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ABSTRACT 

The Gauss-Seidel is a well-known iterative method for solving the linear system 𝐴𝑥 = 𝑏.  Convergence of 

this method is guaranteed for linear systems whose coefficient matrix 𝐴 is strictly or irreducibly diagonally 

dominant, Hermitian positive definite and invertible 𝐻 −matrix. In this current work, a preconditioned 

version of the Gauss-Seidel method is used to accelerate the convergence of this iterative method towards 

the solution of linear system 𝐴𝑥 = 𝑏 under mild conditions imposed on 𝐴. Convergence theorems on 

preconditioned Gauss-Seidel iterative method are advanced and proved. The superiority of Preconditioned 

Gauss-Seidel method is demonstrated by solving some numerical examples.      
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INTRODUCTION 

Iterative solution methods for solving the linear system 𝐴𝑥 =

𝑏 take the general form  

𝑥(𝑘+1) = 𝑇𝑥(𝑘) + 𝑐 ,           𝑘

= 0,1,2,⋯                                    (1) 

The convergence of these methods is seldom guaranteed for 

every matrix; however, quite a lot of theory exist for 

coefficient matrices arising from the finite difference 

discretization of elliptic partial differential equations. In 

comparison to direct methods, there is the widely recognized 

weakness of lack of robustness associated with iterative 

methods. This setback hinders the acceptance of iterative 

methods in real world applications in spite of their inherent 

appeal for sparse large linear systems. Fortunately, both the 

efficiency and robustness of iterative methods can be 

enhanced by the application of preconditioning technique. 

Preconditioning is just a means of applying a transformation, 

called the preconditioner, to the original linear system in order 

to transform it into one which has the same solution, but 

which is more suitable for numerical solution. The following 

preconditioned linear system, obtained through application of 

the transformation 𝑃 to the linear system  𝐴𝑥 = 𝑏, is 

considered 

𝑃𝐴𝑥 = 𝑃𝑏                                                                         (2) 

where 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ∈ ℝ
𝑛×𝑛 is a nonsingular 𝐿 −matrix, 𝑃 =

𝐼 + 𝑆, where 𝐼 ∈ 𝐼𝑛×𝑛, the set of 𝑛 × 𝑛 identity matrices, and 

𝑆 is a sparse matrix whose nonzero entries are the negatives 

of the corresponding entries of 𝐴, 𝑏 ∈ ℜ(𝐴), ℜ(𝐴) being the 

range of 𝐴  is a column vector and 𝑥 ∈ ℝ𝑛×𝑛 is the vector of 

unknowns.  

In order to effectively solve the preconditioned system (2), 

several preconditioners have been presented. In 1987, the 

preconditioner 𝑃 introduced by Milaszewciz (1987) assumes 

the form 𝑃 = 𝐼 + 𝑆, where  

𝑆 = (𝑠𝑖𝑗)

= {
−𝑎𝑖1,          for  𝑖 = 2,⋯ , 𝑛
0,              otherwise 00

                                 (3) 

with the condition that the coefficient matrix 𝐴 is an 

𝐿 −matrix with  

𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 > 0 and 0 < 𝑎1𝑖𝑎𝑖1 < 1 for 𝑖 = 2,3,⋯ , 𝑛                    (4)   

Gunawardena et al. (1991) proposed the preconditioned Gauss-Seidel method with 𝑃 = 𝐼 + 𝑆, where  

𝑆 = (𝑠𝑖𝑗) = {
−𝑎𝑖𝑖+1,          for  𝑖 = 1,2,⋯ , 𝑛 − 1, 𝑗 = 𝑖 + 1
0,              otherwise 0  0000000000000000000

 

Similar preconditioners were proposed by Kotakemori et al. (1996), Kohno et al. (1997), Kotakemori et al. (2002), Morimoto 

et al. (2003) and Morimoto et al. (2004). The preconditioned effect of these preconditioners is seldom observed on the last 

row of 𝐴, because they are formed from a part of upper triangular part of 𝐴. The preconditioner of Morimoto et al. (2003) was 

an attempt at providing the preconditioned effect on the last row of 𝐴. It takes the form 𝑃𝑅1 = 𝐼 + 𝑅, where 𝑅 is defined as  

𝑅 = (𝑟𝑛𝑗) = {
−𝑎𝑛𝑗 , 1 ≤ 𝑗 ≤ 𝑛 − 1      

0,              otherwise 00
 

The preconditioned matrix 𝑃𝐴, denoted by 𝐴𝑅1, is defined by 
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𝐴𝑅1 = (𝐼 + 𝑅)𝐴 = (𝑎𝑖𝑗
𝑅1), 𝑎𝑖𝑗

𝑅1 = {

𝑎𝑖𝑗 ,                                1 ≤ 𝑖 < 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑛,

𝑎𝑛𝑗 −∑ 𝑎𝑛𝑘𝑎𝑘𝑗
𝑛−1

𝑘=1
,   1 ≤ 𝑗 ≤ 𝑛. 0000000000

 

Then, a splitting of the preconditioned matrix 𝐴𝑅1is obtained thus 

𝐴𝑅1 = 𝑀𝑅1 −𝑁𝑅1 = (𝐼 − 𝐿 + 𝑅 − 𝑅𝐿 − 𝑅𝑈) − 𝑈 = (𝐼 − 𝐿 − 𝐷𝑅 + 𝑅 − 𝑅𝐿 − 𝐸𝑅) − 𝑈, 

where 𝐷𝑅, 𝐸𝑅 are the diagonal and strictly lower triangular parts of 𝑅𝑈, respectively. if ∑ 𝑎𝑛𝑘𝑎𝑘𝑖
𝑛−1
𝑘=1 ≠ 1, then 𝑀𝑅1

−1 exists, 

and the Gauss-Seidel iterative matrix 𝑇𝑅1 is defined by 

𝑇𝑅1 = (𝐼 − 𝐷𝑅 − 𝐿 + 𝑅 − 𝑅𝐿 − 𝐸𝑅)
−1𝑈. 

Niki et al. (2004) built on Morimoto et al. (2003) to propose the preconditioner 𝑃𝑅 = 𝐼 + 𝑆 + 𝑅, arising from which the 

preconditioned matrix 𝐴𝑅 assumes the structure 

𝐴𝑅 = (𝐼 + 𝑆 + 𝑅)𝐴 = (𝑎𝑖𝑗
𝑅 ), 𝑎𝑖𝑗

𝑅 = {

𝑎𝑖𝑗 − 𝑎𝑖𝑖+1𝑎𝑖+1𝑗 ,           1 ≤ 𝑖 < 𝑛,

𝑎𝑛𝑗 −∑ 𝑎𝑛𝑘𝑎𝑘𝑗
𝑛−1

𝑘=1
,   1 ≤ 𝑗 ≤ 𝑛.

 

with the corresponding splitting  

𝐴𝑅 = 𝑀𝑅 − 𝑁𝑅 = (𝐼 − 𝐷 − 𝐷𝑅) − (𝐿 − 𝑅 + 𝑅𝐿 + 𝐸 + 𝐸𝑅) − (𝑈 − 𝑆 + 𝑆𝑈). 

In a quest to address the shortcomings of the preconditioner (3), Dehghan and Hajarian (2009) introduced two new 

preconditioners �̅� = 𝐼 + 𝑆̅ and �̃� = 𝐼 + �̃�, with     

𝑆̅ = {
−(𝑎𝑖1 + 𝛾𝑖),        for  𝑖 = 2,⋯ , 𝑛
0,                        otherwise 00

                                                 (5) 

�̃� = {
−(𝑎𝑖𝑛 + 𝛿𝑖),        for  𝑖 = 1,⋯ , 𝑛 − 1
0,                        otherwise 00000

                                         (6) 

where 𝛾2, 𝛾3,⋯ , 𝛾𝑛 and 𝛿1, 𝛿2, ⋯ , 𝛿𝑛−1 are real parameters. These preconditioners were applied to accelerate the convergence 

of the successive overrelaxation (SOR) iterative method under mild conditions on the coefficient matrix 𝐴. In furtherance of 

the search for fast converging iterative methods, Ndanusa and Adeboye (2012) attempted an improvement on the SOR method 

by proposing a preconditioner 𝑃 = 𝐼 + 𝑆, with 𝑆 having the structure  

𝑆 = {

−𝑎𝑖1,                          𝑖 = 2,⋯ , 𝑛
−𝑎𝑖,𝑖+1,              𝑖 = 1,⋯ , 𝑛 − 1

0,                        otherwise 00
 

In this current work, we focus on investigating the validity of the results of Dehghan and Hajarian (2009) applied to Gauss-

Seidel method. Throughout this paper, we assume that the coefficient matrix 𝐴 has a splitting of the form 𝐴 = 𝐼 − 𝐿 − 𝑈, 

where 𝐼 denotes the 𝑛 × 𝑛 identity matrix, and – 𝐿 and −𝑈 are the strictly lower and strictly upper triangular parts of 𝐴, 

respectively.    

MATERIALS AND METHODS 

Preliminaries 

From the general iteration formula for linear systems (1), the Gauss-Seidel method is represented by  

 𝑥(𝑘+1) = (𝐼 − 𝐿)−1𝑈𝑥(𝑘) + (𝐼 − 𝐿)−1𝑏           𝑘 = 0,1,2,⋯                 (7) 

Where, 

 𝑇𝐺 = (𝐼 − 𝐿)
−1𝑈                                                                 (8)  

is the iteration matrix of the Gauss-Seidel method. Convergence of the method is guaranteed if the spectral radius of the 

iteration matrix is less than 1, and the smaller it is, the faster the method converges. It is known that the Gauss-Seidel converges 

faster than the Jacobi method while the SOR converges faster than the Gauss-Seidel method. 

Following on the preconditioners (5) and (6), two preconditioned linear systems are introduced as follows: 

�̅�𝑥 = �̅� where �̅� = �̅�𝐴 and �̅� = �̅�𝑏 

�̃�𝑥 = �̃� where �̃� = �̃�𝐴 and �̃� = �̃�𝑏 

A usual splitting of �̅� and �̃� is obtained as 

�̅� = �̅� − �̅� − �̅�  and  �̃� = �̃� − �̃� − �̃�                                   (9)  

respectively, where 

𝐷 = 𝐼 + �̅�1 , 𝐿 = 𝐿 − 𝑆̅ + �̅�1, 𝑈 = 𝑈 + �̅�1
�̃� = 𝐼 + �̃�1, �̃� = 𝐿 + �̃�1, �̃� = 𝑈 + �̃�1   

}                     (10) 

where �̅�1(�̃�1),  �̅�1(�̃�1) and �̅�1(�̃�1) represent the diagonal, strictly lower and strictly upper triangular parts of 𝑆̅𝑈(�̃�𝐴) 

respectively; that is, 𝑆̅𝑈 = −�̅�1 + �̅�1 + �̅�1 and �̃�𝐴 = �̃� − �̃�𝑈 − �̃�𝐿 = �̃�1 − �̃�1 − �̃�1. Two forms of the Gauss-Seidel iteration 

matrix related to �̅� and �̃� are described by  

�̅�𝐺1 = (�̅� − �̅�)
−1�̅�,     �̅�𝐺2 = [𝐼 − (𝐿 − 𝑆̅ + �̅�1)]

−1(𝑈 + �̅�1 − �̅�1)      (11) 

and 
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�̃�𝐺1 = (�̃� − �̅�)
−1�̅�,     �̃�𝐺2 = [𝐼 − (𝐿 + �̃�1)]

−1
(𝑈 + �̃�1 − �̃�1)      (12) 

Definition 1: A matrix 𝐴 is said to be reducible if there exists some nonempty set 𝐾 ⊂ ℕ that satisfies  

𝑎𝑖𝑗 = 0 for any 𝑖 ∈ 𝐾, 𝑗 ∈ ℕ/𝐾 

If 𝐴 is not a reducible matrix, then 𝐴 is called an irreducible matrix. 

Convergence Analysis 

Lemma 1 (Varga (1981))   Let 𝐴 ≥ 0 be an irreducible matrix. Then, 

i. 𝐴 has a positive real eigenvalue equal to its spectral radius. 

ii. For 𝜌(𝐴) there corresponds an eigenvector 𝑥 > 0. 

iii. 𝜌(𝐴) increases when any entry of 𝐴 increases. 

iv. 𝜌(𝐴) is a simple eigenvalue of 𝐴. 

Lemma 2 (Varga (1981))   Let 𝐴 be a nonnegative matrix. Then 

i. If 𝛼𝑥 ≤ 𝐴𝑥 for some nonnegative vector 𝑥, 𝑥 ≠ 0, then 𝛼 ≤ 𝜌(𝐴). 

ii. If 𝐴𝑥 ≤ 𝛽𝑥 for some positive vector 𝑥, then 𝜌(𝐴) ≤ 𝛽. Moreover, if 𝐴 is irreducible and if 0 ≠ 𝛼𝑥 ≤ 𝐴𝑥 ≤ 𝛽𝑥 for 

some nonnegative vector 𝑥, then 𝛼 ≤ 𝜌(𝐴) ≤ 𝛽 and 𝑥 is a positive vector. 

Lemma 3 (Li and Sun (2000))     Let 𝐴 = 𝑀 −𝑁 be an 𝑀 −splitting of 𝐴. Then the splitting is convergent, i.e., 𝜌(𝑀−1𝑁 <

1), if and only if 𝐴 is a nonsingular 𝑀 −matrix. 

Theorems 

Theorem 1   Let 𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 be defined by (8), (11) and (12). If 𝐴 is an irreducible 𝐿 −matrix with 𝑎1𝑞𝑎𝑞1 > 0 

and 𝑎𝑛𝑠𝑎𝑠𝑛 > 0, 𝛾𝑞 ∈ ((1 − 𝑎1𝑞𝑎𝑞1)/𝑎1𝑞 , −𝑎𝑞1) ∩ (0, −𝑎𝑞1), 𝛿𝑠 ∈ ((1 − 𝑎𝑛𝑠𝑎𝑠𝑛)/𝑎𝑛𝑠, −𝑎𝑠𝑛) ∩ (0,−𝑎𝑠𝑛) for 𝑞 = 2,3,⋯ , 𝑛 

and 𝑠 = 1,2,⋯ , 𝑛 − 1, then 𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 are nonnegative and irreducible matrices.    

Proof: Since 𝐴 is an irreducible 𝐿 −matrix, it implies that 𝐿 ≥ 0 and 𝑈 ≥ 0. Thus, 

𝑇𝐺 = (𝐼 − 𝐿)
−1𝑈 

= (𝐼 + 𝐿 + 𝐿2 +⋯+ 𝐿𝑛−1)𝑈 

= 𝑈 + 𝐿𝑈 + 𝐿2𝑈 + nonnegative terms 

  Therefore, 𝑇𝐺 is nonnegative. We can also obtain that 𝑈 + 𝐿𝑈 + 𝐿2𝑈 is irreducible for irreducible 𝐴; hence 𝑇𝐺 is irreducible. 

Now, from (9) and (10) we obtain  

�̅� = diag(1, 1 − 𝑎12(𝑎21 + 𝛾2), 1 − 𝑎13(𝑎31 + 𝛾3),⋯ ,1 − 𝑎1𝑛(𝑎𝑛1 + 𝛾𝑛)) 

�̃� = diag(1 − 𝑎𝑛1(𝑎1𝑛 + 𝛿1), 1 − 𝑎𝑛2(𝑎2𝑛 + 𝛿2),⋯ ,1) 

�̅�1 = diag(0,−𝑎12(𝑎21 + 𝛾2), −𝑎13(𝑎31 + 𝛾3),⋯ ,−𝑎1𝑛(𝑎𝑛1 + 𝛾𝑛)) 

�̃�1 = diag(−𝑎𝑛1(𝑎1𝑛 + 𝛿1), −𝑎𝑛2(𝑎2𝑛 + 𝛿2),⋯ ,0) 

�̅� =

(

 
 

0   
𝛾2   
𝛾3  
⋮   
𝛾𝑛   

0
0   

−𝑎32 + 𝑎12(𝑎31 + 𝛾3)  
⋮   

−𝑎𝑛2 + 𝑎12(𝑎𝑛1 + 𝛾𝑛)   

0   
−0.01535   

0   
⋮   
⋯   

−0.25833   
−0.31542   
−0.01523   

0   
⋯   

−0.05480
−0.12652

0
−0.13654

0 )

 
 

 

�̅� =

(

 
 

0   
−0.15730   

0  
−0.12589   
−0.21365   

−𝑎12
0   

−0.18436   
−0.00357   
−0.01489   

−𝑎13   

−𝑎23 + 𝑎13(𝑎21 + 𝛾2)  
0  

−0.12354   
−0.13940   

⋯   
⋯   
⋮   
0   

−0.04890   

−𝑎1𝑛
−𝑎2𝑛 + (𝑎21 + 𝛾2)

⋮
−𝑎𝑛−1,𝑛 + 𝑎1𝑛(𝑎𝑛−1,1 + 𝛾𝑛−1)

0 )

 
 

 

�̃� =

(

 
 

0   
−𝑎21 + 𝑎𝑛1(𝑎2𝑛 + 𝛿2)

−𝑎31 + 𝑎𝑛1(𝑎3𝑛 + 𝛿3)
⋮   

−𝑎𝑛1   

0
0   

−𝑎32 + 𝑎𝑛2(𝑎3𝑛 + 𝛿3)  
⋮   
−𝑎𝑛2 

0   
−0.01535   

0   
⋮   
⋯   

−0.25833   
−0.31542   
−0.01523   

0   
⋯   

−0.05480
−0.12652

0
−0.13654

0 )

 
 

 

�̃� =

(

 
 

0   
−0.15730   

0  
−0.12589   
−0.21365   

−𝑎12 + 𝑎𝑛2(𝑎1𝑛 + 𝛿1)

0   
−0.18436   
−0.00357   
−0.01489   

−𝑎13 + 𝑎𝑛3(𝑎1𝑛 + 𝛿1)   

−𝑎23 + 𝑎𝑛3(𝑎2𝑛 + 𝛿2)  
0  

−0.12354   
−0.13940   

⋯   
⋯   
⋮   
0   

−0.04890   

𝛿1
𝛿2
⋮

𝛿𝑛−1
0 )

 
 

 

Now,  

1 − 𝑎1𝑞(𝑎𝑞1 + 𝛾𝑞) > 1 − 𝑎1𝑞 (𝑎𝑞1 +
1 − 𝑎1𝑞𝑎𝑞1

𝑎1𝑞
) = 1 −

1

𝑎1𝑞
> 0          (13) 

1 − 𝑎𝑛𝑠(𝑎𝑠𝑛 + 𝛿𝑠) > 1 − 𝑎𝑛𝑠 (𝑎𝑠𝑛 +
1 − 𝑎𝑛𝑠𝑎𝑠𝑛

𝑎𝑛𝑠
) = 1 −

1

𝑎𝑛𝑠
> 0          (14) 

From (13) and (14), �̅� > 0, �̃� > 0, �̅�1 ≤ 0 and �̃�1 ≤ 0. Also, 

−𝑎𝑖𝑗 + 𝑎1𝑗(𝑎𝑖1 + 𝛾𝑖) ≥ −𝑎𝑖𝑗 + 𝑎1𝑗(𝑎𝑖1 − 𝑎𝑖1) ≥ −𝑎𝑖𝑗 ≥ 0                 (15) 

−𝑎𝑖𝑗 + 𝑎𝑛𝑗(𝑎𝑖𝑛 + 𝛿𝑖) ≥ −𝑎𝑖𝑗 + 𝑎𝑛𝑗(𝑎𝑖𝑛 − 𝑎𝑖𝑛) ≥ −𝑎𝑖𝑗 ≥ 0                (16) 
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It implies that �̅�, �̅� ≥ 0 and �̃�, �̃� ≥ 0. Thus from (11) we have  

�̅�𝐺1 = (�̅� − �̅�)
−1�̅� 

= [�̅�(𝐼 − �̅�−1�̅�)]−1�̅� 

= �̅�−1(𝐼 − �̅�−1�̅�)−1�̅� 

= (𝐼 − �̅�−1�̅�)−1�̅�−1�̅� 

= [𝐼 + �̅�−1�̅� + (�̅�−1�̅�)2 +⋯+ (�̅�−1�̅�)𝑛−1]�̅�−1�̅� 

= �̅�−1�̅� + (�̅�−1)2�̅��̅� + (�̅�−1)3�̅�2�̅� + nonnegative terms 

Therefore, �̅�𝐺1 is a nonnegative and irreducible matrix. Using similar argument, we can show that �̅�𝐺2, �̃�𝐺1 and  �̃�𝐺2 are 

nonnegative and irreducible matrices. 

Theorem 2 Let 𝑇𝐺 and �̅�𝐺1 be defined by (8) and (11) respectively. If 𝛾𝑞 ∈ ((1 − 𝑎1𝑞𝑎𝑞1)/𝑎1𝑞 , −𝑎𝑞1) ∩ (0,−𝑎𝑞1) 

and 𝐴 is an irreducible 𝐿 −matrix with 𝑎1𝑞𝑎𝑞1 > 0 for 𝑞 = 2,3,⋯ , 𝑛, then  

i. 𝜌(�̅�𝐺1) < 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) < 1; 

ii. 𝜌(�̅�𝐺1) = 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) = 1; 

iii. 𝜌(�̅�𝐺1) > 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) > 1. 

Proof: Theorem 1 has established 𝑇𝐺 to be a nonnegative and irreducible matrix. Therefore, following Lemma 1, then for 

(𝑇𝐺) = 𝜆 , there corresponds a positive vector 𝑥, such that  

𝑇𝐺𝑥 = 𝜆𝑥                                                                    (17) 

 That is, 

𝑈𝑥 = (𝐼 − 𝐿)𝜆𝑥                                                             (18) 

Or, equivalently 

𝑈 = (𝐼 − 𝐿)𝜆 

Then , 

�̅�𝐺1𝑥 − 𝜆𝑥 = (�̅� − �̅�)
−1�̅�𝑥 − 𝜆𝑥 

= (�̅� − �̅�)−1[�̅� − 𝜆(�̅� − �̅�)]𝑥 

= (�̅� − �̅�)−1[−𝜆�̅� + 𝜆�̅� + �̅�]𝑥 

= (�̅� − �̅�)−1[−𝜆(𝐼 + �̅�1) + 𝜆(𝐿 − 𝑆̅ + �̅�1) + (𝑈 + �̅�1)]𝑥 

= (�̅� − �̅�)−1[−𝜆�̅�1 + 𝜆(�̅�1 − 𝑆̅) + �̅�1 − 𝜆𝐼 + 𝜆𝐿 + 𝑈]𝑥 

= (�̅� − �̅�)−1[−𝜆�̅�1 + 𝜆(�̅�1 − 𝑆̅) + �̅�1 − (𝐼 − 𝐿)𝜆 + 𝑈]𝑥 

= (�̅� − �̅�)−1[−𝜆�̅�1 + 𝜆(�̅�1 − 𝑆̅) + �̅�1]𝑥 

= (�̅� − �̅�)−1[−𝜆�̅�1 + �̅�1 + 𝜆(�̅�1 − 𝑆̅) − �̅�1 − �̅�1 + �̅�1 + �̅�1]𝑥 

= (�̅� − �̅�)−1[(1 − 𝜆)�̅�1 + 𝜆(�̅�1 − 𝑆̅) − �̅�1 + 𝑆̅𝑈]𝑥 

= (�̅� − �̅�)−1[(1 − 𝜆)�̅�1 − (1 − 𝜆)�̅�1 + (−𝜆)𝑆̅ + 𝑆̅𝑈]𝑥 

= (�̅� − �̅�)−1[(1 − 𝜆)(�̅�1 − �̅�1) + (−𝜆)𝑆̅ + 𝑆̅𝑈]𝑥 

= (�̅� − �̅�)−1[(1 − 𝜆)(�̅�1 − �̅�1) − 𝜆𝑆̅ + 𝑆̅(𝐼 − 𝐿)𝜆]𝑥 

= (�̅� − �̅�)−1[(1 − 𝜆)(�̅�1 − �̅�1) − 𝜆𝑆̅ + 𝜆𝑆̅ − 𝜆𝑆̅𝐿]𝑥 

But 𝑆̅𝐿 = 0, so 

= (𝜆 − 1)(�̅� − �̅�)−1[−�̅�1 + �̅�1]𝑥 

Let 𝐵 = (�̅� − �̅�)−1[−�̅�1 + �̅�1]𝑥. Then [−�̅�1 + �̅�1] ≥ 0, since −�̅�1 ≥ 0 and �̅�1 ≥ 0. Suppose 𝐺 = �̅� − �̅�, it is evident that �̅� 

is a nonsingular 𝑀 −matrix and �̅� ≥ 0; hence, the splitting 𝐺 = �̅� − �̅� is an 𝑀 −splitting of 𝐺. It is observed that �̅�−1�̅� is a 

strictly lower triangular matrix so that 𝜌(�̅�−1�̅�) = 0 < 1, and by implication of Lemma 3, 𝐺 is a nonsingular 𝑀 −matrix. 

Therefore, (�̅� − �̅�)−1 ≥ 0. Consequently, 𝐵 ≥ 0.  

1) If 𝜆 < 1, then �̅�𝐺1𝑥 − 𝜆𝑥 ≤ 0. Therefore �̅�𝐺1𝑥 ≤ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺1) < 𝜆 = 𝜌(𝑇𝐺); 

2) If 𝜆 = 1, then �̅�𝐺1𝑥 − 𝜆𝑥 = 0. Therefore �̅�𝐺1𝑥 = 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺1) = 𝜆 = 𝜌(𝑇𝐺); 

3) If 𝜆 > 1, then �̅�𝐺1𝑥 − 𝜆𝑥 ≥ 0. Therefore �̅�𝐺1𝑥 ≥ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺1) > 𝜆 = 𝜌(𝑇𝐺). 

Theorem 3   Let 𝑇𝐺  and �̅�𝐺2 be defined by (8) and (11) respectively. If 𝛾𝑞 ∈ ((1 − 𝑎1𝑞𝑎𝑞1)/𝑎1𝑞 , −𝑎𝑞1) ∩ (0, −𝑎𝑞1) and 𝐴 is 

an irreducible 𝐿 −matrix with 𝑎1𝑞𝑎𝑞1 > 0 for 𝑞 = 2,3,⋯ , 𝑛, then  

i. 𝜌(�̅�𝐺2) < 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) < 1; 

ii. 𝜌(�̅�𝐺2) = 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) = 1; 

iii. 𝜌(�̅�𝐺2) > 𝜌(𝑇𝐺), if 𝜌(𝑇𝐺) > 1. 

Proof: Following (18), similar to the proof of Theorem 2, we can get  

�̅�𝐺2𝑥 − 𝜆𝑥 = (𝜆 − 1)[𝐼 − (𝐿 − 𝑆̅ + �̅�1)]
−1�̅�1𝑥                (19) 

and also we can show 
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[𝐼 − (𝐿 − 𝑆̅ + �̅�1)]
−1�̅�1𝑥 ≥ 0                                         (20) 

Therefore 

1) If 𝜆 < 1, then �̅�𝐺2𝑥 − 𝜆𝑥 ≤ 0. Therefore �̅�𝐺2𝑥 ≤ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺2) < 𝜆 = 𝜌(𝑇𝐺); 

2) If 𝜆 = 1, then �̅�𝐺2𝑥 − 𝜆𝑥 = 0. Therefore �̅�𝐺2𝑥 = 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺2) = 𝜆 = 𝜌(𝑇𝐺); 

3) If 𝜆 > 1, then �̅�𝐺2𝑥 − 𝜆𝑥 ≥ 0. Therefore �̅�𝐺2𝑥 ≥ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̅�𝐺2) > 𝜆 = 𝜌(𝑇𝐺). 

Theorem 4 Let 𝑇𝐺 and �̃�𝐺1 be defined by (8) and (12) respectively. If 𝛿𝑠 ∈ ((1 − 𝑎𝑛𝑠𝑎𝑠𝑛)/𝑎𝑛𝑠, −𝑎𝑠𝑛) ∩ (0,−𝑎𝑠𝑛) 

and 𝐴 is an irreducible 𝐿 −matrix with 𝑎𝑛𝑠𝑎𝑠𝑛 > 0 for 𝑠 = 1,2,⋯ , 𝑛 − 1, then 

i. 𝜌(�̃�𝐺1) < 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) < 1; 

ii. 𝜌(�̃�𝐺1) = 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) = 1; 

iii. 𝜌(�̃�𝐺1) > 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) > 1. 

Proof: By (18) we can write  

�̃�𝐺1𝑥 − 𝜆𝑥 = (�̃� − �̃�)
−1
�̃�𝑥 − 𝜆𝑥 

= (�̃� − �̃�)
−1
[�̃� − 𝜆(�̃� − �̃�)]𝑥 

= (�̃� − �̃�)
−1
[𝑈 + �̃�1 − 𝜆{(𝐼 + �̃�1) − (𝐿 + �̃�1)}]𝑥 

= (�̃� − �̃�)
−1
[𝑈 + �̃�1 − 𝜆(𝐼 − 𝐿) − 𝜆�̃�1 + 𝜆�̃�1]𝑥 

= (�̃� − �̃�)
−1
[𝑈 + �̃�1 −𝑈 − 𝜆�̃�1 + 𝜆�̃�1]𝑥 

= (�̃� − �̃�)
−1
[�̃�1 − 𝜆�̃�1 + 𝜆�̃�1]𝑥 

= (�̃� − �̃�)
−1
[(−�̃�1 + �̃�1 + �̃�1) + (1 − 𝜆)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[−(�̃�𝐴) − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[−�̃� + �̃�𝑈 + �̃�𝐿 − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[�̃�𝑈 − �̃�(𝐼 − 𝐿) − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[𝜆�̃�(𝐼 − 𝐿) − �̃�(𝐼 − 𝐿) − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[(𝜆 − 1)�̃�(𝐼 − 𝐿) − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1
[
(𝜆 − 1)

𝜆
�̃�𝑈 − (𝜆 − 1)�̃�1 + (𝜆 − 1)�̃�1]𝑥 

= (�̃� − �̃�)
−1 (𝜆 − 1)

𝜆
[�̃�𝑈 − 𝜆�̃�1 + 𝜆�̃�1]𝑥 

In analogy to the proof of Theorem 2, we can prove that (�̃� − �̃�)
−1
[�̃�𝑈 − 𝜆�̃�1 + 𝜆�̃�1]𝑥 ≥ 0. Hence 

1) If 𝜆 < 1, then �̃�𝐺1𝑥 − 𝜆𝑥 ≤ 0. Therefore �̃�𝐺1𝑥 ≤ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺1) < 𝜆 = 𝜌(𝑇𝐺); 

2) If 𝜆 = 1, then �̃�𝐺1𝑥 − 𝜆𝑥 ≤ 0. Therefore �̃�𝐺1𝑥 = 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺1) = 𝜆 = 𝜌(𝑇𝐺); 

3) If 𝜆 > 1, then �̃�𝐺1𝑥 − 𝜆𝑥 ≥ 0. Therefore �̃�𝐺1𝑥 ≥ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺1) > 𝜆 = 𝜌(𝑇𝐺). 

Theorem 5 Let 𝑇𝐺 and �̃�𝐺2 be defined by (8) and (12) respectively. If 𝛿𝑠 ∈ ((1 − 𝑎𝑛𝑠𝑎𝑠𝑛)/𝑎𝑛𝑠, −𝑎𝑠𝑛) ∩ (0,−𝑎𝑠𝑛) 

and 𝐴 is an irreducible 𝐿 −matrix with 𝑎𝑛𝑠𝑎𝑠𝑛 > 0 for 𝑠 = 1,2,⋯ , 𝑛 − 1, then 

i. 𝜌(�̃�𝐺2) < 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) < 1; 

ii. 𝜌(�̃�𝐺2) = 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) = 1; 

iii. 𝜌(�̃�𝐺2) > 𝜌(𝑇𝐺), if  𝜌(𝑇𝐺) > 1. 

Proof: By virtue of the preceding results we can get  

�̃�𝐺2𝑥 − 𝜆𝑥 == (𝐼 − �̃�)
−1 (𝜆 − 1)

𝜆
[�̃�𝑈 + 𝜆�̃�1]𝑥 

And since (𝐼 − �̃�)
−1
[�̃�𝑈 + 𝜆�̃�1]𝑥 is nonnegative, we obtain 

1) If 𝜆 < 1, then �̃�𝐺2𝑥 − 𝜆𝑥 ≤ 0. Therefore �̃�𝐺2𝑥 ≤ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺2) < 𝜆 = 𝜌(𝑇𝐺); 

2) If 𝜆 = 1, then �̃�𝐺2𝑥 − 𝜆𝑥 ≤ 0. Therefore �̃�𝐺2𝑥 = 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺2) = 𝜆 = 𝜌(𝑇𝐺); 

3) If 𝜆 > 1, then �̃�𝐺2𝑥 − 𝜆𝑥 ≥ 0. Therefore �̃�𝐺2𝑥 ≥ 𝜆𝑥. And by Lemma 2, we obtain 𝜌(�̃�𝐺2) > 𝜆 = 𝜌(𝑇𝐺). 

RESULTS AND DISCUSSION 

Numerical Examples 

We consider two examples in order to illustrate the theorems advanced in this research. These examples are adapted from 

Dehghan and Hajarian (2009). 
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Example 1 Let  

𝐴 =

(

  
 

1.0 −0.2 −0.1
−0.5 1.0 0
−0.2 −0.1 1.0

   

−0.1 0 −0.2
−0.3 −0.2 −0.1
−0.2 −0.3 −0.2

   

 
−0.1 −0.1 −0.1
0 0 −0.5

−0.3 −0.1 −0.2

 
1.0 −0.3 −0.1
−0.1 1.0 −0.1
−0.1 −0.2 1.0 )

  
 

 

It is obvious that matrix 𝐴 satisfies the conditions of Theorems 1 -5. The spectral radii of the corresponding iterative 

matrices are presented in Tables I and II. 

Example 2 Let  

𝐴 =

(

  
 

1.00 −0.20 −0.20
−0.50 1.0 0
−0.30 −0.50 1.00

   

−0.25 0.10 −0.55
−0.20 −0.15 −0.30
−0.30 −0.25 −0.25

   

 
−0.10 −0.25 −0.40
0 0 −1.00

−0.05 −0.25 −0.10

 
1.00 −0.30 −0.10
−0.05 1.00 −0.50
−0.10 −0.30 1.00 )

  
 

 

It is easily seen that 𝐴 is an 𝐿 −matrix, even though it is not diagonally dominant. The results of Example 2 are illustrated in 

Tables III and IV. 

Results 

Table I.  The spectral radii of  𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 iterative matrices for 𝛾𝑞 = 0.002, 𝛿𝑠 = 0.002 (𝑞 = 2,3,⋯ ,6 and 𝑠 =

1,2,⋯ ,5) 

Iterative matrix Spectral radius 

𝑻𝑮 0.6812179257 

�̅�𝑮𝟏 0.6129514333 

 �̅�𝑮𝟐 0.6420664384 

 �̃�𝑮𝟏 0.6069503066 

�̃�𝑮𝟐 0.6449521320 

 

Table II.   The spectral radii of  𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 iterative matrices for 𝛾𝑞 = 0.0002, 𝛿𝑠 = 0.0002 (𝑞 =

2,3,⋯ ,6 and 𝑠 = 1,2,⋯ ,5) 

Iterative matrix Spectral radius 

𝑻𝑮 0.6812179257 

�̅�𝑮𝟏 0.6122894054 

 �̅�𝑮𝟐 0.6416648502 

 �̃�𝑮𝟏 0.6060413240 

�̃�𝑮𝟐 0.6444718235 

 

Table III.   The spectral radii of  𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 iterative matrices for 𝛾𝑞 = 0.004, 𝛿𝑠 = 0.004 (𝑞 =

2,3,⋯ ,6 and 𝑠 = 1,2,⋯ ,5) 

Iterative matrix Spectral radius 

𝑻𝑮 1.188906006 

�̅�𝑮𝟏 1.245696081 

 �̅�𝑮𝟐 1.214534814 

 �̃�𝑮𝟏 1.242353178 

�̃�𝑮𝟐 1.219085080 

 

Table IV.   The spectral radii of  𝑇𝐺 , �̅�𝐺1, �̅�𝐺2, �̃�𝐺1 and �̃�𝐺2 iterative matrices for 𝛾𝑞 = 0.0003, 𝛿𝑠 = 0.0003 (𝑞 =

2,3,⋯ ,6 and 𝑠 = 1,2,⋯ ,5) 

Iterative matrix Spectral radius 

𝑻𝑮 1.188906006 

�̅�𝑮𝟏 1.246848156 

 �̅�𝑮𝟐 1.215022866 

 �̃�𝑮𝟏 1.243668402 

�̃�𝑮𝟐 1.219722139 
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DISCUSSION 

Tables I-IV depict the results of Examples 1 and 2, wherein 

the theorems advanced in this paper are illustrated. In Tables 

I and II, the spectral radii of the various iterative matrices are 

shown to be less than one, which shows that all the methods 

are convergent. Also, the spectral radii of all the 

preconditioned methods are proven to be smaller than that of 

the classical Gauss-Seidel method, which is in conformity 

with the theorems proposed. Tables III-IV shows that all the 

spectral radii of the various iterative matrices are more than 

one, indicating non-convergence. This is also understandably 

in conformity with the foregoing theorems, due to the fact that 

the Gauss-Seidel method is divergent for this problem. The 

non-convergence of the Gauss-Seidel method is attributed to 

the obvious fact that the matrix is not diagonally dominant. 

CONCLUSION 

Two preconditioners, introduced in an earlier work for SOR 

iterative methods, have been extended to precondition the 

Gauss-Seidel method for solving linear systems with 

𝐿 −matrices. Convergence theorems and numerical 

experiments revealed that the convergence rates of the 

preconditioned Gauss-Seidel methods are superior to that of 

the classical Gauss-Seidel method.  
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