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Abstract 

 

The economy of every nation is driven by electrical energy. However, the inadequacy of public 

supply affects industrial production output.  For this reason, an alternative and reliable source of 

power is presented. This paper focuses on a hybrid source of power that will deliver a constant 

power to enhance industrial high production. The generator comprises a salient pole and round 

pole machines that are magnetically coupled together and integrally wound. The unique feature 

about this generator is that it is rugged, and while running at a synchronous speed, the effective 

quadrature axis reactance Xq  can be adjusted by tuning the variable capacitance load of the 

auxiliary winding thereby delivering a high output power that will empower every equipment in an 

industry. When this type of generator is employed in extractive industry, production output will 

increase. The circuit diagram of the machine is presented and analyzed. It has a high output power 

and performance is better than every other conventional generator.    

(Keywords: High voltage, Variable capacitance tuning) 

 

INTRODUCTION 

 

The delivering of a fixed electrical power generator, otherwise known as steady state machine has 

been reported [1-4].  This is hybrid synchronous generator and each has two stator windings. These 

windings are known as main and auxiliary windings. The machine comprises a round rotor and salient 

pole rotor that that are magnetically coupled together and integrally wound. The main winding is 

connected series and the auxiliary winding is transposed between the two sections of the machine. 

When this connection is carried out and by tuning the load capacitance of the auxiliary winding, it 

varies the operational q- axis reactance xq  of the machine from zero to a very high output power 

value while the d- axis remains constant. Thus it is proven that varying 
Xq

Xd  ratio is achieved from 

zero to a very high value. Hence, the output power of this coupled generator is directly proportional to 

Xq
Xd . 
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               Figure 1: Per Phase schematic diagram of the coupled synchronous machine 

 

 

 

 

 

 

 

 Figure 2: Equivalent circuit diagram of the above coupled machine 

In analyzing Figure 2 the following assumptions are made: 

(a) The synchronous reactance sx  of the round rotor section of the machine is matched to the d – 

axis reactance ( dX ) of the salient pole by design. Therefore, sX = dX . 

(b) The main winding and auxiliary winding of the machine have the same number of poles as the 

rotor and they occupy the same slot space, and thus perfectly coupled. Hence, 
mrX =  1X  =

dX   

and = 
msX  = 1X  

(c) The resistance of the windings is ignored. 

Taking the above assumptions, therefore, for a distributed stator winding and a salient pole structure, 

the winding reactance 1X  is a function of rotor position and well known as [6]: 
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(Where δ is the phase angle between the direct axis reactance and the rotating mmf)
 

The machine is analyzed as a magnetically coupled circuit. Applying KVL equation in the two meshes 

of Figure 2 and noting the positive and negative couplings in the respective halves of the machine, it 

can readily be seen that  

211111 )()(2 IXXjIXXjIXjV ddd −+−+=                    (2)   

And  

221112
)()(20 IjXIXXjIXXjIXj

cddd
−−+−+=                       (3) 

Equations (2) and (3) lead directly to the equivalent circuit as shown in Figure 3. 

 

Figure: 3   Per-phase steady-state equivalent circuit of hybrid synchronous  machine 

From Figure 3, 
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And from equation (3), 
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Solving equations (4) and (5) simultaneously using MATLAB 
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The resulting impedance matrix is given below 
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Substituting the value of 2I  in equation (4) into equation (5) 
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Equation (13) can be simplified as follows: 

Let δ2cos)4(2)1)(4( cdccd XXkXkXX −+−−−  = a                                                (14) 
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Rationalizing equation (18) gives 
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Therefore,  
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(Where eR and eX are the effective resistance and reactance of the machine). 
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AXIS REACTANCE OF THE MACHINE 

Considering the reactive component of inZ  (Equation 20) leads directly to the direct axis and 

quadrature axis reactance.   

Direct axis reactance DX when δ =0 
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Therefore, dD XX 2=                                                                 (23) 

When 2/πδ = , quadrature axis reactance QX
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(Where 
q

d

X

X
k = ) 

From equations 23 and 25, the fixed values of 
dX  and k  determine by the geometry of the salient 

pole section of the generator, the quadrature axis reactance QX  is dependent on the variable cX . 

Hence for appropriate value of cX , QX takes values between 0 and infinity while QX  remains 

constant and therefore, a variable of DX / QX  ratio which varies from zero to a very high value output 

power is obtained.  
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The loci of Zn of equation 20 as δ  varies from 0 to infinity to π are family of circles of radius 

)(
2

1
QD XX −  and center )(

2

1
QD XX + , 0) for various values of cX  as shown in Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

             Figure 4:   Impedance loci of the hybrid machine at various values of Xc 

In Figure 4, all the family of circles are tangential to the straight line passing through 2 p.u for dX ,  = 

I p.u. When 
dX ,  =  abs – qX , the machine will draw or supply the same current irrespective of load in  

refractive industries. 

For  a constant applied voltage, the current loci which are the inverse of the impedance loci are family 

of circles tangential to the line 0.5 p.u as shown in Figure 5 
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 Figure 5: Current loci of the idealized hybrid machine 

Figure 5 presents the straight line extending from zero to infinity in the current loci which implies a 

very high output power corresponding to loci to QX = 0 as expected. The power factor is given by  
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+
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Plots for the power factor for various values of Xc are shown in Figure  6   

                   

 
   Figure 6:  Power Factor - Load Angle plots of the idealized hybrid machine 

 

SHORTCOMINGS ASSOCAITED WITH THE REPORTED SYNCHRONOUS MACHINE 

One of the demerits of the hybrid synchronous machine reviewed is that the cylindrical rotor half of 

the generator does not contribute to the torque production since there is no winding in the rotor. Again, 

the generator cannot operate as a standalone machine as it must be connected to an existing mains 

supply for the purpose of deriving its magnetizing current in a manner similar to induction generators. 

Obe and Senjyu [5] due to the mentioned demerits, suggested the exploration of the possibility of 

including some permanent magnets in the cylindrical rotor half of the machine with a view to making 

it contribute to the output power and therefore reduce the load angle δ  for maximum output power of 

the generator. 

This paper is an extension of the machine generator reported in [1-4] to operate in line with the pure 

synchronous mode by introducing a direct current field winding spanning both sections of the 

generator and mounting them on the combined rotors. 
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This method enables the salient pole of the machine to produce excitation and reluctance power while 

the cylindrical section contributes excitation power only. Therefore, the  novel coupled synchronous 

generator will have superior output power characteristics to the machine reported [1-4] and the 

conventional direct current field excited synchronous machine generators. 

NEW MACHINE UNDER STUDY 

The difference between the machine [1-4] and the machine under study is that a direct current 

excitation field winding is mounted on the combined rotors as shown in Figure 7. 

 

 

 

 

 

       Figure 7: Per - phase schematic diagram of the new hybrid synchronous machine with     

                        rotor field winding 

                         

Figure 8: Coupled equivalent circuit of the machine including the effect of induced e.m.f              
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                    Figure 9:  Equivalent Circuit of the new hybrid synchronous machine 

 

Analysis of the coupled synchronous machine 

The magnitude of the electromotive force ( fE ) induced in both halves of the machine by the field 

winding is assumed equal ( fE ). The total electromotive force induced in the main winding is thus the 

sum of the emfs ( fE ) in both halves of the machine and equal to fE2 . Similarly, the emfs induced in 

both halves of the auxiliary winding are equal and adds up to zero due to the transposition (anti –series 

connection) of the auxiliary winding. The field winding is omitted from the equivalent circuit since it 

has no induced voltage components as there is no relative motion between it and the rotating 

magnetomotive force (mmf) in the air-gap due to the stator winding current, both rotating at the 

synchronous speed. 

Applying the KVL emf equation for the two meshes of Figure 8, it can easily be shown that 
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Equation 30 may be represented as shown in Figure for generator operation 
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Figure 10: Equivalent circuit of the Hybrid synchronous machine operating as generator 
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When the salient pole rotor is in q- axis, δ = π/2, the quadrature- axis QX is given by 
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Figure 10 using 1V  as the reference phasor and neglecting resistance is given by  

                                  (37) 

The phasor diagram corresponding to equation (37) is shown in Figure 11 

     

 

 

 

Figure 11: The phasor diagram of the generator mode of the new machine  

OUTPOWER POWER OF THE NEW MACHINE GENERATOR 

 

In calculation, the output power per phase of the machine is given by    
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The resultant power P , for the 3-phase synchronous machine is given by 
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(Where fP
 
is the Excitation Power and rP is the Reluctance Power). 

The Reactive Power Q , for a 3-phase system is given by  
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A plot of the power output of the machine for typical values of upV .11 = , upE f .2.1=  and 0=δ  to π

for cX  =0.4p.u is as shown in figure (12).   
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        Figure 12: Output Power of the New Hybrid Machine for δ from zero to π At cX =0.4
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                           Figure 13: Output Power of the Hybrid Machine for δ from zero to π At cX

=0.95
 

    

 

                             

Figure 14:  Output Power of the new hybrid machine for δ from zero to π at  Xc = 0.999999                     

For a typical value of  rad
6

30
π

δ == 6
 , whereas the excitation power fP  is constant at 0.6pu, the 

reluctance power rP for some values of cX  is as shown in table two below: 

Capacitive 

Reactance 

cX  (p.u) 

 

Value of 

Capacitor 

in Farad  

Operational 

QD XX /  

     Ratio for 

       3=k  

Excitation 

Power fP  

(p.u) 

Reluctance 

Power

rP  

(p.u) 

Total 

Output 

Power P  

(p.u) 

% 

fP
 

% 

rP
 

∞ (infinity) 0.00 1.50 1.80 1.29 3.09 58.25 41.75 

0.00  ∞(infinity) 2.00 1.80 2.61 4.41 40.82 59.18 

0.60 0.0053 2.75 1.80 4.56 6.36 28.30 77.70 

0.95 0.0034 11.50 1.80 27.27 29.07 6.19 93.81 

0.99 0.0032 51.50 1.80 131.19 132.99 1.35 98.65 
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        OUTPUT POWER AGAINST LOAD ANGLE OF TH E NEW HYBRID MACHINE WHEN  Xc=0.9999999999999999 
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1.00 0.0032 ∞ (infinity) 1.80 ∞ (infinity) ∞ (infinity) ≈ 0.00 ≈ 100.00 

1.20 0.0027 -1.00 1.80 5.19 6.99 25.75 74.25 

1.40 0.0023 0.25 1.80 1.95 3.75 48.00 52.00 

1.80 0.0018 0.88 1.80 0.33 2.13 84.51 15.49 

2.00 0.0016 1.00 1.80 0.00 1.80 100.00 0.00 

Table 1: Three phase output power components of the new hybrid machine for various  

                values of  cX  at operational value of  630=δ and the percentage contributions of      

                Pr and Pf to the total output power P 
  

Glancing at Table 1, it shows that when the auxiliary winding is on open circuit ( ∞=cX ) that the 

operational QD XX /  ratio is low and consequently the output power. When the auxiliary winding is 

short circuited ( 0=cX ), there is a small decrement of the operational q-axis reactance (
q

X ) and a 

consequent increase in qd
XX /  as ( d

X ) is always constant and hence an increased output power. 

When a variable capacitance load is introduced into the auxiliary winding, there is a marked 

decrement of the q-axis reactance ( q
X ) and a corresponding increase in the output power due to the 

neutralization of the inductive reactance of the machine by the capacitive load.  At upX c .0.1= , the 

inductive quadrature reactance ( q
X ) of the machine is completely neutralized by the capacitive 

reactance leading to infinite 
qd

XX /  ratio and a corresponding infinite output power. If, however, the 

capacitive reactance exceeds the inductive reactance, the machine operates at leading power factor. 

 In comparison, the excitation power component is negligibly small (in the operational range 0.1≤cX ) 

compared to the reluctance power component and hence the overall output power of the machine 

which is the sum of fP  and rP is rP dominant. At 0.1=cX  the reluctance power rP (and by 

implication the total output power, P ) will tend to infinity. The steady state limit of the hybrid 

machine is about 645  unlike the salient pole synchronous machine. 

CONCLUSION 

In the new hybrid synchronous generator machine, it is shown that when a cylindrical rotor machine is 

mechanically coupled to a salient pole machine, and spanning excitation field winding mounted on 

both combined rotors, with the synchronous reactance sX  of the round rotor machine made equal to 

the direct axis reactance dX  of the salient pole section ( sX = dX ); on the d-axis, the overall d-axis 

reactance of the machine is dD XX 2=  and the overall q-axis reactance is QDQ
XXX += , giving a 

ratio 
Q

D

X

X
K = =

1

22

+
=

+ k

k

XX

X

qd

d

Q

D

X

X
k =  where 

q

d

X

X
k = .  

For a fixed machine geometry (
q

d

X

X
k = ), the effective saliency factor, K , can be raised if a second 

set of stator (auxiliary) windings whose coil sides are displaced 180º electrical (transposed) between 

the two sections of the machine are installed and feed a balanced variable capacitance load. By 
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varying the capacitance loading, qX will vary from zero to infinity while DX
 remains unaffected and 

a variable 
Q

D

X

X
 ratio which is directly proportional to the reluctance power component is achieved at 

good power factors and normal currents. 

The new hybrid synchronous machine has a higher output power to size ratio compared to hybrid 

reluctance synchronous machine, because the excitation power has a factor of 2 which compensates 

for coupling two machines. Furthermore, the reluctance component is very large and far exceeds the 

excitation component that even tends to zero. 

In construction, the stator of the new hybrid synchronous machine has deeper slots in order to 

accommodate the two sets of windings (main and auxiliary). The output voltage of the auxiliary 

winding used in the control of the mechanical governing or adjustment of the field excitation when 

there is need to improve stability of operation. 

The machine has a relatively better asynchronous run-up characteristic than a coupled synchronous 

reluctance machine because the capacitance of the auxiliary winding can be tuned such that the 

difference between the effective rotor D -axis reactance DX  and the effective quadrature axis 

reactance QX will not be so pronounced. The pull-in torque, as a ratio of the pull-out torque will 

therefore be greater. The stability of the machine on load is raised by increasing the auxiliary winding 

capacitance load after the machine has been brought to synchronism. The New hybrid synchronous 

machine is thus a synchronous generator for bulk power supply in view of its ultra-high power output 

potential. 
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