
978-1-7281-5160-1/19/$31.00 ©2019 IEEE

Stateful Hash-based Digital Signature Schemes for
Bitcoin Cryptocurrency

15th International Conference on
Electronics Computer and
Computation (ICECCO 2019)

1Noel, Moses Dogonyaro
Cyber Security Science Department
Federal University of Technology,

Minna, Nigeria
 moses.noel@futminna.edu.ng

2Waziri, Onomza Victor
Cyber Security Science Department
Federal University of Technology,

Minna, Nigeria
victor.waziri@futminna.edu.ng

4Ojeniyi, Adebayo Joseph
Cyber Security Science Department
Federal University of Technology,

Minna, Nigeria
ojeniyia@futminna.edu.ng

3Abdulhamid, Muhammad Shafii
Cyber Secuiryt Science Department
Federal University of Technology,

Minna, Nigeria
shafii.abdulhamid@futminna.edu.ng

Abstract - Modern computing devices use classical algorithms
such as Rivest Shamir Adleman (RSA) and Elliptic Curve
Digital Signature Algorithm (ECDSA) for their security. The
securities of these algorithms relied on the problem and
difficulty of integer factorization and also calculating the
Discrete Logarithm Problems. With the introduction of
quantum computers, recent research is focusing on developing
alternative algorithms which are supposed to withstand attacks
from quantum computers. One of such alternatives is the
Hash-based Digital Signature Schemes. Chosen hash-based
signature schemes over classical algorithms is because their
security is on the hash function used and that they are meta-
heuristic in nature. This research work presents basic analysis
and the background understanding of Stateful Hash-based
Signature Schemes, particularly the Lamport One-Time
Signature Scheme, Winternitz One-Time Signature Scheme,
and the Merkle Signature Scheme. The three schemes selected
are stateful, hence has common features and are few-time
hash-based signature schemes. The selected Stateful Hash-
based Digital Signature Schemes were analyzed based on their
respective key generation, signature generation, signature
verification, and their security levels. Practical working
examples were given for better understanding. With the
analyses, Merkle Signature Scheme proves to be the best
candidate to be used in the Bitcoin Proof of Work protocol
because of its security and its advantage of signing many
messages.

Index Terms - Post-Quantum Cryptography, Hash-based
 Digital Signature, Cryptocurrency, Bitcoim

I. INTRODUCTION
Among the widely used cryptographic primitives today

is digital signature [3]. Digital signature algorithms are
important today in modern communication because they
provide and guarantee authenticity, integrity, and non-
repudiation. In secure communication protocol, digital
signatures are used to protect software updates, online
banking, e-commerce and other areas of applications such as
electronic cash [12].

Digital signatures used hash functions for effective and
secure communication. Among the digital signature
schemes used today are the Elliptic Curve Digital Signature
Algorithm (ECDSA), Rivest Shamir Adleman (RSA),
Digital Signature Algorithm (DSA) [5]. The security
provided by these algorithms is as a result of the difficulty
that exists in factoring large complex integers or computing
Discrete Logarithm Problem. Shor, in 1994 developed a
quantum algorithm that could factor large complex integers

and as well solve the Discrete Logarithm Problem in
polynomial-time [4]. It means that classical computers that
use digital signatures are insecure. The insecurity of
classical algorithms prompted the research of post-quantum
digital signature algorithms that could withstand quantum
attacks especially in electronic cash system (such as bitcoin)
in the nearest future.

Bitcoin as defined by [12] is a network of systems that
does not have a central connection and by implication does
not depend on a trusted third party for the processing of its
transactions. Bitcoin transactions are recorded and
maintained by a public ledger called the blockchain. Since
its development by Satoshi Nakamato in 2008 [12], bitcoin
has proven to be acceptable by many users as compared to
other digital currencies. Bitcoin transactions are supported
by the use of digital signatures. To transfer some coins to
someone else, the current owner adds a link to a chain of
blocks, thereby creating a new transaction.

In bitcoin, the security of transactions relies on the
Proof-of-Work (PoW) protocol which aimed at preventing
double spending of the coin [1]. The PoW is a measure to
find a pre-image of an output of a cryptographic hash
function. The PoW technique will be insecure with the use
of quantum computers. A quantum computer can apply
Grover’s search algorithm to execute the PoW faster than
classical computer that uses ECDSA or RSA [11]. With
these limitations, hash-based digital signature schemes are
therefore good alternative algorithms in securing bitcoin
transactions.

The research work is arranged this way: part II briefly
summarizes relevant literatures of stateful hash-based digital
signature Schemes; part III gives details explanation of
some selected families of hash-based signature schemes; the
authors in part IV discussed application of hash-based
digital signature schemes as an alternative to ECDSA that is
used in bitcoin security. Section V presents the research
conclusion and recommendations for future work.

II. REVIEW OF RELATED LITERATURES

The advent of quantum computing and its application
capabilities called for an open research gap in post-quantum
cryptography. It is in line with this motivation that [13]
builds on the multi-time signature schemes recommended
by Raph Merkle in 1979 and showed that the initial MSS is
difficult to forge. The contribution to his work was the
development of an improved version of the Merkle
Signature Scheme with cost reduction in terms of key

generation. However, [7] carried out analysis of Winternitz
One-Time Signature Scheme (W-OTS) and its security
levels. The research work proof that W-OTS is also difficult
to forge when applied with pseudo-random functions.
Comparative study of post-quantum hash-based digital
signature was done by [9] using hierarchical method on
different Hash-based Digital Signature Schemes. The
research work suggests future implementation in Public Key
Infrastructure (PKI). “Reference [10] considered using two
hash-based digital signatures (L-OTS and W-OTS) to
analyze their strength and security levels. The results
showed that W-OTS signature length is shorter than the LD-
OTS”.

III. HASH BASED DIGITAL SIGNATURE

Hash-based digital signatures are either stateful or
stateless. In stateful signature scheme, signing a message
reads a secret key and the message then a signature is
generated which include the updated secret key. This means
that a signer must maintain a state that is modified every
time a signature is issued. In stateless signature scheme
(such as SPHINCS) has a large tree-of-trees, but at the
bottom of the tree, are a number of Few-Time-Signature
(FTS). A message is signed by a signer by picking a random
FTS, and then authenticates that through the Merkle tree up
to the root. Using FTS, you do not need to update any state
when generating a signature [8]. The hash-based digital
schemes discussed in this research work are mainly stateful
hash-based signature schemes. The basic fundamental of
hash-based signature schemes is the One-Time Signature
scheme (OTS). The first and the most intuitive of OTS was
developed by Lamport and Diffie in 1979 also known as
Lamport Diffie One-Time Signature Scheme (LD-OTS).
The OTS allows using a pair of key to sign one message at a
time [6]. The use of one way function is the characteristic of
LD-OTS and is given as: nnf }1,0{}1,0{: → where n is a
positive integer, and a hash function that is
cryptographically secure given as: n

cH }1,0{}1,0{: * →

A. Generating key pairs in LD-OTS

Let’s assume LD-OTS signature key to be K with n2
bit strings which has length n signature key selected
randomly. Therefore:

)2,(
001111 }1,0{]1[],0[],1[],0[...,],1[],0[(nn

Rnn kkkkkkK ∈= −− (1)

i. To verify LD-OTS:
Let’s assume L to be the verification key to be computed
given as:

)2,(
001111 }1,0{]1[],0[],1[],0[...,],1[],0[(nn

nn llllllL ∈= −− (2)

Such that 1,0,10]),[(][=−≤≤= jnijkfjl ii (3)
From (3), it is shown that key generation in LD-OTS needs

n2 evaluation of function .f This means that n2 bit
strings with length n is the requirement for both the signing
key as well as the verification key.

ii. Generating Signature using LD-OTS
Suppose *}1,0{∈P is a document to be signed by a

signature key K illustrated in (1).

Suppose)...,,()(01 dmdmdmPq n−== denotes the

digest of the message P . The signature of LD-OTS will be
written as:

),(
001111 }1,0{][],[...,],[(nn

nn dmkdmkdmk ∈= −−δ (4)
Note that the signatures are chosen as a function of the
digest of the message .dm In this signature, thi is the bit

string and is given as]0[ik when thi bit string in message

digest dm equals zero (0) and],1[ik otherwise. In this case,

no evaluation of f function is required in the signing.

Therefore the signature length is 2n .

iii. Signature verification with LD-OTS

Given the signature),...,(01 δδδ −= n of the document

P shown in (4), the message digest which is
),...,(01 δ−= ndmdm is calculated by the verifier. The

verifier needs to check whether
])[],...,[())(),...,((001101 dldlff nnn −−− =δδ (5)
In this equation, the verification of the signature requires
n evaluations of the function .f

iv. Application scenario

Let’s the positive integer n be 3, and the hash function
.8mod1};1,0{}3,0{: 3 +→ kkf �

Let’s assume dm to be the hash value in the message P
given as (1,0,1). The signature key is chosen as:

]1[],0[],1[],0[],1[],0[(001122 kkkkkkK = .Yields a 3
by 6 matrix as:

)6,3(}1,0{
010101
101101
011001

∈
�
�
�

�

�

	
	
	

�

The corresponding verification key can be computed as:

)6,3(

001122

}1,0{
101010
111000
011100

]1[],0[],1[],0[],1[],0[(

∈
�
�
�

�

�

	
	
	

�

== llllllL

Given that the message digest)1,0,1(=dm ; this implies
that the signature of the digest will be:

)3,3(
012012 }1,0{

010
110
000

]1[],0[],1[(),,(∈
�
�
�

�

�

	
	
	

�
=== kkkδδδδ

Note that the LD-OTS signature keys must be used only
once to avoid an attacker been able to know the signature of

the digest. For example, if the security parameter n is
chosen as 4; assuming the signer signs two messages whose
digest are:

)0111()1101(21 == dmanddm maintaining the same
signature key. These digests would give the following
signatures as:

]0[],1[],1[],1[(
])1[],1[],0[],1[(

01232

01231

kkkk
kkkk

=
=

δ
δ

From these signatures 21 δδ and the hacker understands

]1[],0[],1[],1[],0[],1[001223 kkkkkk because the hacker
can understand the signature key. The hacker may apply this
information to determine the actual signatures of the two
messages whose digests are given as:

).1,1,1,1()0,1,0,1(43 == dmanddm It would be difficult
for the hacker to find the actual message provided the used
hash function is secure.

v. The Security of LD-OTS
LD-OTS security depends on the cryptographic hash
functions [6]. For the scheme to be flexible, any hash
function could be used. The security notion of LD-OTS
could be affected if the hash function f is inverted by an
attacker who intends to forge the signature of the sender.
For example; Let’s)(01001101 KfandK = be a
given function that can converts 0’s with 1’s and vice versa.
Then .10110010=L Assuming Alice wants to sign two
messages given as: 10101 =M and 11012 =M with the
same private key .K By LD-OTS, Alice computes the
corresponding signatures as: 10101 =δ and

10112 =δ then send to Bob. By this, Bob knows
,2,1 δδ and M1,M2. It will be easy for Bob to forge a new

message 11113 =M with its corresponding signature
10113 =δ by just combining the previous two messages. A

signer has to save n*2 hash values in order to sign a
message given as .}1,0{ nM = To attain)2(80O security
level in LD-OTS, the hash function used must be at least
160 bits. This means that both private and public keys are
expected to be at least nn *320*2*160 = bits.

B. (W-OTS)

i. Generating Keys-W-OTS approach
In LD-OTS, the signature key and signature generation

is efficient, but the magnitude of the signature is large [9].
The aim of the W-OTS is to produce few signatures. The
notion is one string in the OTS key should be able to sign
many bits of the digest message. This can be illustrated as:
Suppose nHH }1,0{:*}1,0{: → represent a function that is
cryptographically secure with a parameter given as w such
that Nw ∈ is selected, then L can be calculated. The
variable L represents the number of elements in the private
key and has the following formula:

Let � �wmHL /)(1 = and
 �� �wwLL /112log2 ++=

21 & LLofsumtheL = (6)

1L represents the number of all the private key elements
required for signing the message digest, when signing

bitsw − simultaneously. Whereas 2L represents the
number of private key elements to sign the checksum of the
message digest. All elements of the private key are
generated from the Pseudorandom Number Generator
(PRNG) and consist of bitsn − each. That is;

),...,(10 −= lSkSkSk (7)
The public key is generated when F is applied to every
element from the private key 12 −w times. The public key
is supposed to be available to the public along with
parameter w ,functions HandF .

1...,,0);(12 −=−= LiforSkFPk i
w

i (8)

)...,,(10 −= lPkPkPk (9)
The table I represent correlation in numbers of how key
elements decrease and evaluations of F increase while w
also increases.

TABLE I
Differences between w , private key elements, and evaluations of F when

n=256
Key length

(L)

133 40 67 55 45 39 34

Evaluation
of F

399 630 1005 1705 2055 473 8672

Signature
size in kb

4.2 2.9 2.1 1.8 1.4 1.2 1.1

ii. W-OTS Signing process

To sign a message, the sender has to select the
parameter w and L private and public keys. Thereafter, hash
the message m with function H to produce a message
digest).(mH Next, the sender needs to slice the message in
pieces so that each piece consist of bitsw− . If the
message digest is not divisible by ,w the sender should
append additional zeros in the most left position resulting in

),...,(10 −= ldmdmdm (10)

This is in base w2 notation. The checksum Cs and dm
can be calculated later. To do so, the sender has to calculate
the sum of all differences between 1082 =w and each of the

idm from the sliced message digest. This is done by using
the equation,

�
−

=

−=
11

0
2

l

i
i

w dmCs

 (11)
)...,,,(1210 −= lCsCsCsCs

 (12)

Then, the sender needs to concatenate both the message
digest, and the checksum to variable B. The variable B
consists of L elements in w2 notation given as:

)...,,,(110 −= lbbbB
The new variable B is the actual message to sign. In other
words, W-OTS signs both message digest and the checksum
of the message digest. To generate the signature, the sender
needs to apply ib many times the function F on input Sk
from index i .

1...,,0:)(−== LiforSkF i
bi

iδ (13)

110 ...,,(−= Lδδδδ (14)
Each of n-bit length which would yield the signature size of

bitsL −

iii. Signing a message

Let’s assume that the sender has chosen Winternitz
parameter to be w = 3 and a small message
digest bitsmH 16)(= . Then)(mH would be expressed
as:

1000111001111010)(=mH
Appending two zeros to the left, the message becomes:

101000110010011110)(=mH (15)
The parameter L is calculated to be 8 elements each. Next,
the sender slices the message digest 3 by 3 and append
additional two zeros to the left as shown in equation (15)

011100010111001001)...,,(50 == dmdmdm (16)

Thereafter, the checksum Cs of the message digest
dm can be calculated. The sender has to calculate the sum
of all differences between 1082 =w and each of the idm
from the message digest. This can be done with the
following formula:

i

l

i
dm−�

−

=

1

0

32 .

Table II shows the calculation of the checksum for this
particular instance, when 316)(== nandbitsmH

This implies that: � � 6/)(1 == wmHdm

The checksum Cs needs to be converted to binary sliced 3
by 3 bits with the extended zeros at the left position.

),,,,(54321,0 CsCsCsCsCsCsCs = = (1, 1, 7, 2, 4, 3)

Thus, i
i

i

l

i

w dmdm −=− ��
−

=

−

=

16

0

3
1

0
22

 = (8-1) + (8-1) + (8-7) + (8-2) + (8-4) + (8-3)
 = 7 + 7 + 1 + 6 + 4 + 5
 = 3010
Thus, B = 3010 = 111102
Padding B, gives, 011 110
Concatenating both message digest and checksum to create
B consisting of L = 8 elements
B = d||C (17)
Using “13”, gives the following signatures;

)18()(),(

||)(),(),(),(),(),()(

7
6

6
3

5
3

4
4

3
2

2
7

1
1

0
1

SkFSkF
SkFSkFSkFSkFSkFSkFBSig ==δ

In this instance, the signature size;
,128168 bitsx ==δ since F is a length preserving

function.
TABLE II

Calculation of checksum in W-OTS; when 3=w
2w=23=8 8 8 8 8 8 8
bi (binary) 001 001 111 010 100 011

bi in decimal 1 1 7 2 4 3
Checksum 7 7 1 6 4 5

iv) W-OTS Signature verification process

To verify the signature),,(Pkmδ , the receiver has to
perform similar calculations as the sender while signing.
Knowing both function F and H along with parameter w ,
the receiver obtain all necessary information for signature
verification. First, the message m is hashed to obtain
message digest)(mH , then appending zeros in the most
left position. Next, calculate the checksum Cs and append
zeros to the most left if needed.

i

L

i

w dCs −= �
−

=

11

0
2 (19)

The receiver concatenates the message digest)(mH with
checksum Cs to create B containing L elements.

CsdbbB ||)...,,(60 ==

The integer values from w
i inb 2 notation contain

information about how many times a specific part of the
signature has the function F been applied on. During the key
generation phase, the sender has applied function F on
private key elements 12 −w times to obtain the public key.

1,...2,1,0:)(12 −== − liforSkFPk i
w

i

),...(10 −= lPkPkPk
Combination of this information implies that the receiver
has appliedy the function F on the parts of the signature

biw −−12 times to reconstruct the sender’s public key.
Thereby verify the signature.

)...,,(1−= li δδδ
 (20)

ii
biw PkF =∀ −−)(: 12 δ (21)

If the calculated values match the sender’s public key, then,
the signature is valid, otherwise it would be rejected.

v. Signature Verification scenario

Considering the signing process in subsection (iii),
where it is necessary to calculate the message digest),(mH

slicing it up and interpret it as integer values in w2 notation
is required.
Given that Cs = 3010 = 111102
Appending one zero to the most left position to Cs and
dividing by w implies; Cs = 011 110

Concatenate the message digest)(mH with the checksum
Cs to create B containing L elements gives:

2110011011100010111001001||)(== CmHB (22)
Interpreting these values as integers, gives;
B = (1, 1, 7, 2, 4, 3, 4, 2)10 (23)
Since parameter 3=w , then the sender needed to apply

function F to all private key elements 12 −w times (which
is 7 times) to generate the public key. Thereafter, applying
the formula

ii PkbiF
w

?)(: 12 =−∀ − δ to reconstruct the sender’s
public key to give:

)24()(),(),(

),(),(),(),(),(

7
2

6
4

5
3

4
4

3
2

2
7

1
1

0
1

δδδ
δδδδδ

FFF
FFFFFPki =

vi. Security of W-OTS

“Reference [17] was the first to proof that a generic W-
OTS is difficult to forge under adaptive chosen message
attacks”. There are two security properties that are
applicable to W-OTS; pseudorandom property and key one-
wayness. These security properties make W-OTS quantum
resistant.

C. Merkle Signature Scheme (MSS)

The MSS is based on hash trees (known as Merkle
trees) and it is a one-time signature like the LD-OTS. It was
introduced by R. Merkle in 1979 as an alternative to the
traditional digital signature (RSA, DSA). The advantage of
MSS is that it is tested to be resilient to quantum computer
attacks. The MSS security is the present of the hash function
used [14].

i. Key generation in MSS

MSS can only be used to sign a few number of
messages using one public key [3]. The total number of
messages is nN 2= . In MSS key generation, the public

keys (pubkey) iχ are generated first then the private keys

iγ with n2 OTS scheme. Given private key iγ , with
ni 21 ≤≤ , a hash value)(ii Hh γ= is calculated and with

these hash values ih , a hash tree is built. Fig 1 illustrates a
Merkle tree of height H = 3.

Fig 1. Merkle hash tree with height H = 3 [7]

As seen in fig. 1, the verification keys are 70 ,...,γγ ,

while 70 ,...χχ are the signature keys.

jia , is referred to as the nodes of the tree, were i represents

the level at which the nodes are located (for example 10 ,a
is level zero, node 1). The node level is the gab from the
node to a particular leaf. For example, a leaf has level

0=i and the root has level ni = . The hash values ih are

the leafs of the tree, such that ii ah ,0= . The inside nodes
are the hash value of the concatenation of its two children.
For example;

).||()||(1,10,10,21,00,00,1 aaHaandaaHa ==

This is how the tree is made up. This include n2 leafs and
(12 1 −+n) nodes. The tree has a root and it is given as

0,na and it is referred to as the public key.

i. Generating Signatures in MSS
Signing a message M can be achieved by signing first

with OTS to obtain the signature “sig” and by utilizing the
public key and private key pairs),(ii γχ respectively. The

route in the hash tree from 1,0a to the root could be

represented as A. The path A consists of 1+n nodes, that is,

nAA ,...,0 with 1,00 aA = being the leaf and

.0, pubkeyaA nn == In calculating the path A, all

entities of the nodes nAA ,...,0 are needed. Note, iA is an

entity of 1+iA . This node is called the authentication path

iauth such that;

)||(1 iii authAHtoequalisA + . To get the number of

nodes n ; 10 ,..., −nauthauth are required to calculate all the
nodes in the path ‘A’. These nodes are calculated and saved
as 10 ,..., −nauthauth respectively. The final signature of

message M is:)||||||'('' 110 −= nauthauthauthsigsig in
MSS.

iii. How to Verify a Signature

To verify any signature, the receiver must know the
pubkey, the message M and the signature;

).||||,...,||||'(110 −= nauthauthauthSigSig Firstly, the

receiver checks the OTS 'Sig of a given message M. If the

'Sig is true, then the receiver can calculate)(0 iHA γ= by
performing hashing operation on the public key of the OTS.

iv. The security of MSS

The MSS security as explained by [7] is forward secure,
one-time signature, and collision resistant. A cryptographic
hash function G is collision resistant if it is hard to find two
inputs that hash to the same output. Given p and q , such
that)()(qGpG = and (qp ≠). However, to forging an
MSS, an attacker is required to compute the pre-images and
second pre-images hash function.

D. Comparison of L-OTS, W-OTS, and MSS
In table III, it is shown that the L-OTS key size is

22n and that of W-OTS is ,np while in MSS the private

key size are in the range of
ni 21 ≤≤ . To generate a key,

L-OTS requires n2 evaluation of function ,f W-OTS

requires)12(−ωt evaluation of function ,f and in the

MSS, the key generation is
H2 (H is the tree height). L-

OTS and MSS does not use function f for signature

generation, while W-OTS requires)12(−wt parameters.

On the use of function f for signature verification, L-OTS
needs to use the value of parameter n for signature
verification, W-OTS needs to apply the parameters

)12(−wt to verify signatures; while MSS requires the

parameters 2/)12(−wt for the same process. The summary
of these analyses is illustrated in table III.

TABLE III

Comparison between L-OTS, W-OTS, and MSS Schemes
Parameters L-OTS W-OST MSS
Key size 22n 2≥w ni 21 ≤≤

Key
generation

2n
evaluation

of f

t(2w-1)
evaluation of

f

2H leaves

Signature
length

2n)(tn Sig’||auth0, …,||authn-1

f for
Signature
generation

Not used
t(2w-1)

Not used

Use of f for
signature

verification

n
t(2w-1)

t(2w-1)/2

Security
levels

Hash
function

used

EU-CMA Pre-image of the
hash function

Note: n is a positive integer, w is Winternitz parameter, t is
the bits string, and f is the hash function.

IV APPLICATION OF HASH-BASED DIGITAL

SINGNATURES ON BITCOIN CRYPTOCURRENCY
Bitcoin uses two cryptographic primitives to secure its

transactions [2]. The first primitive is the Proof of Work
(PoW) protocol, and the second is the Digital Signature
Algorithm (DSA). This work focused on the PoW protocol.
In bitcoin, the function used is;

))(256(256)(RSHASHArH = where; .256bitsn =
The difficulty in PoW is explained thus: Suppose a message
M has a target T, to locate r so that .),(TrmH ≤ H is
model as a random function such that the algorithm to find
r is to apply a brute force attack. PoW enables a miner to
find a valid block. The miner increases the nonce r until a
block is valid and a reward is granted. For example, using
classical algorithms, the probability of finding an item of
data in a bitcoin ledger is 2/3 queries; a quantum miner can
apply Grover’s search methods to perform such search
operations in a polynomial time with less queries.

V. CONCLUSION

Hash-based signature schemes are an alternative for
quantum attacks. This research critically explains the basic
foundation of the three (3) hash-based digital signatures (L-
OTS, W-OTS and MSS). The research proceed further to
show the basic working principles of these schemes and
comparing them in terms of key generation, signature
generation, verification and their security levels. The
comparative analysis is in table III. Based on the study,
MSS is considered most suitable for bitcoin security.
MSS permits a user to generate many signatures with one
public key as compared to L-OTS and W-OTS. There are
many variants of MSS (stateful signature scheme) and other
stateless signature schemes that where not discussed in this
work. Further research work can be done in this area with
the aim of identifying the most suitable hash-based digital
signature scheme for bitcoin cryptocurrency.

REFERENCES
[1] O. Sattath, “On the insecurity of quantum Bitcoin mining,” arXiv

preprint arXiv:1804.08118, March, 2018. Unpublished.
[2] D. Aggarwal, G.K, Brennen, T, Lee, M, Santha, and M. Tomamichel,

“Quantum attacks on Bitcoin, and how to protect against them” arXiv
preprint arXiv:1710.10377, 2017. Unpublished.

 [3] J. Buchmann, E. Dahmen, and M. Szydlo, “Hash-based digital
signature schemes. In Post-Quantum Cryptography pp. 35-93,
Springer, Berlin, Heidelberg, 2009.

[4] P.W. Shor, “Algorithms for quantum computation: Discrete
logarithms and factoring,” In Proceedings of IEEE 35th annual
symposium on foundations of computer science pp. 124-134,
November, 1994.

[5] D. Johnson, A. Menezes, and S. Vanstone, “ The elliptic curve digital
signature algorithm (ECDSA),” International journal of information
security, vol. 1 no. 1, pp. 36-63, 2001.

[6] L. Lamport, “Constructing digital signatures from a one-way
function” Vol. 238. [Palo Alto: Technical Report CSL-98, SRI
International, 1979].

[7] A. Hülsing,, ”Practical forward secure signatures using minimal
security assumptions,” Doctoral dissertation, Technische Universität,
2013.

 [8] R. El Bansarkhani, and R. Misoczki, “G-merkle: a hash-based group
signature scheme from standard assumptions,” In International
Conference on Post-Quantum Cryptography, pp. 441-463, Springer,
Cham, April, 2018.

[9] A. Zeier, A. Wiesmaier, and A. Heinemann, “API Usability of
Stateful Signature Schemes,” In International Workshop on Security,
pp. 221-240, Springer, Cham, August, 2019.

[10] O. Potii, Y. Gorbenko, and K. Isirova, “Post quantum hash based
digital signatures comparative analysis: Features of their
implementation and using in public key infrastructure,” In IEEE 4th
International Scientific-Practical Conference Problems of
Inforcommunications, Science and Technology (PIC S&T), pp. 105-
109, October, 2017.

[11] K. L., Grover, “A fast quantum mechanical algorithm for database
search”. arXiv preprint quant-ph/9605043, 1996. Unpublished.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, 2008.
 Downloaded from:

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=bitcoin
+an+electronic+cash+system&btnG=

[13] L.C. Garc�a, “On the security and the efficiency of the Merkle
signature scheme,” Technical Report 2005/192, Cryptology ePrint
Archive, 2005. Available at: http://eprint. iacr. org/2005/192.
Unpublished.

[14] J. Buchmann, L.C. García, E. Dahmen, M. Döring, and E.
 Klintsevich, “CMSS–an improved Merkle signature scheme”.In
 International Conference on Cryptology in India (pp. 349-363).
 Springer, Berlin, Heidelberg, (December, 2006).

