ENGINEERING for SUSTAINABILITY

EDITOR:

Nor Azam Ramli | Farzad Ismail | Ishak Hj.Abdul Aziz | Badorul Hisham Abu Bakar Mariati Jaafar @ Mustafa | Widad Ismail | Zuhairi Abdullah | Ridzuan Zakaria Azhar Abu Bakar | Rosmiwati Mohd Mokhtar

ENGINEERING for SUSTAINABILITY

EDITOR:

Nor Azam Ramli | Farzad Ismail | Ishak Hj.Abdul Aziz | Badorul Hisham Abu Bakar Mariati Jaafar @ Mustafa | Widad Ismail | Zuhairi Abdullah | Ridzuan Zakaria Azhar Abu Bakar | Rosmiwati Mohd Mokhtar

ENGINEERING for SUSTAINABILITY

DISTRIBUTOR Pusat Pengajian Kejuruteraan Awam Kampus Kejuruteraan, Universiti Sains Malaysia Nibong Tebal, Pulau Pinang, Malaysia

Publisher Pusat Pengajian Kejuruteraan Awam, Universiti Sains Malaysia, 2011

Perpustakaan Negara Malaysia

Data Pengkatalogan – dalam - Penerbitan

Engineering for Sustainability/ editor Nor Azam Ramli ... [et al.].

ISBN 978-967-0167-05-3

.

PUBLISHER Pusat Pengajian Kejuruteraan Awam Kampus Kejuruteraan, Universiti Sains Malaysia Nibong Tebal, Pulau Pinang, Malaysia

Front page designed by Mohamad Shahrul Affendi Baharom dan Mohd Saidina Dandan Satia

Printed in Malaysia by Alternatif Maju Enterprise

Title and Author	Code
The Contribution of Environmental Assessment to Sustainability Peter Wathern	KY
Cleaner Production Approaches for Sustainable Development Hamidi Abdul Aziz, Shuokr Qarani Aziz	PL
Sustainable Energy Production Towards Low Carbon Economy Abdul Rahman Mohamed	PL
Design And Development Of Hydrogen Peroxide Monopropellant Khafri Izuan Khanafiah, Kuberaraaj Nambaraja, Norazila Othman, Subramaniam Krishnan, and Wan Khairuddin Wan Ali	A-01
Design of Chip Conveyor by Using Two Stages Speed Reducer Nyein Aye San, Tin san	M1-02
Design And Stress Analysis Of Linear Guide-Way For Spindle Movement Khaingsapal Thein, Naymyo Tun	M1-03
Tool Wear Of Cvd Coated Carbide Tool During Machining Of 6061 Aluminium Alloy Using Palm Oil (Cooking Purpose Grade) As A Cutting Tool Lubricant Nor Shafiqah Afzan, Syed Azuan Syed Ahmad, Nor Ain Mustafa Mohamad Juraidi	M2-01
Tool Wear When Turning 6061 Aluminium Alloy With Pvd Coated Carbide Tool Using Palm Oil (Cooking Purpose Grade) As A Cutting Tool Lubrican Mohd Amiruddin Mardzuki, Syed Azuan Syed Ahmad, Hazwan Jamil, Mohamad Juraidi	M2-02
Effect Of Resistance Spot Welding Parameters On Welded Quality Of Brass (Cu-Zn) Alloy Nurihal Hanim Mat Saad, Ahmad Badri Ismail	B1-01
In-Situ Deposition Of Silver Nanoparticles On Natural Rubber Latex Foam For Imparting Antibacterial And Antifungal Properties W.G.I.U. Rathnayake, H.Ismail [*] , A. Baharin, A.G.N.D. Darsanasiri, Sanath Rajapakse	B1-02
TensilePropertiesOfFlameRetardantFillersInPolypropylene/Ethylene Propylene Diene Monomer CompositeH. Muhammad Safwan, M. Mariatti	B1-04

Tensile And Electrical Properties Of Conductive Filler Filled Silicone Rubber Composites Muhammad Jannah Jusoh [*] , Mariatti Jaafar And Zulkifli Ahmad	B1-05
Morphology Analysis And Electrical Properties Of Nano And Micron Size Of Silver Filled Epoxy Composites : Experimental And Numerical Study	B1-06
Muhammad Zulkarnain, M. Mariatti, I.A. Azid* Effect Of Polyvinyl Alcohol On The Tensile Properties And Morphology Of Sago Starch Plastic Films Nor Fasihah Zaaba, Hanafi Ismail	B3-01
Biodegradation And Morphological Studies Of Rattan Powder Filled Natural Rubber Composites Komethi Muniandy, Hanafi Ismail, Nadras Othman	B3-02
Tensile Properties Of Mica/Silica And Mica/CaCO ₃ Filled Polypropylene Composites R.V Sheril, M. Mariatti And P. Samayamutthirian	B3-03
Development Of Sago Starch Based Biocomposites Reinforced With Kenaf Core Fibers: Preliminary Study Norshahida Sarifuddin, Hanafi Ismail, Zuraida Ahmad	B3-04
Flow Ability And Flexural Study Of Nano Filler Filled Epoxy Composites For Underfill Application. S. Muhammad Firdaus, M. Mariatti [*]	B3-05
Effect Of Banana Stem Powder Loading On Mechanical Properties Of Natural Rubber Latex (Nrl) Films	B3-06
A. S. Siti. Nuraya, A. Baharin, A. R. Azura Combined Resonant Tank Capacitance And Pulse Frequency Modulation Control For Zcs-Sr Inverter-Fed Voltage Multiplier Based Hvdc Power Supply Sze Sing Lee, Shahid Iqbal, Mohamad Kamarol	E1-01
Comparative Study Of H-Bridge Cascade Multilevel Inverter M. Hafiz Arshad, Baharuddin Ismail, T. M. N Tunku Mansur, Azralmukmin Azmi And M. Z. Mohd Radzi	E1-04
Influence Of Solar Irradiance On Photovoltaic Module Electrical Characteristics Farhana Zainuddin, Ismail Daut, Mohd Irwan Yusoff, Salsabila Ahmad,Nurul Razliana, Mohd Noor Azimmi Redzuan	E1-05
A Soft-Switching Flying-Capacitor PWM DC-DC Converter Chanuri Charin, Shahid Iqbal, And Soib Bin Taib	E1-07

The Influence Of Silicon Contents On Magnetic Alignment Of Rolling Direction	E1-09
Siti R.M, I.Daut, Dina M.M Development Of A Cost Effective Buck Converter For Led Driver Siti Rohaya, A. Marzuki [*] , S. Iqbal	E1-10
Three-Level Single Phase Photovoltaic And Wind Power Hybrid Inverter I. Daut, M. Irwanto, Y.M. Irwan, N. Gomesh, N. S. Ahmad	E1-11
An Intelligent Arbiter For Fair Bandwidth Allocation And Low Latency M.Nishat Akhtar, Othman Sidek	E2-02
Modeling Of DC-DC Converters For Renewable Energy Applications A.W.N. Husna, S.F. Siraj	E2-03
Effect Of Palm Oil Fuel Ash On Drying Shrinkage Of Engineered Cementitious Composites Nurdeen M. Altwair, Megat A. Megat Johari, Syed F. Saiyid Hashim	C-01
Modeling Moisture Content In A Soil Column By Re-Conceptualizing The Matlab Methods Model With Double-Ring Infiltration Method At Northen Region Malaysia Sg.Kedah Ungauged Catchment Steven Poh Tze Wei, Ismail Abustan, Rozi Abdullah	C-02
Society And Deals With Speeding Infringements Seyed Mohammadreza Ghadiri, Joewono Prasetijo, Ahmad Farhan Sadullah, Mehdi Hossein Pour	C-04
Parametric Study Using Multirow Arrangement Of Laterally Loaded Passive Piles In Sand Donovan Mujah, Fauziah Ahmad, Hemanta Hazarika, Naoto Watanabe	C-05
Water Quality Mapping At Kerian River From Kampung Beriah Until Kampung Sungai Udang Besar Siti Nor Farhana Zakaria, [*] Syafalni, Leong Chung Sum	C-07
Significant of GIS and GPR in Locating Underground Utility W.M.A Wan Hussin, S.A. Mohd Sanusi and M.B. Alhasanat	C-08
Groundwater Treatment Using Activated Carbon And Modified Kaolin Clay Rohana Abdullah, Syafalni, S.N. Farhana Zakaria	C-09

Advantage Of Artificial Neural Network Compared To Linear N-01 Regression In Stem Volume Estimation Hadi Bayati, Akbar Najafi	
Simulation Of Thermal Efficiency And Environmental Pollutant InN-02Combustion ChambersAhmad Amani, *Hadis Amani, Manase Auta, Ayodele OlumideBolarinwa, Zahra Gholami	
Advanced Oxidation Of Polycyclic Aromatic Hydrocarbon (Pah)-N-03Contaminated Soils Using Modified Fenton TreatmentVenny, Suyin Gan, Hoon Kiat Ng	
Study Of Adsorbent Prepared From Rha, Pfa And Cfa UsingN-04Response Surface Methodology For Brilliant Green Dye RemovalSariyah Mahdzir, Irvan Dahlan*	
Effect Of Palm Oil Mill Effluent (POME) On Seed Germination, N-05 Seedling Growth, Total Chlorophyll And Content Of Mung Bean Plant	
Rajeev Pratap Singh, Mahamad Hakimi Ibrahim	N-06
Assessment Of Drought Mitigation In Saqqez Watershed By Using Gis Models And Remote Sensing Technique Himan Shahabi, Baharin Bin Ahmad	
Sugar Uptake Profile By <i>S. Cerevisiae</i> Kyokai No.7 During The Fermentation Of Oil Palm Trunks Sap Norhazimah A. H, Che Ku M. Faizal	N-07
Review Of Indoor Environmental Quality (Ieq) In Malaysia Hussin M, M. R Ismail, M. S. Ahmad	N-09
Biosorption Of Copper(Ii) Using Chitosan-Zeolite Composite: Kinetic And Isotherm Studies Lee Ching Teong, Wan Saime Wan Ngah	N-10
Removal Of Cu (Ii): A Comparison Between Treated Exhausted Coffee Ground And Synthetic Schiff Base Ng Keat-Hui, Oo Chuan-Wei, Hasnah Osman, Syukriah Awang	N-11
Optimum Phenol Removal Using Modified Rice Straw As Biosorbent Huzairy Hassan, Loh Pei Chen	N-12
Shallow Groundwater Contamination Study At Taiping Landfill Site Using Hydrochemistry Technique Mohd Hafiz Zawawi, Syafalni, Suhaida Mohamed Arshad, Ismail Abustan, Mohd Tadza Abdul Rahman, Rozi Abdullah	N-13
	14 15

Slope Safety Index In Protecting Erosion Induced Slope Failure Mohd Adzreel Abd Makatar, Mohd Fozi Ali		
Identification Of A Sustainable Solution For Adsorption Of Chromium Using Decision Matrix K. Aravind, K.S. Gopala Krishnan, Gunda Santhosh, C. Bala Murali Krishna, And M.P. Saravanakumar	N-15	
Characterization Of Municipal Solid Waste, Leachate And Groundwater In Mambong Landfill Site, Kuching, Malaysia Nor Azalina Rosli [*] , Andy Sadar Morgan, Azlan Shah Mohamed, Dyg Khairunnisa Awg Shuib, Lai Joon Siang, Mohd Hafiz Zawawi	N-16	
Development Of Erosion Induced Landslide Risk Level Nomograph Mohd Sabri, M.S ¹ , Ali, M.F	N-17	
Design And Simulation Of Underwater Robot Control System Aung Ko Win [#] , Theingi [*] , Win Khaing Moe ^{**} , Wut Yi Win [#]	E3-01	
Design And Simulation Of Microcontroller Based Automatic Tool Changing System In Cnc Machine La Pyae Lynn, Theingi, Win Khaing Moe	E3-02	
Design And Simulation Of Tool Transporter Motion Control For Automatic Tool Changing System Tun Lin Aung, Theingi, Win Khaing Moe	E3-03	
Governor Type Guide Vanes Control System For Medium Capacity Hydropower Plant Wunna Aung, Win Khaing Moe,Theingi	E3-04	
Design And Construction Of Three-Axis Position Control System For Printed Circuit Board Milling Aemi Aung , Wut Yi Win Theingi	E3-05	
Modification Of A Two Stroke Single Cylinder Petrol Engine To Compressed Air Engine Shyam Sundaran, M. Vishnupriya, Thomas P Jacob, Shefin P Sam, M. Natarajan	E3-06	
Modeling Of Intraparticle Mass And Heat Transfer In Stereoregular Polymerization Of Styrene Saad R. Sulttan, W J N Fernando, Suhairi A. Satar	K-01	
Lipase-Mediated Hydrolysis Of Crude Palm Oil: Parameter Optimization Using Response Surface Methodology (Rsm) Noor Aziah Serri, Azlina Harun@Kamarudin, Mohd Hekarl Uzir.	K-04	

Thin Layer Mathematical Modeling Of <i>Kappaphycus Alvarezii In</i> Natural Convection Solar Drier And Direct Sun Drying Mellona Mydin, Suhaimi Md Yasir , Awang Bono, Abdul Khaliq Sarkansah, Ramlan Ali, Japson Wong	
Dynamic Simulation And Optimization Of CO ₂ Absorption From Natural Gas In Absorption Tower Using ASPEN-HYSYS Process Simulator Software Babak Poladi, [*] Hadis Amani, Manase Auta, Ayodele Olumide Bolarinwa	K-06
Modeling And Simulation Of Phenol Degradation In Heterogeneous Photo- Fenton Process Olumide Bolarinwa Ayodele [*] , Hadis Amani	K-07
Determination Of Significant Factors For Cu(li) Extraction By Waste- Vegetable Oil-Based Organic Solvents Using Fractional Factorial Design T. Nazrin Ikhwan T. Kamaruddin, Siu Hua Chang [*]	K-08
Adsorption Study Of Immobilized <i>Candida Rugosa</i> Lipase Onto Pure Sba-15 Mesoporous Support Yasmin Che Ani, Azlina Harun @ Kamaruddin , Ahmad Zuhairi Abdullah	K-09
Hexane As A Cold Flow Improving Component For Biodiesel Edith A. Odeigah, Rimfiel B. Janius	O-01
Dual Modality Tomography Sallehuddin Ibrahim, Nurfaizah Mohammed Ruhi, Nur Syahiran Zahidin	O-02
Water As A Fuel Gowthamkumar N	O-03
Density Functional Theory Study Of The Molecular Structure And Hyperfine Coupling Constants Of Muonium In Tetraphenylmethane Clusters Pek–Lan Toh [*] , Shukri Sulaiman, Mohamed Ismail Mohamed–Ibrahim, Upali A. Jayasooriya	O-04
Effect Of Sago Starch Fillers On Mechanical And Biodegradation Properties Of Natural Rubber Latex (NRL) Films M.M. Afiq And A.R. Azura,	O-05
Screening for Lovastatin Production by <i>Penicillium</i> spp. Soil Microfungi Emine A. Seydametova [*] , Jailani Salihon, Norazwina Zainol, Peter Convey ²	O-06
T ext Mining With Information Extraction In Career Counseling Rehmat Ullah, Samir H. Abdul Jauwad	O-07

DYNAMIC SIMULATION AND OPTIMIZATION OF CO₂ ABSORPTION FROM ETHANE GAS IN ABSORPTION TOWER USING ASPEN-HYSYS PROC ESS SIMULATOR SOFTWARE

Babak Pouladi¹, Hadis Amani², Manase Auta², Ayodele Olumidi Bolarinwa^{2,3}

¹South Pars Gas Complex, National Iranian Gas Company, Assalouyeh , Iran ²School of Chemical engineering, Engineering Campus, Universiti Sains Malaysia, Malaysia ³National Engineering Design Development Institute, Nnewi, Nigeria

Abstract

The aim of this research is to improve the sweetening processes of ethane gas in 9 and 10 south pars using DEA solvent. For this purpose of this work, Aspen-Hysys software was used for the dynamic simulation and amine Pkg equation was chosen from the fluid property package for calculating the thermodynamic properties of the process. The absorber configuration was according to the design and manufacture company. This research shows that pressure variation does not have any considerable changes on absorption process, while both amine inlet temperature and volumetric flow rate increment enhances the absorption tower efficiency. The effect of temperature was very significant as shown by the dynamic study plots. The optimum condition for CO_2 absorption from a stream of ethane gas with molar flow rate of 2118 kgmol h^{-1} was 75 m³h⁻¹ of amine at 30 °C and 24 bar. This optimized condition is economical, safe and feasible.

Keywords: Dynamic Simulation; Absorption Tower; Optimization; ASPEN- HYSYS Software.

INTRODUCTION

The natural gas extracted from independent gas wells usually contains large percentage of methane gas, some quantity of ethane with little quantity of other hydrocarbons like propane and butane gas [1, 2]. Other impurities such as steam, hydrogen sulfide, carbon dioxide, sulphur dioxide and helium gases in varying quantities depending on the types and location of wells are also present. Generally, in situ natural gas does not always meet industrial requirements for use in energy generation, chemical and/or petrochemical industries due to the presence of the impurities [3]. Consequently, there is need for refining processes to eliminate some of the impurities to enhance its usability. Ethane gas, which is valuable composition of natural gas is a feedstock for olefin plant and must be purge of CO_2 before it can be used. The purging process known as "sweetening process of ethane gas" can be achieved by absorbing the CO_2 into diethanol amine (DEA) solvent [4]. The aim of this work is to study the effects of operational variables in the removal of CO_2 from the ethane gas stream of South Pars Gas Phases 9 and 10 Absorption Tower using Aspen-Hysys (process simulator) dynamic simulation to facilitate the determination of the feed optimal conditions.

VARIOUS METHOD OF GAS PURIFICATION

Two Types Of Gas Purification

1. Absorption in rigid phase

Adsorption or absorption in rigid phase is one of the gas purification methods in which the acidic gas and other impurities associated with it are transferred onto the solid surface due to concentrations gradient. Absorption phenomenon occurs between absorbent and impurities due to molecular attraction force. In this processes formation or breaking of chemical bond does not take place and the processes is considered physical.

2. Absorption in liquid phase

The most usual method of gas sweetening processes in refineries and gas treatment plants is absorbing the impurities in a liquid phase. Absorption processes in liquid are divided into two types - physical and chemical. In physical absorption, gas flows through a liquid phase where the impurities are absorbed into the bulk of a liquid that has affinity for the impurities; the gases can then be desorbed from the liquid phase. The important advantage of this method is low energy consumption, and in addition to that, the solvent used can be reused again [5]. The chemical absorption process is mostly used in commercial gas purification process with diethanol amine (DEA) and monoethanol amine (MEA) as the commonest absorbents. Triethanol amine can also be used but it is not popularly accepted because it has relatively higher molecular weight, less activity and lack of stability. Generally, alkaline amine solutions are used as an absorber in liquid phase chemical absorption; hence this method is used in this study.

Chemistry Of The Processes

There are different reactions between amine and acid gases in different conditions. Generally in the first steps, H_2S reacts with amines via H^+ transfer, while CO_2 reacts with amine in two different reactions; in the first, it react with Amine to form acid carbonic salt and in the second, reaction occurs when the CO_2 is dissolved in water and form bi carbonate ion. The reactions are as follows:

The reaction of CO_2 with amine is slow, but the reaction with H_2S is fast. Therefore, it is assumed that H_2S absorption occurs in gas phase while CO_2 absorption occurs in liquid phase [5].

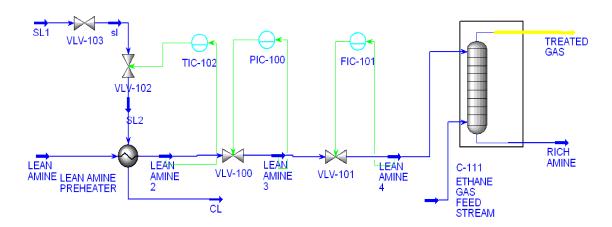


Fig.1 Process Flow Diagram for the Dynamic simulation of CO₂ absorption from Ethane Gas Stream

Process Simulation

The absorption tower in this study has 28 valve-type trays. The tower gas feed rate is 2118 kg molh⁻¹. The mole fraction of the feed is ethane, 0.9194; methane, 0.0092; H₂S, 0.000048 and CO₂, 0.054. The molar flow of CO₂ in the feed stream is 113.7 kg mol/h and represents the quantity to be absorbed by amine. The feed enters the tower at a temperature of 37° C and a pressure of 24.4 atm. Diethanol amine (38% w/w) is used as the absorption liquid and it enters the tower at a temperature of 55.40° C and a pressure of 24.1bar with a flow rate of 5142.291 kg molh⁻¹.

Effect Of Amine Inlet Temperature On Absorption Tower Performance

In order to understand the effect of amine temperature on the process, the amine temperature is simulated in the dynamic simulation environment at 44.97, 55.38 and 58.54 $^{\circ}$ C. The simulation results are shown in Fig.((1)-(3)). The results showed that increase in the amine inlet temperature increases the outlet gas flow rate and consequently higher removal of CO₂ from the ethane gas stream. The flow rate at the three studied temperature is 1967, 2015, and 2025 kgmol/h, respectively and the amount of CO₂ removed is 0.0016, 0.0042 and 0.0055 kgmol/h. this observation is due to the increase in the reaction rate between the amine and CO₂ gas as depicted in Eq. 2-3.

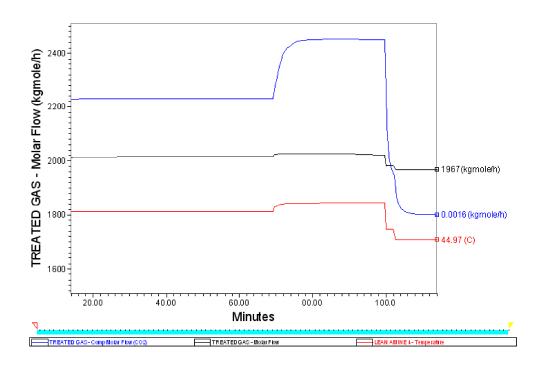


Fig.1: Tower performance at amine inlet temperature of 44.97°C

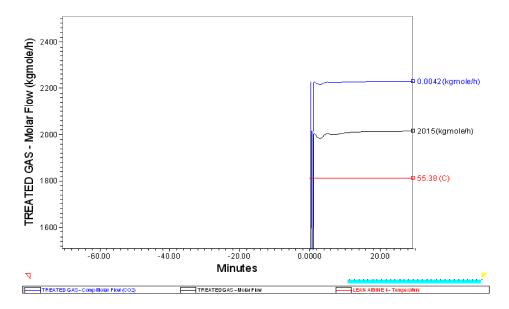


Fig.2: Tower performance at amine inlet temperature of 55.38°C

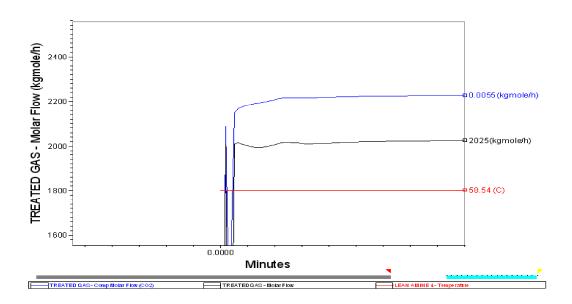


Fig. 3: Tower performance at amine inlet temperature of 58.54°C

Composition	Ethane Inlet Stream	Amine Inlet Stream	Amine Outlet Stream	Treated Gas Outlet Stream
	Mole Fractions	Mole Fractions	Mole Fractions	Mole Fractions
CO ₂	0.0537	0.0011	0.0228	0.0000
H ₂ S	0.0000	0.0001	0.0001	0.0000
H ₂ O	0.0000	0.9035	0.8833	0.0062
DEAmine	0.0000	0.0953	0.0935	0.0000
Methane	0.0092	0.0000	0.0000	0.0097
Ethane	0.9194	0.0000	0.0003	0.9656
Propane	0.0176	0.0000	0.0000	0.0185

Table 1: Composition of the absorption tower inlet and outlet streams

Analysis of Optimal Conditions

In this part of the work, the optimization of operational parameters is studied. In order to achieve this objective, amine inlet flow rate, pressure, and temperature were simulated and optimized to enhance the performance efficiency of the tower. Optimal values of the operational parameter were obtained. Table.1 shows the composition of the absorption tower at the optimized condition.

The Effect of Amine Flow on Tower Performance

Fig. 4 shows the effect of amine volumetric flow rate on the tower performance. The amine volumetric flow rate is assigned as the independent variable, while the monitored molar flow rate of CO₂ and ethane in the treated gas stream are assigned the dependent variables. The volumetric flow rate was increased from 60 to 150 m³ h⁻¹ and the result showed that increment in the amine volumetric flow rate drastically increases the absorption rate of CO₂ from 60 up to 75 m³ h⁻¹. Beyond 75 m³ h⁻¹, there is no absorption of CO₂ gas anymore. At this condition, it can be concluded that the absorption process has attained equilibrium based on the prevailing operating conditions and composition of the components. It is worthy of mention too that the molar flow rate of ethane gas in the treated gas stream slightly reduced from 1947 to 1945.7 kg mole h⁻¹. This is due to equilibrium and solubility factors as part of the ethane gas were mass transferred with the CO₂ into the amine stream during the absorption of CO₂. The optimal amine volumetric flow rate observed is 75 m³h⁻¹.

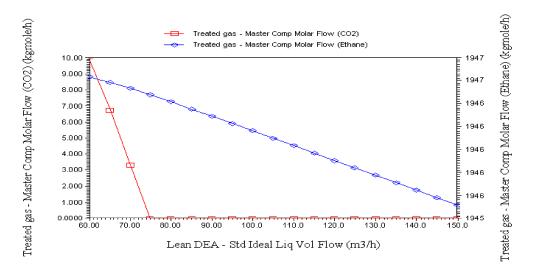


Fig. 4: Effect of amine volumetric flow rate on the tower performance

The Effect of Amine Temperature On Tower Performance

The result of changing amine inlet temperature is shown on Fig. 5. Ethane and CO₂ molar flows were taken as the dependent variables, while the temperature was the independent variable. The minimum quadratic plot showed that initial increase in temperature decreased the absorption rate up to the turning point and further increment beyond that point increases the absorption efficiency of the tower. Maximum absorption of 0.024 kg mole h⁻¹ was observed at a temperature of 30° C. Increase in the temperature from 30 to 53° C showed a decrease in absorption of CO_2 gas. Further increment in temperature above 53 to 70° C progressively showed increase in the absorption of CO₂. Similarly, a small increase (almost negligible) in the quantity of ethane gas was observed at the treated gas stream. The enhanced absorption observed in the temperature range of 53 to 70° C may due to thermal partition created by temperature increment that break the weak force of attraction between absorbed CO₂ and associated ethane molecules that were initially in equilibrium [6]. The absorption at 53 to 70°C is comparably lower to that at 30°C, hence it can be concluded that the tower can be best operated at lower temperature which will not only save both initial and operational cost, but also reduce the risk of operation at elevated temperature.

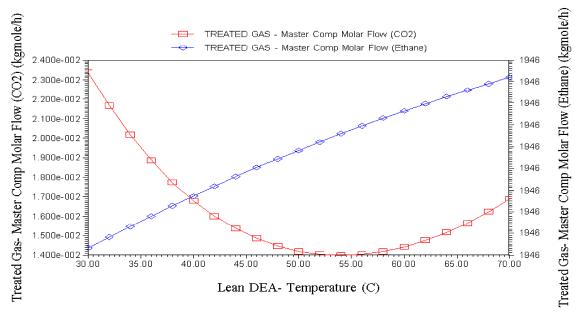


Fig. 5: Effect of amine inlet temperature on the tower performance

The Effect of Amine Inlet Pressure On Tower Performance

The effect of Amine inlet pressure is studied in the pressure range of 24 to 26bar and the response was plotted in Fig. 6. The result showed that pressure variation does not affect the absorption of CO_2 gas. The composition of both ethane and CO_2 was stable over the simulated range. This probably implied that amine has strong affinity for absorbing CO_2 gas without applying external pressure. Therefore, it can be concluded that the reaction between amine and CO_2 (Eq. 2-3) is rapid. For the purpose of economy and safety, the optimum pressure can be taken to be 24bar.

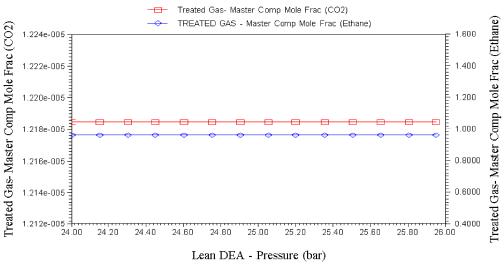


Fig.6: Effect of amine inlet pressure on the tower performance

CONCLUSIONS

In order to improve the sweetening operations of ethane gas in 9 and 10 phases of South pars, certain process variables like amine inlet temperature, pressure, and volumetric flow rate were simulated to evaluate the performance of the absorption tower. Both dynamic and optimization simulation results showed that temperature and volumetric flow rate increment enhances the absorption of CO_2 , with observed optimal values of 30°C and $75m^3h^{-1}$, respectively. The effect of pressure studies showed that Amine inlet pressure does not really affect the process. Therefore, the operation of the South Pars Gas Phases 9 and 10 absorption tower handling a gas feed rate of 2118 kg molh⁻¹ in a 28 valve-type trays absorption tower with amine (38% w/w) feed rate of 75 m³h⁻¹ at 30°C and 24 bar is economical and technically viable.

REFERENCES

- [1] South Pars Gas, Field Development Onshore Facilities' Document (Phases 9 & 10).
- [2] Total Fina Elf, Exploration Production and Process Data Sheet Document
- [3] B. P. Mandal, A. K. Biswas, S. S. Bandyopadhyay, "Selective absorption of H₂S from gas streams containing H₂S and CO₂ into aqueous solutions of N-methyldiethanolamine and 2- amino-2- methyl-1- propanol", Separation and Purification Technology, Vol. **35**, 2004.
- [4] R. L. Kent, B. Eisenberg, "Hydrocarbon Processing", Vol. 5, pp 87-96, 1976.
- [5] K. Campbell, J. Morgan, "Gas conditioning and processing", 5th edition, Norman, Oklahoma: Campbell Petroleum, 1976.
- [6] Y. G. Li, A. E. Mather, "Ind. Eng. Chem. Res. ", pp. 2760 2764, 1996.