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A B S T R A C T   

The energy efficiency of IoT nodes remains the dominant factor for effective IoT solutions that 
will meet the challenges of the 21st century, especially in the drive towards a carbon-neutral 
world through net-zero targets. Microprocessors/microcontrollers are devices that perform 
entire operations of IoT devices. Therefore, the power and energy consumption of these pro-
cessors directly reflects the power consumed by the IoT devices they drive. An accurate estimation 
of the power and energy consumption of the processors is vital for the development of energy- 
efficient IoT solutions because IoT devices are designed to operate in remote locations for long 
periods without human intervention. It is against this backdrop that this paper which is expected 
to serve as a guide for researches and IoT node/application developers in selecting the best 
technique for an IoT use-case, presents a review of processor power and energy consumption 
estimation techniques starting from the lowest level of abstraction to the highest level of 
abstraction. The review involves a detailed discussion of estimation technique methodologies for 
an abstraction level, and where applicable, generalized methodologies which cover the most 
approach used for an abstraction level are covered. The existence of overlaps and the impact of 
processor duty cycles on the techniques were discussed. A comparison of the strengths and 
weaknesses of each technique was made, from where register-transfer level and instruction level 
techniques are shown to be resilient against errors that occur from poor input signal conditioning. 
Future directions for the development of estimation techniques are also presented as 
recommendation.   

1. Introduction 

The Internet-of-Things (IoT) is a network computing paradigm that connects electronic devices distributed across different 
geographic locations for monitoring, data acquisition, and remote assessment of systems and environmental parameters [1–4]. IoT is 
envisaged to be a key enabling technology in the drive toward Net-zero infrastructure, smart cities, and climate-smart agriculture 
(CSA). To work effectively as an enabling technology, IoT must be energy-efficient. Thus, huge responsibility lies on the IoT node and 
application developers in ensuring that their product meets the required level of energy efficiency. To realize this, the efficiency of the 
IoT system being developed must be estimated using an appropriate estimation technique during critical milestones in the 
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development process. It is against this backdrop that this paper presents a systematic review of power and energy estimation tech-
niques in processors at different levels of abstractions to make available to the readers, the methodology, complexity, and likely 
challenges in using an estimation technique. An extensive review of literature shows that a one-stop review paper that discusses all the 
levels of abstraction in processor power and energy consumption estimation as presented in detail in this paper is currently lacking. 
Therefore, this review paper aims to fill the gap by equipping the reader or the developer with the necessary information about 
estimation techniques that will be required in making the right choice in the selection of a processor that plays a dominant role in IoT 
nodes and applications; these nodes and applications are envisaged to be the drivers of a sustainable future as shown in Fig. 1 [5,6]. The 
link between IoT and generalized use-cases in Fig. 1 covers most of the conceivable areas of current and future IoT applications. 
Net-zero infrastructure as shown is an emerging use-case for IoT, while smart cities and climate smart agriculture (CSA) are current 
use-cases for this technology. 

The increase in the standard of living experienced in the last decade has led to a rapid increase in the quality and number of 
infrastructure projects in different regions of the globe [7,8]. This development has had an impact on the environment, especially in 
the context of carbon footprint, which has been directly linked to the dual problem of climate change and global warming. However, 
these problems can be kept under control by a transition to net-zero, where the rate of emission of greenhouse gases to the atmosphere 
is equal to the rate of removal of such gases. A candidate solution in literature is IoT, which is showing promising results toward 
net-zero infrastructure, and it is envisaged to play a leading role in that regard. Net-zero emissions are the major challenge in net-zero 
infrastructure, and the path to attaining it is quite narrow as it requires the deployment of efficient energy technologies controlled by 
intelligent IoT devices if the target is to be met [9,10]. To further corroborate this position, the energy trends forecast for net-zero 
emissions scenario by [9,11] puts the decline in coal use at 90% in 2050 from the levels in 2020; 30% cut in methane emissions by 
2030; between 2020 and 2050, oil demands will fall by 75%; a drop of 55% is expected to occur for natural gas between 2020 and 
2050. These projections, which form an active decarbonization process, can be achieved through IoT-driven energy-efficient systems 
[12]. Net-zero energy costs, along with site energy and source energy represent the drive towards significantly reducing the direct and 
indirect energy consumption of industries, and organizations [13]. 

Smart cities are a current use case for IoT applications, and they can be defined as complex sociotechnical structures whose ex-
istence is the result of the convergence of human actors and digital devices [14]. The human actors include citizens and city operators. 
The digital devices include city sensors and actuators that service transportation, industries, organizations, homes, and healthcare 
systems. IoT applications have a central role to play in the optimal operation of the digital devices for a city to be smart, and the degree 
of application of IoT in the operation of the digital devices determines the degree of the sustainability of a city. In smart transport, IoT 
applications enable the optimal management of traffic, route decision, and resource allocation while at the same time providing 
traveler information to commuters in an efficient manner [15–17]. 

The application of IoT in smart industries includes the real-time monitoring of production processes, and automatic adaptation to 
changing materials conditions and customer’s needs [18–20]. Equipped with an appropriate AI algorithm, IoT can make accurate 
predictions when a piece of industrial equipment will fail; this will make it possible to perform resource-efficient preventive main-
tenance [21,22]. In smart homes, IoT is the nexus between energy conservation and optimal appliance management. Through 
specialized AI algorithms, IoT applications can monitor and regulate heating, cooling, and lighting systems in homes [23,24]. Such an 
approach significantly scales down the impact a home has on its energy mixes like supply grid and renewables. The application of IoT 
in healthcare systems has shown rapid response to patients’ needs by doctors through wearable devices which serve as IoT nodes. With 
these devices, patient records can be accessed, vitals can be remotely monitored and assessed remotely in real-time, and timely in-
terventions can be made on-demand. This paradigm has revolutionized healthcare delivery [25–28]. 

Climate Smart Agriculture (CSA) is a use-case in which IoT is making deep penetration, and it is defined as the integration of 
traditional agricultural practices with data-driven and data-acquisition technologies like IoT for the sole aim of developing an efficient 
farming practice that is resilient to climate change, guarantees food security, and having minimum impact on environmental resources 
[29–31]. Smart operations are the aggregation of farming activities in which IoT plays a central role such that the operations are 
performed optimally and efficiently [31,32]. The operations involve a data-driven synchronization of complex farming activities in a 
way that maximum productivity can be achieved with the fewest farming tools and other inputs. In CSA, monitoring is a data-intensive 
task in which readings of a variety of parameters (temperature, humidity, soil pH, fertilizer concentration, etc.) central to a good 
output are made periodically by IoT sensor nodes. The readings are evaluated using AI algorithms to determine the appropriate 
response to be made [33–35]. Control in CSA involves the use of IoT to efficiently regulate the number of user inputs like water and 

Fig. 1. Three generalized use-cases of IoT.  

P.Y. Dibal et al.                                                                                                                                                                                                        



Internet of Things 21 (2023) 100655

3

fertilizer so that farm yields which are within acceptable standards can be derived [36,37]. Control also implies the use of IoT to 
optimally apply insecticides and herbicides to create conditions that ensure that plant diseases, pests, and weeds are unable to thrive 
[36]. One of the major issues which CSA addresses are the wastage of scarce resources like fresh water in irrigation. By using IoT, 
efficient management of farms is achievable because IoT powers data-driven decisions which determine the best and optimal appli-
cation of water, fertilizer, pesticides, and other inputs which produce high yields [38–40]. This is very important due to the rising cost 
of fertilizer, and the increasing pressure on available freshwater arising from population explosion. 

Having looked at the use cases for IoT, an avid reader would like to see the objective of this paper in the context of processor power 
and energy consumption estimation, and IoT applications. The answer lies in identifying the benefits of estimating the power and 
energy of the processors. These benefits are itemized as follows:  

(i) Every processor power and energy consumption estimation technique has its strength and weakness. It is therefore vital to have 
a sound knowledge of each estimation technique with a view of how they can, on a use-case basis, be selected for the accurate 
estimation of the power and energy efficiency of IoT applications.  

(ii) The estimation of processor power and energy consumption through an appropriate technique creates the possibility of 
selecting suitable processors for the development of IoT products and applications which have good power and energy char-
acteristics; this will guarantee the industrial viability of such applications and their environmental profitability in the context of 
carbon footprint reduction.  

(iii) Advancements in digital electronics have significantly increased the functionality of processors which seamlessly execute the 
expanding functions of IoT applications. With this reality comes the possibility of many ways by which IoT applications can 
perform certain functions. However, not all routes taken in developing IoT applications will yield the same level of processor 
energy efficiency; it is in this context that an appropriate power and energy consumption estimation technique can be used in 
estimating the numerical value of the energy efficiency of an IoT application. Armed with this information, an appropriate IoT 
application development route that yields the best power and energy efficiency can be selected.  

(iv) An energy-efficient IoT application developed using accurate power and energy consumption values obtained from an 
appropriate estimation technique translates into the development of IoT nodes that have a prolonged lifespan while operating in 
remote locations. 

Consequently, it is appropriate to develop a taxonomy of the known techniques that are used in the estimation of processor power 
and energy consumption. Such a taxonomy is shown in Fig. 2 where techniques vary in abstraction levels i.e. from upper level ab-
stractions to lower level abstractions. 

From the objective of the paper and the foregoing discussions on the use-cases of IoT, it is apparent that the quest to achieve high 
standards of living within the context of a sustainable future will rely heavily on IoT. Through a fusion with machine learning, IoT is 
placing within our reach, the creation of a carbon-free world whose resources are sustainably utilized for the advancement of human 
society. Therefore, IoT is tangential and important to a sustainable future, and it is against this backdrop that this paper will focus on 
one of the key enablers of IoT technology i.e. power and energy consumption. The reason for this is that most IoT nodes operate 
remotely over an extended period; it is therefore expected that such nodes will be able to utilize their power for as long as possible 
without human intervention. To set the tone for the review, the paper is organized as follows: Section 2 reviews the role of power and 
energy in ensuring the viability of IoT technology and solutions. In Section 3, the factors responsible for the power consumption in 
processors are presented; this section lays the basis on which the power estimation techniques are discussed. Section 4 presents a 
taxonomy and review of power and energy consumption estimation techniques starting from the lowest level of abstraction to the 
highest level of abstraction. Section 5 discusses overlapping factors and effect of power duty cycles in power and energy consumption 
estimation. Section 6 highlights the advantages and disadvantages of each of the estimation techniques and also highlights future 
research directions. While Section 7 concludes the paper. 

Fig. 2. A taxonomy of power and energy consumption estimation techniques for processors.  
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2. Power and energy as enablers of IoT technology 

Power and energy consumption is arguably one of the most important performance metrics an IoT node can possess, and its efficient 
utilization implies that the IoT can work remotely over a long period. An energy-efficient IoT node is a node that can perform a set of 
tasks with minimal energy. In dealing with power and energy consumption, it is important to differentiate between power and energy, 
especially in the context of work. While power can be described as the rate at which work is performed or the rate at which energy is 
consumed; energy on the other hand is the total amount of work performed over a given period. These definitions imply that the 
reduction in CPU power consumption through reducing CPU performance does not translate into energy savings/efficiency because a 
longer time will still be required to complete the execution of a given set of tasks using the same or even more amount of energy [41, 
42]. From the foregoing definition, the power and energy consumption of an IoT device determines its viability, and it is against this 
backdrop that the ability of an IoT device to conserve energy has received much attention from the research community. To further 
distinguish power from energy, Table 1 shows some key differences between power and energy. 

Several factors are responsible for power consumption in an IoT node, and they include data communication between an IoT node 
to other nodes or a centralized base station, the type of microprocessor used in the IoT node, associated peripherals, and sensing 
operations. Several attempts have been made in literature toward conserving the energy of an IoT node, and they include energy 
harvesting protocols [43,44], application of optimization in routing protocols and communication link status, optimal sleep & wake up 
strategies based on network traffic, and data reduction based on optimization of network topology [45–48]. While these approaches 
have received a lot of attention in literature, a salient factor that is equally important but has not received equal attention is the power 
and energy consumption of the processors which run and control all the operations of the IoT device [49]. 

Energy conservation in IoT node from a processor perspective is based on the known fact that the CPU workload of the processor 
determines the energy consumption of the IoT node per time, and the CPU workload is determined by the number of CPU cycles 
necessary for the execution of an application [50]. Hence, energy can be conserved by an IoT node from a processor perspective 
through the development of applications that have high throughput. This will ensure that fewer CPU cycles will be required for the 
execution of applications; this will result in a lower workload and better energy savings. This information is critical because there are 
different processors from different manufacturers with varying performance; some processors perform better than others in running 
certain types of applications under certain ambient conditions. As a result of this, an IoT development and deployment process must be 
able to use an appropriate power and energy estimation technique to determine the suitability of an IoT node for a task in view based 
on its central processor. It is against this backdrop that the following sections will present a systematic examination of processor power 
and energy estimation techniques starting with factors that affect power consumption in processors. 

3. Power consumption factors in processors 

There are two broad categories of factors that affect the power consumption of processors, these are circuit-level factors and 
function-level factors. Each of these factors affects the power consumption of processors uniquely. The circuit-level factors mainly deal 
with the raw materials the circuitry of the processor was fabricated with, while the function-level factors deal with physical/structural 
design of the processors. The following subsections give further discussions on these. 

3.1. Circuit level factors 

Processors are essentially products of Complementary Metal Oxide Semiconductor (CMOS) technology and as such the circuit level 
factors which affect the power consumption of processors are static factors and dynamic factors. 

The static factors occur when the circuit enters a standby mode where leakage current occurs due to static dissipation. The leakage 
current is characterized by five components viz: gate tunneling, gate-induced drain leakage, reverse-biased pn junction current, sub- 
threshold leakage, and punch-through effect [51–56]. For any CMOS-based device, the static power Pstaticconsumption is defined as 
[57–59]: 

Pstatic = Vcc × Ileakage (1)  

where Vccis the supply voltage and Ileakageis the sum of leakage currents in the device. 
The dynamic factors occur due to power consumption when charging and discharging the output node capacitance of a transistor 

due to switching activity. There are two components in dynamic power consumption - switching power Pswitching due to charging and 
discharging of load capacitance, and short-circuit power Pscdue to nonzero input waveforms rise and fall time. These components are 

Table 1 
Differences between power and energy.  

Power Energy 

It is the rate at which the transfer of energy takes place It is the cumulative amount of work performed over a given period 
It is measured in Watt It is measured in Joule 
Cannot be converted from one form to another Can be converted from one form to another 
Cannot be stored Can be stored 
It is an instantaneous quantity It is a time quantity  
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related mathematically as [60–62]: 

Pdynamic = Pswitching + Psc (2) 

The switching power consumption occurs as a result of the charging and discharging of the load capacitance, which is connected to 
the circuit. It is mathematically expressed as [63–67]: 

Pswitching = αCLV2
ddfclk (3)  

where αis the switching activity factor and it is estimated as the sum of the effective power-consuming voltage transitions per clock 
cycle, CLis the load capacitance which is the sum of the device capacitance and interconnect capacitance, Vdd is the supply voltage, and 
fclk is the switching frequency of the circuit. 

The short-circuit power consumption occurs during output transition when there is a DC path between the supply and ground. 
Mathematically, it is expressed as [63,66]: 

Psc = IscVdd =
β
12
(Vdd − 2Vt)

3 τ
T

(4)  

where Isc is the short-circuit current, Vdd is the supply voltage, Vt is the threshold voltage, β is the gain factor of the transistor, T is the 
period, and τ is the input transition time. 

3.2. Function level factors 

Two main components make up the function level factors in the power consumption of a processor, they are: the datapath, and the 
cache. Other factors which contribute to the function level factors but are outside of the processor are the bus and main memory; these 
factors will not be discussed as they are outside the scope of the current discussion. 

A datapath is a functional unit that performs data processing operations on input data using arithmetic logic unit, buses, multi-
plexers, and registers [68–71]. These components are either implemented as combinational circuits or sequential circuits in the 
datapath. As a result of this, switching power consumption is implicit during data operations by the datapath. Owing to the cocktail of 
arrangements and interconnections between these components, which are determined primarily by the complexity of the datapath 
itself, there is no one-stop expression that fully characterizes the power consumption in a datapath. Despite this, several attempts have 
been made in literature towards minimizing the power consumption in a datapath. Some authors explored clock gating, dual 
edge-triggered clock, and system latches to optimize power consumption in the datapath [72–74]. Using a technique called bit-slice 
activation, the lack of a high level of entropy in data streams was exploited in the reduction of power consumption in all implicit and 
explicit storage components of a typical superscalar datapath [75]. MOVER (Multiple Operating Voltage Energy Reduction) technique 
has been used in the minimization of datapath energy consumption through the use of multiple voltage supply sources; the technique 
finds a minimum voltage for the entire datapath from multiple sources of supply voltages [76]. 

The cache is a memory that stores frequently accessed data and instructions by the CPU; this bridges the capability gap between the 
main memory and the CPU [77,78]. The overall system data processing ability and instruction execution speed rely heavily on the 
performance of the cache. The cache has three functional parts - a data section, status information, and a directory store [79]. Using 
these parts, the cache performs a lot of data processing operations, and similar to the datapath, significant switching power con-
sumption occurs. Also, owing to the different design approaches and implementation strategies, a single expression that completely 
characterizes the switching power consumption by the cache cannot be formulated. However, several attempts have been made in 
literature by different authors to minimize switching power consumption in caches. A data filter cache (DFC) has been integrated with 
a rapid address computation technique which reduced the impact of misses and significantly improved energy savings [80,81]. A 
dynamic data compression approach in secondary cache and a gated-Vdd control per cache block has been applied in achieving a 
reduction in the static power consumption and energy consumption by secondary caches [82]. 

Having looked at the factors that are responsible for power consumption which leads to the energy consumption by processors, the 
next section will examine the techniques by which the power and energy consumption of processors can be estimated. 

4. Power and energy consumption estimation techniques in processors 

The power consumption of a processor is a function of the energy consumption of the processor since power is the rate at which 
energy is consumed, and as stated in Section 3A, the power consumption is the sum of static power and dynamic power. A well- 
designed processor which optimally manages its power consumption is likely to be energy efficient, and this is a desirable property 
for any processor which will be involved in IoT applications and systems. 

4.1. Transistor level power and energy consumption estimation 

The transistor level is the lowest level for processor power and energy consumption estimation. It deals directly with the very 
nature of the semiconductor materials used in the fabrication of the transistor. These materials could be PMOS (p-type metal oxide 
semiconductor- constructed using a p-type source and drain and an n-type substrate), NMOS (n-type metal oxide semiconductor- 
constructed using an n-type source and drain and a p-type substrate), CMOS (complementary metal-oxide-semiconductor- constructed 
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using a combination of PMOS and NMOS) [83]. Fig. 3 shows the types of transistors called metal oxide semiconductor field-effect 
transistors (MOSFETs) fabricated using these materials. 

In practice, the CMOS MOSFET plays a dominant role in integrated circuit and processor designs because a CMOS circuit has very 
fast transitions between the low and high states, it has the lowest power consumption, and most importantly, the output of a CMOS 
circuit makes full voltage oscillation between the low and high rail; this is not so with PMOS and NMOS circuits. Thus, a CMOS circuit 
output gives a fully digital 0 and digital 1. For these reasons, the power consumption relationships in this section apply to CMOS 
MOSFETS. 

For CMOS MOSFETS, the relationships in (1)-(4) subsist in the determination of the power consumption at the transistor level of 
abstraction. In the case of energy consumption, there are two components involved i.e. static power in (1) and dynamic power in (2); 
these are static energy Estatand dynamic energy Edyn[84]. The static energy consumption is the result of the total leakage current 
(consisting of drain leakage, junction leakage, and gate leakage), and static current (consisting of DC bias current) [84]. For any given 
moment of timet : (t> 0), the static energy consumption can be expressed as: 

Estat(t) =
∫t

0

VDD(Ileak + IDC)dτ=VDD(Ileak + IDC)t (5)  

where VDDis the supply voltage, Ileakis the leakage current, and IDCis the static current. 
The dynamic energy which is a result of the relationships in (3) and (4) can be obtained by modeling the circuit in Fig. 3c as a 

capacitor CLbeing charged by VDDthrough a circuit with resistance R; the expression is represented as [84–87]: 

Edyn = CLV2
DD (6) 

When half of the energy is consumed by R and half is saved by CL, the relationship in (6) becomes: 

Edyn =
CLV2

DD

2
(7) 

Combining (5) and (7), the total energy consumed at the transistor level of abstraction is: 

Etot = Estat + Edyn + VDD(Ileak + IDC)t +
CLV2

DD

2
(8)  

4.2. Gate level power and energy consumption estimation 

This level of abstraction deals with the power and energy consumption of each logic gate in the CMOS logic circuit under 
consideration. For each gate, the power consumption is expressed as [88]: 

Pgate = Pcap + Psc + Pleakage (9)  

where Pscand Pleakageare the short circuit power consumption and leakage power consumption respectively and previously discussed in 
Section 3A. Pcapis the capacitive power, and its consumption can happen during complete digital transitions and incomplete digital 
transitions (glitches - generated by colliding events caused by two or more input transitions) [88]. During complete transitions, Pcap is 
expressed as [88,89]: 

Pcap = N(T)
1

2T
CinV2

DD (10) 

Fig. 3. Types of FETs fabricated using p-channel, n-channel, and CMOS MOSFETs.  
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where N(T)is the total complete transitions in the time interval T, Cinis the input capacitance. When a glitch occurs, Pcapis expressed as 
[88]: 

Pcap =
1

2T
CinVDD

∑M(T)

j=1
ΔVj (11)  

where M(T) is the total number of glitching transitions in the time interval T and ΔVj is the peak voltage whose measurement is from 
the initial voltage value of the glitch transition j. 

To estimate the energy consumed by a logic gate during the transition (switching activity), three capacitances are usually 
considered: the input capacitance Cin, power consumption capacitance Cpdof the gate, and capacitance due to connecting wires Cout . 
Consider an inverter shown in Fig. 4 [89] as an example. 

For a single transition, the energy consumed can be estimated as [89]: 

Etransition =
1
2
(
Cin +Cpd +Cout

)
V2

DD (12) 

A statistical approach can also be applied in estimating the power consumption at the gate level of abstraction. Consider the 
combinational circuit embedded in a synchronous sequential design in Fig. 5 [90]. 

If the probability of a signal Ps(x)at a node xis defined as the average fraction of clock cycles for which x has a steady-state high 
logic, and Pt(x)is the transition probability at a node xand is defined as the average fraction of clock cycles for which xhas a steady-state 
and its value is different from its initial value, then the power dissipated is [90]: 

Pav =
1

2Tc
V2

dd

∑n

i=1
CiPt(xi) (13)  

where Tcis the clock period, Ciis the total capacitance at node xi, and nis the total number of nodes in the circuit. It should be noted that 
the nodes are the inputs/outputs of the latches, and the latches are logic gates. 

In terms of the input patterns and state vectors, the power consumption in (13) can be expressed as [91]: 

P =
1

2Tc
V2

dd

∑Ng

i=1
Cini(V1,S1,V2, S2) (14)  

where Ngis the number of gates in the circuit, V1is the present input pattern, S1is the present state vector, V2is the next input pattern, 
S2is the next state vector, and niis the number of transitions at the node i. 

Fig. 4. Inverter circuit with three capacitances.  

Fig. 5. A sequential design with an embedded combinational circuit.  
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4.3. Register-transfer-level (RTL) power and energy consumption estimation 

Efficient estimation of power consumption for processor functions can be achieved with a good level of precision using the RTL 
level of abstraction. It is the view of the authors that a possible approach that can be used in this level of abstraction is shown in Fig. 6; 
it characterizes processor designs as an instantiation of pre-designed macroblocks which include flip-flops, multiplexers, arithmetic 
operators, and registers; this approach is a modification to the previous work by [92]. In this approach, glitch profiling and activity 
estimation are done concurrently with component profiling and activity estimation. The approach begins with the control unit and 
datapath design of the processor according to specifications; these are fused together as shown to produce the processor RTL circuit 
which executes the specified operations the processor is expected to perform. To ensure the processor operates correctly before RTL 
estimation, test benches with the necessary input traces are developed to verify the functional accuracy of the RTL circuit by 
instantiating the design, generating stimulus waveform, and reference outputs [93,94]. 

The combination of the RTL circuit and the test bench forms the RTL design files from which synthesis and RTL simulation are 
performed [95,96]. During synthesis, glitch profiling and component profiling are performed - these profiles make it possible to 
identify performance issues like the occurrence of glitches when components change state and the capacitance at component nodes. 
The RTL simulation provides information like clock speed, glitch duration, number of switching activities by components, and the 
frequency of glitches. 

The output from the synthesis and RTL simulation is used as the primary drivers for the RTL estimation stage. As shown in Fig. 6, 
RTL power estimation can be done either using analytical, or stochastic techniques [97–99]. There are seven broad categories of these 
techniques in literature, and they are itemized and discussed as indicated in the following points.  

1) Complexity-based models rely on the correlation that exists between chip architecture complexity and gate equivalents which 
specify the reference gates required for function implementation. Power consumption can then be estimated as a product of the 
approximate number of gates and the average power dissipated by each gate [100–102]. Eq. (15) shows this relationship [101, 
103]: 

P =
∑

i∈(fns)

GEi
(
Etyp +Ci

LV2
dd

)
f .Ai

int (15)  

where GEi is the block i gate equivalent circuit, Etypis the average of the power dissipated by a gate, CL is the average capacitance 
load, which includes fan-out and wiring, f is the clock frequency, and Aint is the percentage of gates switching in the block.  

2) Cycle accurate macro models are linear functions that describe the statistical relationship between the power consumption of a 
vector pair and the characteristic values of the vector, and it is expressed in (16) as [104]: 

P = B0 + B1X1 + B2X2 + ⋯ + BkXk (16)  

where P is the power consumption, B0,B1,…,Bk are regression coefficients of the macro model, and X1,X2,…,Xk are the char-
acteristic variables that are extracted from the input vector pair. The cycle-accurate models are also called Cycle Accurate Func-
tional Descriptions (CAFDs) and are known for precise and efficient specification of the behavior of circuits in the context of the 
cycle of their operations [105,106]. The efficiency is achieved through the omission of the details of the internal structure of 
circuits. 

Fig. 6. RTL power estimation process and techniques.  
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3) Table-based macro models involve the use of Look-Up-Tables (LUTs) for storing the estimates of equi-spaced discrete values which 
define the statistics of the input signal. To determine the distance between the discrete values, consider the following; let np,pi

in,

and pi
LUT be respectively the number of parameter types with the ithparameter extracted from input data. The distance dist is 

computed as [107,108]: 

dist =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
np

∑np − 1

i=0

(

1 −
pi

in

pi
LUT

)
√
√
√
√ (17)  

A known LUT in literature is the 3-D LUT whose power coefficients correspond to the following model [109–111]: 

P = F(Pin,Din,Dout) (18)  

wherePin = 1 /Nin
∑Nin

i=1Prob[ini(t)= 1] is the input probability average, Din = 1 /Nin
∑Nin

i=1Prob[ini(t) ∕= ini(t+)]the input transition 
average, and Dout = 1 /Nout

∑Nout
i=1 Prob[outi(t) ∕= outi(t+)]the output transition average. These three parameters Pin, Din, and Dout have 

values between 0 and 1, and the function is stored in a LUT with entries for each of the values of the three parameters. This results in 
a 3-D LUT, and Fig. 6 [111,112] shows a type of such table used in the storage of the parameters.  

4) The equation-based macro models are built on statistical methods like least square estimation to achieve model formulation, and a 
principal feature of these models is the derivation of fitting coefficients which compute the power average power consumption with 
a reasonable degree of accuracy. One major advantage of this technique is that the equation (also called template) used for esti-
mating the power consumption (even though non-linear) is generally fixed and robust to act as a starting point for all circuits [98], 
and as indicated by [98,113], the generalized polynomial form of the template can be expressed as: 

⌢
P avg

= c0 + c1Pin + c2Din + c3SCin + c4Dout (19)  

where ciare unknown coefficients which are determined through regression analysis, Pin the average of the input signal probability, 
Dinthe input switching activity average, SCinthe input signal correlation coefficient average, and Doutthe output zero delay 
switching activity average. As indicated by [113], a quadratic form of (19) which gives better accuracy is expressed as: 

⌢
P avg

= co + c1Pin + c2Din + c3SCin + c4Dout

+c5PinDin + c6PinSCin + c7PinDout

+c8DinSCin + c9DinDout + c10SCinDout

+c11P2
in + c12D2

in + c13SC2
in + c14D2

out

(20)    

5) Activity-based models rely on entropy from the field of information theory for the measurement of the average activity i.e. 
switching activity in the circuit under observation [114–116]. As shown in (13), power consumption is proportional to the product 
of transitional probability and capacitance; this makes it possible for entropy to measure the computational activity of the circuit. 
There are three basic methods for developing activity-based models- a probability approach, a regression approach, and the use of 
high-level tools capable of generating Switching Activity Interchange Format (SAIF) files. 

For the probability approach, consider the Tristate circuit driver shown in Fig. 7 [117]; it can be observed that Vp = oe.in and Vn =

oe.in, hence the probability of switching activities for both Vpand Vn are: 

Fig. 7. Tristate driver circuit.  
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sw
(
Vp

)
= prob(oe = 1 → 1, in = 0 → 1) + prob(oe = 1 → 1, in = 1 → 0)

+prob(oe = 1 → 0, in = 1 → x) + prob(oe = 0 → 1, in = x → 1) (21)  

sw(Vn) = prob(oe = 1 → 1, in = 0 → 1) + prob(oe = 1 → 1, in = 1 → 0)
+prob(oe = 1 → 0, in = 0 → x) + prob(oe = 0 → 1, in = x → 0) (22)   

From where the average power consumption for every cycle of operation T is expressed as: 

Pav =
1
T

[
sw

(
Vp
)
Ceff ,buffp + sw(Vn)Ceff ,buffn

]
V2

dd (23)   

and the energy consumption per cycle is expressed as: 

E =
[
sw

(
Vp

)
Ceff ,buffp + sw(Vn)Ceff ,buffn

]
V2

dd (24)   

The regression approach involves the expression of power consumption as a model in the following form [118]: 

pkj = α + β1x1j + β2x2j + ⋯ + βnxnj + β11x2
1j + β22x2

2j + ⋯ + β12x1jx2j + ⋯ + β123x1jx2jx3j + ⋯ (25)   

where pkj is the power consumption in a module k, and xij is the toggle density of the signal i in a window j, α and β are parameters to 
be trained. Each variable in (25) from the perspective of activity-based modeling is the representation of certain switching activity 
in the circuit with its coefficient being its effective capacitance. 

Fig. 8. SAIF file creation through Xilinx design flow.  

Fig. 9. Dynamic and Static power estimated from a SAIF file.  
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The use of high-level tools makes it possible to perform an activity-based power estimation for a design through the generation of a 
SAIF file which the tools enable. Fig. 8 [119] shows the flow process for the generation of a SAIF file using Xilinx ISE/VIVADO 
(high-level tools) as case studies. The authors modified this image obtained from the ALDEC website to include the SAIF file 
generation process block. The SAIF file enables Xilinx VIVADO to estimate the dynamic and static power utilization for a given 
design [120–122]. Fig. 9 shows a typical power utilization estimated by Xilinx VIVADO through SAIF files.  

1) The Power Factor Approximation (PFA) technique makes a distinction between the effects of technology-independent and 
dependent factors in the estimation of power consumption [104,123–125]. It does this by using an experimentally determined 
weighting factor called power factor to derive a model for the average power consumption of a module over a range of designs. The 
technique also takes into account, the dependency on gate activities- this makes it stochastic, as gate activities are random pro-
cesses. A key feature of PFA is its ability to explore algorithmic and architectural constraints at an early stage of a VLSI design [125]. 
The average power consumption using PFA is expressed as [124,125]: 

Pavg = kGf (26)  

where G is the number of logic elements, f is the activation frequency, and k =

∑G
i=1

Afi CLi V
2
dd

G +

∑G
i=1

AfiVdd

∫ T

0
Isci (t)dt

G , with Af being the 
average number of switching per cycle.  

2) Regression models perform RTL power estimation by correlating the input-output (I/O) activity with the average power; the 
average power is characterized as a function of the I/O activities and fitting parameters [126,127]. The fitting parameters are 
determined by the analysis of every component in the high-level design through simulation with pseudorandom data and fitting a 
multivariable regression curve to the power consumption results obtained. A regression model as proposed by [128] evaluates 
power consumption based on I/O activity which is represented as a vector of I/O Boolean variables i = (i1, i2,…, in)and o = (o1,o2,

…,om). If a value of 1 is observed whenever there is a transition on a corresponding I/O signal, then the power consumption can be 
expressed as: 

p = c0 + c1i1 + c2i2 + ⋯ + cnin + cn+1o1 + cn+2o2 + ⋯ + cn+mom (27)  

where c = (c0, c1,…, cn+m) are characteristically determined fitting coefficients. If s is the sample size of the data collected during 
characterization, and X is an s × (n+m+1) Boolean matrix such that xk = (1,ik1,ik2,…,ikn,ok

1,ok
2,…,ok

m)then the expression in (27) can 
be written as: 

p = Xc (28)   

This translates to: 
⎡

⎢
⎢
⎣

p1
p2
⋮
pk

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

i10 i11 i12 ⋯ i1n o11 o12 ⋯ o1m
i20 i21 i22 ⋯ i2n o21 o22 ⋯ o2m
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ik0 ik1 ik2 ⋯ ikn ok1 ok2 ⋯ okm

⎤

⎥
⎥
⎦[ c0 c1 c2 ⋯ cn cn+1 cn+2 ⋯ cn+m ]

T (29) 

Given the fact that in any logic circuit control signals have a strong influence on the behavior of logic units because they select 
different modes of operation for the circuit, then any of the regression equations in (29) will be selected by the control signals. 

Fig. 10. Generalized circuits for physical measurements.  
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4.4. Instruction level power and energy consumption estimation 

This level of abstraction also called Instruction Level Power Analysis (ILPA) estimates the cost of executing each instruction in a 
program; the instructions are usually written in assembly code. The technique uses a low-level simulation of physical measurements in 
estimating the power and energy consumption of each instruction from the instruction set of an architecture [129]. 

Using the physical measurements approach for the estimation of instruction power and energy consumption, the technique requires 
that each assembly instruction is executed several times in a loop to mitigate the effects of branch instructions. During the loop, the 
current drawn by the processor as it executes the instruction is measured, and through the application of proper timing and signature 
analysis, the power and energy consumption can be estimated. There are two generalized approaches to physical measurement as 
depicted in Fig. 10 [130–134]. 

The configuration in Fig. 10a [131,132,134] involves the insertion of a current sensing circuit on the processor’s power supply line, 
and the corresponding voltage drop across the sensing circuit causes the flow of current which is measured and subjected to timing and 
signature analysis. In the configuration in Fig. 10(b), the series resistor between the power supply and the CPU is used for power 
measurements and estimation, while the oscilloscope is used for the measurement of the instantaneous power. The DDR-RAM stores 
the instructions whose power is to be estimated, while the command-line interface is for loading the instruction into the CPU and for 
retrieving estimated power [130,135]. 

The low-level simulation approach involves an interaction between a cocktail of tools, which includes OVP (Open Virtual Plat-
forms), and RTL design compilers for the design of the instructions under investigation; Fig. 11 shows such arrangement from two 
major developers - Xilinx and Cadence. 

In Fig. 11a, the OVPSim models the processor whose instructions’ power consumption is to be estimated [136–138]. Using the 
Xilinx approach as shown in Fig. 11b, the modeled processor then executes a specified benchmark, and the instructions used in the 
execution of the benchmark are traced. An RTL design is performed using the Xilinx VIVADO based on the model of the processor, and a 
SAIF is generated following the steps in Fig. 8, from which the dynamic and static powers are estimated [120–122]. Using the Cadence 
approach as shown in Fig. 11c, a cross-compilation is performed on a specified benchmark from which an application code is generated 
and run on the model of the processor using OVPSim; the application code also serves as an input to the Cadence Incisive simulation 
tool alongside a processor netlist (which contains the RTL specification of the processor), and a .tcl file (containing commands for 
performing simulations), and .sdc file (containing design constraints) [139–141]. The simulation tool outputs the execution time, and a 
.tcf file (containing switching activity). The number of instructions determined by OVPSim, the execution time, and the RTL compiled 
file is used in estimating the power consumption as indicated. 

At instruction level, given a programP, its energy consumption can be estimated by the following relationship [130,142–145]: 

Fig. 11. Low-level simulation approach to instruction power/energy consumption.  
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Ep =
∑

i
(Bi ×Ni)+

∑

i,j

(
oi,j ×Ni,j

)
+
∑

k
Ek (30)  

where Bi is the base cost of instruction i weighted by the number of times it is executed Ni; oi,j is the circuit state overhead for the pair of 
consecutive instructions (i, j) weighted by the number of times it is executed Ni,j; Ek is the energy contribution of inter-instruction 
effects, and k is the stalls and cache misses which occur during program execution. 

4.5. Source code level power and energy consumption estimation 

This level of power and energy consumption is a complex technique that comprises two principal components - a source code 
component, which we call Source Code under Test (SCuT), and a hardware component, which we call Hardware under Test (HWuT). 
The combination of these two components as shown in Fig. 12 makes it possible to perform source code level power estimation. There 
are three possible states (fine-grained, mid-grained, and coarse-grained) for the SCuT, which can be used for the power estimation as 
indicated in Fig. 12 [146–148]. 

Fig. 12. Types of SCuT in source code level power estimation.  

Fig. 13. Types of approaches to source code level power consumption estimation.  
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The fine-grained state corresponds to distinct lines of code under test, the mid-grained corresponds to functions or code segments 
under test, and the coarse-grained refers to complete programs under test [146,148]. An extensive investigation into an array of the 
literature reveals that different techniques have been proposed by several authors on source-level power and energy consumption 
estimation [146,149–156]; Fig. 13 shows four such techniques which generally cover all the variants of the types approach used by 
these authors. Using the approach in Fig. 13(a), the authors in [150] used a tool called TEEC (Tool to Estimate Energy Consumption) 
which had two inputs- Sigar library (which fetches information about CPU usage in terms of the number of cores) and percentage usage 
of each process and the technical data from the manufacturer in determining parts of a source code which has the highest power 
consumption. The authors in [146] used the approach in Fig. 13(b) where system times are recorded during a test run by a supervising 
device; the change in battery level and complete battery discharge are the basis of the system times. The power consumed by a source 
code is derived from the total time taken to completely discharge the battery during the test run of the source code. The concept of a 
master processor and slave processor- also called Device under Test (DUT) shown in Fig. 13(c) was used by the authors in [151] to 
perform source code power estimation. The master processor in their technique consisted of an xmprofile control software, which loads 
the slave processor with test source codes and then measures the power consumed by the slave processor in executing the source code. 
A runtime measurement phase and an offline analysis phase shown in Fig. 13(d) were used by the authors in [148] to perform source 
code power consumption estimation. In the runtime phase, the source code - called Application under Analysis (AUA) serves as an 
input into an App Instrumenter, which uses a path profiling technique in guiding the insertion of probes into the source code in order to 
capture the stamps and path traversal information. With a set of use cases, the power measurement platform records power samples 
from the source code. In the offline analysis phase, static analysis of paths and power samples modification are performed by the path 
adjuster. The energy consumed by each source code line is determined by the analyzer through regression analysis. 

Through the aggregation of the techniques in Fig. 13, we propose what we call a generalized approach for source code level power 
and energy consumption estimation as depicted in Fig. 14. It is envisaged to act as a reconfigurable framework that can serve as a basis 
for the source code level power and energy consumption. 

The idea shown in Fig. 14 involves a driver processor and a slave processor - Hardware under Test (HWuT), which is battery- 
powered. Different source codes are generated by a supervising device and loaded to the driver processor. The supervising device 
then selects which of the source codes gets loaded to the HWuT (flexibility is the reason for this approach). The source code which gets 
loaded to the HWuT is called Source Code under Test (SCuT), and it is executed by the slave processor under different test constraints as 
required and manufacturer data of the processor for which the source code will be deployed. The HWuT records the amount of time 
required to execute the SCuT and the energy expended by the battery during the execution of the SCuT; the combination of these can be 

Fig. 14. A generalized approach for source code power and energy consumption estimation.  

P.Y. Dibal et al.                                                                                                                                                                                                        



Internet of Things 21 (2023) 100655

15

used in determining the power consumed since power is the rate at which energy is consumed [152]. 

4.6. Function level power and energy consumption estimation 

This level of power and energy estimation involves the segmentation of the architecture of the processor into different blocks and 
sub-blocks. Through simulations or measurements, an arithmetic model which determines the power consumption of each block can be 
derived as a dependency on parameters like clock frequency, degree of concurrency, rate of memory access, and register operations 
rate [157,158]. Fig. 15 shows the function level power estimation based on the descriptions in [157–159]. 

There are two parameters i.e. the algorithmic factors, and architectural factors as shown in Fig. 15 for the derivation of the power 
estimation model. The algorithmic factors are determined by the type of executed algorithm, and the architectural factors are 
determined by hardware performance metrics [159]. Fig. 16 shows the types of algorithmic and architectural factors typically used in 
function level power and energy consumption estimation [159]. 

4.7. System level power and energy consumption estimation 

This is the highest level of abstraction in processor power estimation. Different methodologies for this level of abstraction have been 
proposed by several authors, and after a thorough literature review, three methodologies have been identified as outstanding because 
they represent a broad spectrum of the variances in other methodologies. 

The first methodology is based on the use of an on-chip bus performance monitoring unit (PMU) which accurately estimates system- 

Fig. 15. Function level power and energy consumption estimation.  

Fig. 16. Factors in function level power and energy consumption estimation.  

P.Y. Dibal et al.                                                                                                                                                                                                        



Internet of Things 21 (2023) 100655

16

level power consumption as a first-order linear power model through exchanged system-level activity information on the on-chip bus 
[160]. A major advantage this approach has over conventional PMUs and transaction-based PMUs is that the PMU is located on the 
on-chip bus where the exchange of information necessary for system-level power estimation is performed. Fig. 17(a) [160] shows the 
concept of this approach. It consists of a set of state machines and a slave interface. Upon the selection of a memory device, a command 
parser activates an associated state machine; this is followed by an appropriate encoding in the data bus and address bus for the 
appropriate memory devices. Other important signals which the PMU harnesses for power estimation includes instructions executes (c 
[IEX]), data dependencies (c[DDP]), instruction cache misses (c[ICM]), instruction TLB misses (c[ITM]), and data TLB misses (c 
[DTM]). A first-order linear model which constitutes these parameters can be expressed as [160]: 

Pcpu = α1c[IEX] + α2c[DDP] + α3c[ICM] + α4c[ITM] + α5c[DTM] (31)  

where α1,…, α5 are the coefficients of power, while Pstatic is the processor static power consumption. 
The second approach as shown in Fig. 16(b) is based on trickle-down power modeling which relies on the broad visibility of system- 

level events as seen by the processor [161]. With events that are local to the processor, this approach creates accurate performance 
counter-based models. A advantage major of this approach is that it does not require the creation of interfaces for multiple devices and 
subsystems whose performance counters have inconsistent APIs [161]. 

The operation of the trickle-down power model as indicated in Fig. 17(b) is such that it begins with a measurement of the system- 
level power through a subset of workloads [161]. A Coefficient of Variance (CoV) is checked to determine if it is greater than a specified 
threshold. For a given subsystem, performance counters are selected to measure performance events. Linear regression is then per-
formed with the performance counter events as input variables, and subsystem power representing the output variable. The average 
error per sample is then determined using a subset of workloads. 

The third approach as shown in Fig. 17(c) is built on a profiling activity using a modified form of Hamming distance computation to 
determine the number of signal activities [162]. The approach makes it possible to determine the numerical value of the bitwise 
switching activities of a component solely on simulation. The first step as shown is the processing of data from the Value Change Dump 
(VCD) and SystemC simulation files. An algorithm reads the files to calculate the Hamming distance, which is stored in a result file. To 
get the results, the algorithm concurrently searches the data in the SystemC file to determine the power status of a specified model 
while computing the Hamming distance [162]. For a determined model state, the product of the computed Hamming distance with a 
corresponding coefficient is determined and summed to the total energy consumption. This process is repeated till the end of the VCD 
file is reached. 

Fig. 17. Types of approaches for system-level power and energy consumption estimation.  

P.Y. Dibal et al.                                                                                                                                                                                                        



Internet of Things 21 (2023) 100655

17

5. Overlapping factors and effect of power duty cycles in power and energy consumption estimation 

The power estimation techniques as indicated in Fig. 2 show an increasing level of abstraction from the lower level of abstraction to 
the upper level of abstraction. As such, overlaps are bound to occur between power estimation techniques. A good knowledge of these 
overlaps makes it possible to give justification for the selection of power estimation factors and parameters as the level of abstraction 
increases. It is against this backdrop that this section presents these overlapping factors; this will be followed by a brief overview of the 
effect of power duty cycles on different abstraction levels. 

At the lower level abstraction, logic gates are made of transistors, hence, power estimation at transistor level invariably translates 
into power estimation at gate level. The only difference is that while the transistor level relies on switching activity factors and 
switching frequency of the circuit, the gate level relies on complete and incomplete digital transitions, and glitches which occur during 
the operation of a circuit. Similarly, an overlap occurs between the RTL and the gate level. Because of the higher level of the RTL, 
power estimation determining factors (switching activity) at the transistor level and the gate level (digital transitions and glitches) are 
applied at the RTL level since it is a derivative of the two lower levels. Fig. 18 shows the overlap between these levels. 

At middle level abstraction, an overlap can occur between source code level and instruction level estimation techniques because 
source codes (C, C++, and Rust) ultimately end up as machine code; the same is true of assembly instructions which define the 

Fig. 18. Occurrence of overlap at lower level abstraction.  

Fig. 19. Occurrence of overlap at middle level abstraction.  
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instruction level as they also ultimately end up as machine code. Hence, machine code is the ultimate bedrock which determines the 
rate of power consumption for middle level abstraction. However, the size of the machine code which determines the rate of power 
consumption is determined by the path (Source code level or Instruction level) from which it was arrived at. Fig. 19 shows the machine 
code overlap between the source code level and instruction level. 

At the upper level abstraction in Fig. 2, an overlap in power estimation occurs between the function level and system level in the 
sense that while the function level focuses on registers and sub-blocks for power estimation, the same components are used by the 
system level for power estimation within the context of an integrated system. Thus while the function level gives differentiated power 
estimation using a given set of components and sub-blocks, the system level gives an integrated power estimation using the same 
components and sub-blocks. Fig. 20 shows the overlap between these two levels. 

5.1. Effect of power duty cycles 

For any given frequency value, a higher value of Power Duty Cycles (PDC) translates into higher power consumption [163]. It is an 
indicator of the activity rate in an electronic system [164]. PDC is directly proportional to the rate of power consumption for most 
configurations in an electronic system [165]; hence, as it increases, power consumptions rate also increases. From the foregoing, PDC 
has an effect on the factors which govern power and energy estimation techniques; the effect is determined by parameters which 
uniquely characterize each technique and described in Table 2. 

Fig. 20. Occurrence of overlap at upper level abstraction.  

Table 2 
Effect of power duty cycles on estimation techniques.  

Estimation 
Technique 

Effect of power duty cycles 

Transistor level PDC affects the switching power associated with the charging and discharging of the load capacitance as indicated in (3); this in turn affects 
the dynamic energy consumption in (6). If the PDC is configured such that the OFF power is significantly smaller than the ON power, then 
the mean power consumption is proportionally related to the PDC. 

Gate level PDC affects the number of transitions for any given time interval T as indicated in (10). The number of transitions is the switching activity 
whose rate is determined by the configuration of the PDC. 

RTL level The analytic and stochastic techniques are affected by parameters like the statistics of input signal, dependency on gate activities, and i/o 
activities. The rate at which these parameters occur are determined by the value of the PDC. 

Instruction level The number of instructions executed for any given time interval is indicated in (30). PDC determines this number in the sense that the 
higher the value of the PDC, the more number of instructions that will be executed for the time under consideration. 

Source code level It involves the use of tools like TEEC for fetching information about CPU usage of processes and threads; PDC plays a role in the sense that 
higher values of PDC indicate the presence of processes and threads in the source code that are performing intensive operations. Hence, 
constraining the PDC translates into putting a cap on maximum power consumption by the source code. 

Function level Algorithmic factors like DMA access rate, external memory access rate, processing unit rate depend on the configuration of the PDC. Higher 
values of PDC indicates that these factors will perform intensive operations which translate into higher power consumption rate. 

System level The number of signal activities determined using Hamming distance is a function of PDC. Hence, for higher PDC values which indicate 
higher power consumption rate, a high number of signal activities will be observed.  
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6. Strength/weakness, technical challenges, and future direction of power and energy consumption estimation 
techniques 

There is no technique, algorithm, or methodology in science or engineering that is foolproof. As a result of this, they all have their 
strengths/weaknesses, and technical challenges. It is against this backdrop that this section presents these issues for the techniques 
discussed in this paper. 

6.1. Strength/weakness and technical challenges of power and energy consumption estimation techniques 

Like any other technique or algorithm, the techniques discussed in Section IV have their strengths and weakness, as well as 
technical challenges associated with their realization. This section presents in tabular form, the strength/weakness of each technique, 
and the technical challenge of each technique. From the analysis of each of these techniques, Table 3 is derived, showing the ad-
vantages and disadvantages of each technique. From further literature review of the estimation techniques, Table 3 showing the 
technical challenges of each estimation technique is derived. 

6.2. Future direction of power and energy consumption estimation techniques 

One of the main issues affecting processor power and energy estimation techniques is the information gap between chipmakers and 
System & Application Design Engineers (SADE). This has had a significant effect on the ability of SADE to develop effective and ac-
curate estimation techniques. Another factor is the seeming knowledge gap in tensor algebra by SADE. It is our candid opinion that 
tensor algebra if properly understood can provide an effective and efficient mechanism by which estimation techniques based on 
statistics can be developed. This is because with tensors, it is possible to represent all the necessary information for power and energy 
estimation for any number of predictor variables. If this is done, robust power and energy estimation models from a statistical approach 
can be developed. 

As a way forward, it will be essential for the development of a concise framework that will bridge the gap between what chipmakers 
produce, and what SADE really needs to be effective in the development of power and energy estimation models. 

With advancement in machine learning (ML) algorithms, a future direction for power and energy estimation technique based on 

Table 3 
Strength and weakness of estimation techniques.  

Technique Strength Weakness 

Transistor 
level  

• Most accurate  
• Has deep industry penetration  

• For large designs, power estimation will take a long time to 
compute  

• It is very expensive 
Gate level  • High accuracy  

• Libraries exist for predefined gates, which guarantees a 
short estimation time  

• Computation complexity is high for large designs  
• For designs with large inputs, the presence of entropy in the 

input pattern due to glitches can degrade the accuracy of 
estimation 

Register- 
transfer 
level  

• Power can be determined using minimum inputs  
• Requires only architectural information of hardware  

• If the estimation is statistics-based, accuracy is low  
• The latency for estimation is high when it is simulation- 

based 
Instruction 

level  
• High accuracy  
• Highly generic  
• It allows the complete isolation of the estimated power of an 

application from the hardware. This is ideal for developing 
energy-efficient IoT applications  

• For large designs, power estimation has high latency  
• For the low-level simulation approach for estimation, the 

developer must have a high degree of proficiency in the use 
of an array of complex tools; this is usually difficult to get in 
practice. 

Source code 
level  

• The power consumption for different parts of a code can 
easily be determined  

• It is very flexible  

• The complexity of estimation is inversely proportional to 
the code density  

• Errors in the source code directly affect the accuracy of 
estimation 

Function level  • The segmentation of the processor into sub-blocks makes it 
possible to determine which part of the processor is exhib-
iting the most power consumption when an application is 
running  

• There is considerable flexibility in the degree of 
segmentation. This makes it convenient to perform 
estimation for exactly the task at hand  

• Difficult to determine the set of input patterns when the 
power of a particular sub-block is to be estimated  

• A wrong value for the algorithmic or architectural factors 
will significantly degrade the accuracy of estimation 

System-level  • The technique is easy to set up  
• It is efficient  

• Industry penetration is low when compared with other 
techniques  

• The accuracy of estimation is subjective as there are 
divergent views about how best to view the system from a 
processor-perspective  
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statistics is that predictor variables for any estimation technique, which can be represented by tensors, can be effectively churned out 
by ML algorithms to produce an accurate prediction model. This approach has been made possible by the increasing role tensors are 
playing in ML operations [175–178]. 

7. Conclusion 

Processor power and energy consumption remains one of the most important factors to be considered in the design and devel-
opment of IoT solutions because the entire operations and control of IoT nodes and devices are performed by processors. There are 
different types of processors with different levels of performance for any given technological solution. As a result of this, different 
techniques have emerged for the estimation of the power and energy consumption of processors. It is against this backdrop that this 
paper reviewed different techniques which have been used for the estimation of processor power and energy consumption from the 
lowest abstraction level i.e. transistor level to the highest level of abstraction i.e. system level. The review focused on each technique in 
the context of their methodology and the required tools for the estimation of power and energy consumption. The effect of overlaps in 
this layered techniques and processor duty cycle values were equally discussed. Two Tables were provided in which the first showed 
the advantages and disadvantages of each technique; the second summarised the technical challenges of each technique. 
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[173] M. Forsell, S. Nikula, J. Roivainen, V. Leppänen, J.L. Träf, Performance and programmability comparison of the thick control fow architecture and current 

multicore processors, J. Supercomput. 78 (2022) 3152–3183. 
[174] A.S. Mutschler, Dealing with system-level power, Semiconduct. Eng. (2017) [Online]. Available: https://semiengineering.com/dealing-power-system-level/ 

[Accessed: 23-Oct-2022]. 
[175] J.A. Reyes, E.M. Stoudenmire, Multi-scale tensor network architecture for machine learning, Mach. Learn. Sci. Technol. 2 (035036) (2021) 1–14. 
[176] T. Carter, “Enabling AI & machine learning: the role of tensor cores,” Curtiss-Wright Defense Solutions, 2021. [Online]. Available: https://www. 

curtisswrightds.com/sites/default/files/2021-09/Enabling-AI-Machine-Learning-the-role-of-Tensor-Cores-White-Paper.pdf. [Accessed: 26-Oct-2022]. 
[177] R. Sengupta, S. Adhikary, I. Oseledets, and J. Biamonte, “Tensor networks in machine learning,” arXiv e-prints, pp. 1–8, 2022. 
[178] Y. Ren, D. Goldfarb, Tensor normal training for deep learning models, in: 35th Conference on Neural Information Processing Systems, 2021. 

P.Y. Dibal et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0152
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0152
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0153
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0153
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0154
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0154
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0155
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0156
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0156
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0157
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0157
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0158
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0159
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0159
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0160
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0160
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0161
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0162
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0162
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0163
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0163
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0164
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0164
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0165
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0165
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0166
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0166
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0168
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0168
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0170
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0171
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0172
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0173
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0173
https://semiengineering.com/dealing-power-system-level/
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0175
https://www.curtisswrightds.com/sites/default/files/2021-09/Enabling-AI-Machine-Learning-the-role-of-Tensor-Cores-White-Paper.pdf
https://www.curtisswrightds.com/sites/default/files/2021-09/Enabling-AI-Machine-Learning-the-role-of-Tensor-Cores-White-Paper.pdf
http://refhub.elsevier.com/S2542-6605(22)00136-6/sbref0178

	Processor power and energy consumption estimation techniques in IoT applications: A review
	1 Introduction
	2 Power and energy as enablers of IoT technology
	3 Power consumption factors in processors
	3.1 Circuit level factors
	3.2 Function level factors

	4 Power and energy consumption estimation techniques in processors
	4.1 Transistor level power and energy consumption estimation
	4.2 Gate level power and energy consumption estimation
	4.3 Register-transfer-level (RTL) power and energy consumption estimation
	4.4 Instruction level power and energy consumption estimation
	4.5 Source code level power and energy consumption estimation
	4.6 Function level power and energy consumption estimation
	4.7 System level power and energy consumption estimation

	5 Overlapping factors and effect of power duty cycles in power and energy consumption estimation
	5.1 Effect of power duty cycles

	6 Strength/weakness, technical challenges, and future direction of power and energy consumption estimation techniques
	6.1 Strength/weakness and technical challenges of power and energy consumption estimation techniques
	6.2 Future direction of power and energy consumption estimation techniques

	7 Conclusion
	Funding statement
	Declaration of Competing Interest
	Data availability
	References


