA) was discussed alongside 

its associated technologies like IoT, cloud computing, and 

data analytics, and how they can be harnessed to increase 

agricultural productivity across SSA with minimal impact 

on the environment. Finally, the paper looked at the 

challenges associated with the implementation of IoT in 

SSA and the associated solutions that can be proffered to 

mitigate such challenges. 
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