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Abstract 
 
The effects of aspect ratio on the transient free convection generated by a heated 

vertical plate in a rectangular cavity is investigated for the characteristics and rates of 
heat transfer from the plate into the surrounding fluid medium. The plate is assumed to 
be an isothermal plate at a high temperature, suddenly immersed in air at a lower 
temperature inside the cavity whose walls are also assumed to be adiabatic. The full 
two-dimensional time-dependent partial differential forms of the conservation equations 
of continuity, momentum, and energy governing the flow field are cast and solved by a 
numerical method employing the finite-difference scheme. During the initial short 
period, heat flow is found to be by conduction irrespective of aspect ratio. The 
conduction regime is found to be more prolonged for tall enclosures. Shortly after 
conduction sets in the convection indicated by increase in the heat transfer coefficient 
following a temporal minimum in the coefficient at the end of the conduction regime. 
The rate of heat transfer by convection is found to increase with aspect ratio. At large 
times the temperature field stratifies and the heat transfer to the medium approaches 
zero, the velocity field decaying gradually and the flow approaches its eventual 
quiescence.  

Keywords: Transient, free convection, rectangular cavity, heated vertical plate, 
aspect ratio, isothermal, adiabatic 

 
Introduction 

 
 Various researches have been conducted 
on the phenomenon of transient free convection 
generated by heated vertical plates in fluid 
media. These researches have employed 
experimental as well as analytical methods, the 
analytical methods assuming various 
configurations and adopting different 
approaches of solution such as closed form and 
numerical methods.  
 Khalilolahi & Sammakia  (1986) used the 
simple arbitrary Langrangian-Eulerian (SALE) 
technique to analyze the full two-dimensional 
equations representing mass, momentum, and  
energy balance for unsteady buoyancy-induced 
flow generated by an isothermal vertical 
surface enclosed in a long rectangular cavity. 
He considered the plate to be centrally located 
and used symmetry to analyze the flow for one-
half of the enclosure. He observed the quasi- 

 
one-dimensional conduction regime adjacent to 
the surface at very short times, the steady 
boundary-layer flow near a semi-infinite 
surface in an infinite media at intermediate 
times, and at later times, stratification of 
temperature field as flow approaches its 
eventual quiescence. Eseki et al (1993) studied 
the cases of flow generated by an isothermal 
vertical surface and one with constant heat flux 
in a square cavity with the base adiabatic and 
other walls at a constant cold temperature. He 
discovered that for the case of the isothermal 
surface, the heat flux on the opposite side of 
the hot surface increases when the surface is 
moved from a position very close to the left 
side vertical bounding walls towards the 
vertical line of symmetry of the plate and the 
rate decreases as the line of symmetry is 
approached. The same result was observed at 
the right side bounding walls. He further 
reported that for a vertical shift of the plate, for 
high Ra, (Ra ≥ 3 x 106) the maximum heat 
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transfer rate occurs when the plate is located at 
one-third of the height of the cavity. For Ra 
about 106  only small changes in the heat 
transfer rate occurs, and for lower Ra. (Ra. ≤ 
106 ) significant changes in the rate of heat 
transfer are introduced, with the maximum 
occurring closer to the top of the cavity. 
 Sammakia et al (1980) conducted both 
experimental and analytical (numerical) 
investigation on transient natural convection 
generated by a semi-infinite surface in air and 
in water, and the results from the two showed 
close agreement especially for the laminar flow 
regime. Hellums and Churchill (1962) used an 
explicit finite-difference scheme to solve the 
full boundary layer equations in their time-
dependent partial differential forms 
representing the flow field adjacent to a semi-
infinite flat vertical isothermal surface in an 
infinite medium. The results were in excellent 
agreement with the early analysis due to 
Ostrach (1972).  Also, the results for 
measurements by Gebhart and Adams (1962) 
agree well with those of the integral method of 
Gebhart  (1961) in the analysis of transients 
adjacent to a semi-infinite vertical plate. 

The present work focuses on transient 
free convection generated in a rectangular 
cavity with a  source of heat, an isothermal 
vertical plate located within the cavity. 
Motivation for this study has been aroused by 
the observed early heat accumulation 
tendencies of electronic components in sealed 
enclosures, which could have adverse effect on 
the performance of the devices. The research 
seeks to investigate the various regimes of heat 
transfer and their characteristics, and the rates 
of heat transfer, defined in quantitative terms, 
from the surfaces as a function of aspect ratio. 
 In the study, the full two-dimensional 
conservation equations governing the flow field 
are numerically analyzed assuming adiabatic 
conditions. Although natural convection in 
enclosure is necessarily three-dimensional and 
finite heat transfer occurs across the walls, at 
sections sufficiently deep in the horizontal 
direction, the flow is essentially two-
dimensional and the assumption of adiabatic 
boundary conditions is appropriate because 
usually the boundaries are much worse 
conductors of heat than the fluid. 

Mathematical Formulation 
 

The physical problem is modelled as a 
two-dimensional rectangular cavity with 
adiabatic walls on all sides, filled with air (see 
figure 1) below. The hot plate is an isothermal 
element of negligible thickness oriented 
vertically inside the cavity.  At the initial time, 
the fluid, the plate, and the bounding walls are 
all at the same initial ambient temperature, Ti, 
until suddenly the temperature of the plate is 
raised and maintained at a higher, uniform and 
constant value, Tw. 
 
   
 
 
 
 
 
 
 
 
 
 
    
   

Fig. 1. The physical model 
 
 The following assumptions are made in 
order to simplify the analysis of the problem: 

(i)  The flow is laminar and two-dimensional 
(ii) The fluid is Newtonian, viscous, and 
       incompressible 
(iii) Fluid properties are constant except in 

the buoyancy term consideration 
(iv) Viscous dissipation term is negligible 
(v)  Heat flow by radiation is negligible 
(vi) No internal heat source or heat sink is 
       involved 
(vii) The walls are impermeable and the no-   
       slip condition applies.      

 
 The appropriate equations governing the 
flow field are the conservation equations of 
mass, momentum, and energy; 
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where,  
u is horizontal component of  velocity 
v is vertical component of velocity 
T is temperature 
t is time 
y is vertical coordinate 
x is horizontal component 
ρ is density of fluid inside the heated layer 
p is pressure 
ν is the kinematic viscosity of the fluid 
α is the thermal diffusivity 

 
The body force due to buoyancy in the y-

direction can be obtained by the Boussisesqu 
approximation, 

 
( To Δ+= )βρρ 1    (5) 

where,  
β is the volume coefficient of thermal  
   expansion 
ρo is the bulk fluid density,  
ΔT is the temperature difference between the 
heated layer and the bulk value, 
The body force per unit mass, Fy, due to 
buoyancy in the y-direction is thus, 
 ( )TgFy Δ−= β  
where, g is the acceleration due to gravity. 
The y-momentum equation becomes, 
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Boundary and Initial Conditions 
 
 The above governing equations are 
subject to the following initial and boundary 
conditions: 
at t = 0,    u = v = T – Ti = 0, 
for t > 0, 
                               x = a 
u = v = T – Tw = 0   at      x = b,    and c <y < d, 

                              x = 0 
u = v = = 0   at      x = L, and 0 ≤ y  ≤ H xT ∂∂ /

                                                 y = 0 
u = v = = 0 at 0 < x < L and     y = H yT ∂∂ /

Normalization of the Governing Equations 
 
 Following Khalilolahi and Sammakia 
(1986), the equations are made dimensionless 
using the following non-dimensionalizing 
parameters: 
  X = x/L; Y = y/L; U = uL/ν; V = vL/ν; τ = 
tν/L2; θ = ( ) ( )iwi TTTT −− / ; P =  22 / ρνPL
where,  
Y is dimensionless vertical coordinate 
X is dimensionless horizontal coordinate 
U is dimensionless horizontal component     
   of velocity 
V is dimensionless vertical component of        
    velocity 
Ti is initial temperature of fluid, plate &   wall 
Tw is temperature of isothermal surface 
θ is dimensionless temperature 
τ is dimensionless time 
P is dimensionless pressure 
  
 The dimensionless form of the equations 
and the boundary and initial conditions are thus 
as follows: 
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where, Gr = gβ(Tw – Ti)L3/ν2 

 Pr = cpμ/k 
 β is volume coefficient of thermal      
            expansion 

cp is specific heat at constant pressure 
μ is dynamic viscosity of fluid 
k is thermal conductivity 

 
 
Dimensionless Boundary and Initial Conditions 
 
 The normalized boundary and initial 
conditions are: 
at τ = 0,    U = V = θ = 0, 
for τ > 0, 
                         X = a/L 
U = V = θ – 1 = 0 at   X = b/L, & c/L < Y < d/L 
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                            X = 0 
U = V = Y∂∂ /θ = 0 at   X = 1 and 0 ≤ Y ≤ H/L 
        Y = 0 
U = V = Y∂∂ /θ = 0 at 0 < X < 1, and  Y = H/L 
 
The Vorticity Transport Equation 
 
 The normalized X- and Y- momentum 
equations are combined together to eliminate 
the pressure terms, to yield the normalized 
vorticity transport equation as, 
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where, ω is dimensionless vorticity 
 
The Poisson Equation for Stream Function 
 
 The vorticity transport equation above 
does not have any explicit boundary conditions 
for evaluating the vorticities. To solve the 
problem therefore, the Poisson equation for the 
stream function, and the velocity-stream 
function equations are introduced as a means of 
determining the vorticities at the boundaries. 
The approach also enables the values of the 
streamlines within the domain to be generated. 
The normalized form of the equations 
conforming with the normalized parameters 
above are expressed as follows: 
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subject to the following dimensionless initial 
and boundary conditions: 
at τ = 0,     ω = ψ = 0, 
for τ > 0, 
     X = a/L 
ψ = 0 at   X = b/L, and c/L < Y < d/L, 
                X = 0 
          at   X = 1 and 0 ≤ Y ≤ H/L 
    
                                         Y = 0 
          at 0 < X < 1, and    Y = H/L 
where, ψ is dimensionless streamfunction 
 
Vorticity Boundary Conditions 
 

Following Shoichiro (1977) the vorticities 
at the walls are obtained by expanding the 

streamfunction values at points adjacent to the 
walls in the Taylor’s series about the walls. 
After necessary simplifications, the boundary 
vorticities are approximated by, 

( )nwallwall n Δ+Δ
−= ψω 2

2  

Δn is a subdivision  (ΔX or ΔY) on the axis 
normal to the surface, taken from the surface 
into the fluid medium. 
         At the sharp concave corners, ‘b’, ‘d’, ‘f’, 
and ‘h’,  
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so that at the corners the vorticities vanish, i.e., 
ωb = ωd = ωf =ωh = 0 

 
Numerical Method of Solution 

 
The numerical method adopted for 

solving the system of partial differential 
equations is the finite difference. The entire 
domain is subdivided into a mesh system, size 
m x n, with uniform divisions, ΔX and ΔY, in 
the X- and Y-directions respectively, ensuring 
that the boundaries lie on grid points. Because 
of the derivative boundary conditions, four 
fictitious lines, two horizontal, distance ΔY top 
and bottom of the cavity, and two vertical, 
distance ΔX left and right of the cavity are 
introduced.  
 The appropriate finite-difference scheme 
representations of the partial differential terms 
in  the governing equations are cast and used to 
replace each of the terms, the central difference 
approximation being used in the space 
derivatives, and the forward difference in the 
time derivatives. Equations 10, 11 and 13 are 
expressed explicitly, and equation 12 
implicitly. The system of discretized equations 
are then solved numerically starting from time 
τ = 0, and marched in time, using a sufficiently 
small time step that allows for the stability of 
the solution, until a desired time is reached. 
The Von Neumann stability analysis is used in 
determining the stability criteria. 
 The system of equations 10, 11, 12, and 
13 are solved following a cyclical sequence. 
During any one time step, the energy transport 
equation, equation 10, is solved first for θ using 
the initial values of U, V, and θ. In the next 
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stage and for the same time step, the vorticity 
transport equation , equation 11, is solved for ω 
at the interior of the domain, still using the 
same initial values of U and V but the new 
values of θ obtained from the solution of 
equation 10, leaving the vorticities at the 
boundaries. These most recent values of ω are 
used in the Poisson equation for stream 
function, equation 12, to yield a system of 
simultaneous equations  which is now solved 
for by an iterative scheme to obtain the values 
of ψ still for the same time step. The vorticities 
at the boundaries are then evaluated using the 
values of ψ at the adjacent nodal points 
perpendicular to the surface. And lastly the X- 
and Y-velocity equations, equations 13a & 13b, 
are solved using the values ψ obtained at the 
last stages. This completes the first cycle of 
operations for the first time step. For the 
second cycle, the values obtained in the first 
cycle are used to repeat the entire operations 
again to obtain new distributions for θ, ω, ψ, 
etc. This operation is repeated until the desired 
time is reached. 
 The iterative scheme adopted for solving 
the implicit stream function equation is the 
Liebmann iterative method accelerated by the 
Successive Over-relaxation,  (S.O.R), method 
for convergence. Following Chuen-Yen (1979) 
the convergence of the stream function 
equation is subject to the criterion, 

 ∑∑
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where, δ is the residue taken as 1x10-04

 
Heat Transfer Calculation 
 
 The effect of fluid motion on the rate of 
heat transfer from the hot surface into the fluid 
medium is expressed in terms of Nusselt 
numbers. The Nusselt number is evaluated at 
specific points as local Nusselt number, or 
averaged over one of the plate surfaces as local 
mean Nusselt number, or over the entire 
surface as overall mean Nusselt number. 
 The local mean Nusselt numbers at the 
sides, and bottom and top of the plate are 
therefore expressed respectively as, 
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And the overall mean Nusselt number is 
expressed as 
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Where, ai and bi, and cj and dj are respectively  
            the X- and Y-coordinates of the corners  

of the plate. NuL and NuR are 
respectively the mean Nusselt numbers 
at the left and right sides of the plate, 
while NuT and NuB are respectively the 
mean Nusselt numbers at the top and 
bottom of the plate expressed as 
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Lp = d – c;   Bp = b – a 
The mean Nusselt numbers are evaluated using 
the trapezoidal rule. 

 
Results and Discussion 
 

 The results of the numerical study of 
transient free convection generated by a heated 
vertical plate in a rectangular air cavity are 
presented. Results are presented for the effects 
of aspect ratio on heat transfer from the plate 
surface. The investigation was conducted for 
Pr. No. = 0.72, and heated plate of length, Lp = 
(1/3) H but negligible width. A maximum 
Grashof number, Gr. = 4.65E+06, which allows 
for the stability of the numerical scheme has 
been employed. This implies a Raleigh 
number, Ra = 3.35E+06, corresponding to a 
laminar flow regime. 
 Figs. 2-4, respectively, present the 
effects of aspect ratio on heat transfer by 
comparing the variation of mean Nusselt 
number with time for various aspect ratios for 
two values of Grashof number (Gr = 46500 and 
Gr = 465000), and plate centrally located. It 
would be observed from the figures that the 
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curves are collinear and have same steepness at 
very small times, τ < 0.0004, irrespective of the 
aspect ratio. This indicates that aspect ratio 
does not have effect on the rate and mode of 
heat transfer, which is quasi-one-dimensional 
at very small initial periods. This is in 
agreement with the earlier study due to 
Khalilolahi and Sammakia (1986). Shortly after 
the initial times, the curves begin to deviate 
from the one-dimensional trend to undergo 
temporal minima which indicates the onset of 
convection, with those for the lower aspect 
ratios leading the deviation and the process of 
temporal minimum. This indicates therefore 
that convection sets in earlier for shallow 
cavities than tall ones. In other words longer 
conduction regimes and therefore a tendency 
for higher heat accumulation is associated with 
tall enclosures at very small times. This may be 
due to the fact that for tall enclosures there 
exist greater freedom at the top of the cavity for 
redistribution of energy conducted to the top 
that only a thin layer of the fluid parallel and 
close to the plate surface is involved in the heat 
transfer process. The fluid elements continue to 
move parallel to the plate surface so that heat 
transfer is at molecular level as in any 
conduction heat transfer process. For shallow 
cavities the space at the top of the cavity is 
restricted and therefore a progressively larger 
column of fluid is drafted to take part in the 
heat transfer process at a much earlier period, 
giving rise to early convection.  
 As convection proceeds the curves tend 
to behave in reverse manner – the higher aspect 
ratio curves now exhibiting higher rates of heat 
transfer than the lower ones. This indicates that 
though convection may be delayed for tall 
cavities, but once it is commenced it progresses 
with greater vigour than there occurs for 
shallow cavities. Figures 5a – c and figures 6a 
– c compare the isothermals for H/L = 1/2 & 
H/L= 1 at corresponding times. It would be 
observed from figures 5a & 6a that at 
corresponding time τ= 36E -04 the isotherms 
for H/L = 1 (fig. 6a) show uniform heat transfer 
in all directions typical of the one-dimensional 
conduction regime while those for H/L = ½ 
(fig. 5a) indicate deviation from the one- 
dimensional trend (onset of convection). The 
isotherms of figure 6c are already beginning to 

 
 Fig. 2. Variation of mean Nusselt number with   
             time for various aspect ratios 

 
Fig. 3. Variation of mean Nusselt number with  
            time for various aspect ratios             
 

 
Fig. 4. Variation of mean Nusselt number with   
            time for various aspect ratios 
 
show thermal stratification at time τ = 288E -04 
well ahead of those for H/L = ½ (fig. 5c) at the 
same time. It would also be seen from the 
figures that thermal energy reaches to the 
bounding vertical walls earlier for H/L = 1 than 
for H/L = 1/2 at corresponding times. This 
shows that convection reaches to the vertical 
bounding walls earlier for tall cavities 
notwithstanding the initial slow rate of 
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propagation. This could be due to the shorter 
dimension in the horizontal direction that 
convection would have to traverse before  
reaching the vertical bounding walls of tall 
enclosures. As a result the entire fluid column 
above the base of the hot plate gets involved in 
the convection process earlier. As energy 
continues to be convected into the fluid 
medium, convection vigour is increased much 
more above that for shallow cavities to cause 
higher rates of heat transfer for tall cavities as 
compared to shallow ones. At such times 
convection is still progressing in the horizontal 
direction for shallow enclosures and therefore 
moderate in intensity. 
 
 

 
Fig.5a. Time,τ=36E-4       Fig.6a.Time,τ=36E-4 
 

 
Fig.5b. Time,τ=144E-4   Fig.6b.Time,τ=144E-4 
 

 
Fig.5c. Time,τ=288E-4     Fig.6c.Time,τ=288E-4 
 
Fig. 5. Isotherms for          Fig.6. Isotherms for   
           H/L=1/2.                           H/L=1. 
 

 

Conclusion 
 

In this study it has been demonstrated that 
in a transient free convection generated by a 
heated vertical plate in a rectangular air cavity 
essentially three different regimes of flow are 

distinguishable: the one-dimensional 
conduction regime at short times, the 
convection regime at later times, and thereafter 
thermal stratification when the flow approaches 
its eventual quiescence. The conduction heat 
transfer associated with low rates of heat 
transfer and therefore a sudden rise in 
temperature in the vicinity of the plate should 
therefore be responsible for early heat 
accumulation tendencies associated with 
electronic and other similar devices. The 
conduction regime has been observed to be 
more prolonged for tall enclosures than shallow 
ones. It could, thus, be deduced that shallow 
enclosures support higher rates of heat transfer 
at small initial times. The converse is the case 
after onset of convection as tall enclosures now 
tend to exhibit higher rates of heat transfer over 
shallow ones which is due to the high 
convection vigour associated with tall cavities 
after the onset of convection. 
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