INTERNATIONAL CONFERENCE ON ENVIRONMENT 2012

GREEN TECHNOLOGY for Sustainable Tomorrow

11-13 December 2012 Parkroyal Hotel, Penang MALAYSIA

FOREWORD FROM THE VICE CHANCELLOR

Assalamualaikum and greetings,

On behalf of Universiti Sains Malaysia (USM), I would like to extend a warm welcome to all delegates of the 6th International Conference on Environment 2012 (ICENV 2012) organised by the School of Chemical Engineering, USM. As the world population grows and higher standards of living are expected, there will be increasing stress on the world's limited resources. Creating a sustainable world that provides a safe, healthy and sustainable life for all people should be a priority for the engineering profession. In facing these challenges, we require a unique and innovative way of thinking, taking actions and setting goals other than the norm.

I am very pleased that ICENV 2012 has selected "Green Technologies for Sustainable Tomorrow" as the theme of the conference. This is in line with the University's vision in empowering the society and leads them towards sustainable development in ascertaining a more lasting future and survival of the planet. ICENV 2012 will be the perfect venue for delegates from different parts of the world to come together and deliberate issues on the emerging green technologies for the purpose of shaping a sustainable future and disseminate their new research findings in the fields of environment. I hope that this conference will provide educational and professional values in the pursuit of sustainable development, conservation and restoration of resources to enhance the health of humanity and our environment.

My heartfelt appreciation and congratulations to the School of Chemical Engineering for the excellent effort in organising this conference. I wish all the success to the ICENV 2012 and that all presenters and participants will gain tremendous knowledge and experience from it.

Thank you.

Professor Dato' Omar Osman Vice Chancellor Universiti Sains Malaysia

FOREWORD FROM THE CONFERENCE CHAIRMAN

It gives me great pleasure to welcome all of you to the 6^{th} International Conference on Environment 2012 (ICENV 2012). We are all facing daunting problems of sustainable development where the environment continuous to deteriorate and some natural resources approaches critical point. These problems are the major threat for us to preserve and enhance the health of humanity and our environment.

The conference's theme - "Green Technologies for Sustainable Tomorrow" is clearly an important and crucial topic on environment focusing on green and sustainable development for sustainable future. The main objective of this conference is to integrate green innovation and technologies from research-commercial settings into sustainable development so as to build a sustainable environment for the future generation. I hope that ICENV 2012 will be the appropriate platform to imbue and strengthen participants with the need to embrace ecological protection, conservation of resources and human development based on the virtues of equity, accessibility, availability, affordability and appropriateness, in line with the vision of USM, which is 'Transforming Higher Education for a Sustainable Tomorrow'.

On behalf of the organizing committee, I would like to thank the participants, speakers, committee members and sponsors for their contributions. The conference could not be successful without your participation and dedication, commitment and valuable time of all the committee members and many of the student volunteers, who plays a pivotal role behind the organization and contributes towards the success of the conference. Finally, I sincerely hope that your participation in this conference is a rewarding experience that you have an opportunity to meet other researches for future networking and collaboration. I also wish that all participants will enjoy the cultural and natural beauty of Penang, The Pearl of the Orient.

Thank you.

Azlina Harun @ Kamaruddin Professor Universiti Sains Malaysia

ORGANISING COMMITTEE

PATRON

Professor Dato' Omar Osman (Vice Chancellor, Universiti Sains Malaysia)

CHAIRMAN

Professor Dr. Azlina Harun @ Kamaruddin (Dean, School of Chemical Engineering, Universiti Sains Malaysia)

SECRETARY

Dr. Suzylawati Ismail

CO-SECRETARY/ PROTOCOL

Dr. Low Siew Chun (Leader) Dr. Derek Chan Juinn Chieh Mrs. Azni Shahida Khalid

TREASURER

Dr. Ooi Boon Seng **(Leader)** Mrs. Aniza Abd. Ghani Mrs. Rosni Muhamad Yusof Ms. Badilah Baharom

REVIEWER COMMITTEE

Professor Dr. Bassim H. Hameed (Leader) Associate Professor Dr. Mashitah Mat Don Associate Professor Dr. Sharif Hussein Sharif Zein

PUBLICITY COMMITTEE

Dr. Lim Jit Kang **(Leader)** Mrs. Yusnaida Mohd. Yusof Mr. Yeap Swee Pin Ms. Nur Farhana Jasney

LOGISTIC

Dr. Muhamad Nazri Murat (Leader) Associate Professor Dr. Mohd. Azmier Ahmad

TECHNICAL COMMITTEE

Dr. Tan Soon Huat **(Leader)** Mr. Mohd. Roqib Mohd. Rashidi Mr. Osmarizal Osman Mr. Mohd. Faiza Ismail

PHYSICAL COMMITTEE

Associate Professor Dr. Syamsul Rizal Abd. Shukor (Leader) Mr. Shamsul Hidayat Shaharan Mr. Mohd. Rasydan Omar Mr. Muhammad Ismail Abu Talib

ACCOMMODATION COMMITTEE

Dr. Leo Choe Peng (Leader) Ms. Nor Ain Mat Yusof

FOOD & BEVERAGE COMMITTEE

Dr. Tye Ching Thian (Leader) Mrs. Iylia Idris

ADVISORY COMMITTEE

Dr. Vel Murugan Vadivelu Dr. Khairiah Abd. Karim Dr. Mohamad Hekarl Uzir

POSTGRADUATE COMMITTEE

Mr. Shuit Siew Hoong (Leader) Mr. Lam Man Kee Mr. Seah Choon Ming Mr. Steven Lim Mr. Yeap Swee Pin Mr. Yee Kian Fei Mr. Yeoh Wei Ming Ms. Farhana Jasney Mrs. Iylia Idris Ms. Ooi Khim May Ms. Raihana Bahru

INTERNATIONAL ADVISORY BOARD

Prof. Adisa Azapagic (UK) Prof. Ajay K. Ray (Canada) Prof. Alissara Reungsang (Thailand) Prof. C. Visvanathan (Thailand) Prof. Dongjin Kim (South Korea) Prof. Frank Behrendt (Germany) Prof. Ghasem Najafpour (Iran) Prof. Guohua Chen (Hong Kong) Prof. Laurence R. Weatherley (USA) Prof. Mohammed Farid (New Zealand) Prof. Yukihiko Matsumura (Japan) Prof. Zakaria Al-Qodah (Jordan) Assoc. Prof. Dr. J. Paul Chen (Singapore) Assoc. Prof. Dr. Reyad Awwad Shawabkeh (Saudi Arabia) Assoc. Prof. Dr. Sanggono Adisasmito (Indonesia) Dr. Tapan Chakrabarti (India) Dr. Vasantha Aravinthan (Australia)

NATIONAL ADVISORY BOARD

Prof. Ir. Dr. Abdul Wahab Mohammad (UKM) Prof. Dr. Nik Meriam Nik Sulaiman (UM) Prof. Dr. Sharifah Aishah Syed A. Kadir (UiTM) Prof. Engr. Dr. Suleyman Aremu Muyibi (UIAM) Prof. Dr. Robiah Yunus (UPM) Assoc. Prof. Dr. Ling Teck Yee (UNIMAS) Assoc. Prof. Dr. Mohamed Ibrahim Abdul Mutalib (UTP)

CONFERENCE PROGRAMME

						Penang, Malays
TIME	MONDAY	TUESDAY	TIME	WEDNESDAY	TIME	THURSDAY
	(10 DEC 2012)	(11 DEC 2012)		(12 DEC 2012)		(13 DEC 2012)
0800-0815			0800-0815		0800-0815	
0815-0830		Conference Registration	0815-0830		0815-0830	
0830-0845			0830-0845		0830-0845	
0845-0900			0845-0900		0845-0900	- - - - - - - - - - - - -
0900-0915		Opening Ceremony	0900-0915		0900-0915	Parallel Lechnical Paper
0915-0930		-	0915-0930		0915-0930	(III-I) c uoissac
0930-0945		Keynote Address	0930-0945	Parallel Technical Paper	0930-0945	Tea Break
0945-1000		(Emeritus Professor Dr.	0945-1000	Session 2 (I-III)	0945-1000	
1000-1015 1015-1030		Muhamad Awang)	1000-1015 1015-1030	Tea Break	1000-1010 1010-1030	Ton Bronk
1030-1045		5	1030-1040		1030-1045	
1045-1100		Tea break	1040-1100	Tea Break	1045-1100	
1100 111E			1100 1115		1100 111E	
1115-1130		Plenary Lecture 1	1115-1130	Plenary Lecture 3	1115-1130	Parallel Technical Paper
1130-1145		(Prof. Dr. Ji-Won Yang)	1130-1145	Prot. Datin Dr. Azizan pinti Baharuddin)	1130-1145	Session 6 (I-III)
1145-1200			1145-1200		1145-1200	
1200-1215		Plenary Lecture 2	1200-1215	Plenary Lecture 4	1200-1220	
1215-1230		(Prof. Dr. Kazunori Sato)	1215-1230	(Assoc. Prof. Dr. J. Paul Chen)	1220-1230	Boct Doctor Autord and
1230-1245			1230-1245		1230-1245	Dest Postel Award and
1245-1300			1245-1300		1245-1300	Closing Ceremony
1300-1315			1300-1315		1300-1315	
1315-1330			1315-1330		1315-1330	
1330-1345			1330-1345		1330-1345	
1345-1400			1345-1400		1345-1400	FullCII
1400-1415			1400-1415		1400-1415	
1415-1430			1415-1430	L L L L	1415-1430	
1430-1445		Parallel Technical Paper	1430-1445	Parallel Lechnical Paper	1430-1445	
1445-1500		Saccion 1 (I-III)	1445-1500	Session 3 (I-III)	1445-1500	
1500-1515		Dottor Drocontation	1500-1515	Tea Break	1500-1515	
1515-1530			1515-1530		1515-1530	
1530-1545			1530-1540		1530-1540	
1545-1600			1540-1600	Tea Break	1540-1600	
1600-1615			1600-1615		1600-1615	
1615-1630		Doster Dresentation	1615-1630	- - - -	1615-1630	
1630-1645	Conference		1630-1645	Parallel Technical Paper	1630-1645	
1645-1700	Registration		1645-1700	Session 4 (I-III)	1645-1700	
1700-1715		НіТеа	1700-1715		1700-1715	
1715-1730		3) 	1715-1740		1715-1740	

 \geq

KEYNOTE SPEAKER

Green Technology and Sustainability in Agroindustry: Do we have enough R&D?

Emeritus Professor Muhamad Awang, FASC, JSM, Ph.D.

SEGi University Kota Damansara, Petaling Jaya, Selangor.

Abstract

This presentation highlights some research and development initiatives carried out in Malaysia and other countries in the region in response to the issues with special emphasis on the sustainability of agroindustry and its energy utilisation in relation to greenhouse gas (GHG) emissions and climate change. One of the most important challenges identified during the course of the studies was the verification of gaps in the current scientific understanding of GHG emissions from agriculture with special reference to oil palm plantation that must be addressed to provide the agricultural industries with an adequate body of evidence about the relationships between practices and climate change, especially due to green house gas emissions. Some of the key features related to climate change scenario based on the latest assessment conducted by the working group of IPCC in relation to our GHG emission are also discussed.

PLENARY SPEAKERS

Plenary Lecture 1

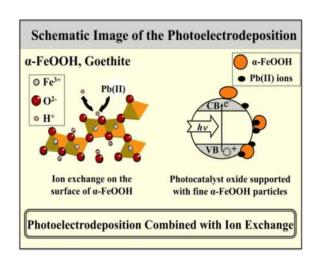
The Current Activities of Advanced Biomass R&D Center in Korea

Professor Dr. Ji-Won Yang

Advanced Biomass R&D Center, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea. Professor, Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea.

Abstract

The ABC (Advanced Biomass R&D Center) was created by the funding from the Ministry of Education, Science and Technology (MEST), Republic of Korea and led by professor Ji-Won Yang in the Department of Chemical and Biomolecular Engineering at KAIST (\$10 million/yr, 9 years). The ABC was created to identify key challenges and propose solutions to produce advanced biofuels and bioproducts that are economical and sustainable. The overall goal of the ABC is to develop, test, and transfer new technologies to commercial partners and others developing the advanced biofuels and white biotech industry. In order to achieve this goal, the ABC focuses on three major objectives: 1) the development of lignocellulosic and microalgal biomass feedstock, 2) the development of S&T for biomass production and downstream applications for biofuels and bioproducts, and 3) the systematic development and applications of biomass conversion technology for biofuels and bioproducts. The target biofuels and bioproducts include ethanol, buthanol, isobuthanol, biodiesel, and hydrocarbons, and aromatic compounds, muconic acids, and 3-HP, respectively. As the original organizer and lead institute of ABC, KAIST has been developing technologies for algal cultivation, harvest, extraction, conversion, algal genetic transformation, and systems metabolic engineering of microalgae. A research team at KASIT also has been developing technologies for algal cultivation in wastewater. In this presentation the membership, technical highlights of ABC and the current algal biofuels and bioproducts researches in my laboratory will be discussed. (This work was supported by grants from the Advanced Biomass R&D Center in the Global Frontier Program from the Korean Ministry of Education, Science & Technology)


Plenary Lecture 2

The role of photocatalyst materials for the recovery of heavy metal ions in an aqueous environment

Professor Dr. Kazunori SATO

Director, Center for International Exchange and Education Professor, Department of Environmental Engineering (Materials Science) Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.

Abstract

In order to remove hazardous heavy metal ions dissolved in an aqueous environment, the photoelectrodeposition effect combined with an inorganic ion exchanger, α -FeOOH, on the removal of Pb(II), Cu(II), and Zn(II) ions has been investigated for photocatalyst materials based on titania and ceria. These materials showed the highest photoelectrodeposition ability for Pb(II) ions under the photo irradiation, whose schematic image is shown in the figure below. The removal efficiency of Pb(II) ions was high under the UV irradiation and it decrased with increasing the wavelength of light toward the visible region. This result

indicates that the coexistence of fine α -FeOOH particles with the oxide particles contributes to an efficient separation of holes and electrons generated by the photo irradiation. The highresolution scanning electron microscopic observation revaled that fine α -FeOOH particles supported on the surface of the oxide particles are effective for the charge separation between holes and electrons. This effect is probably caused by the redox reaction occurring for the transfer of electrons near the interface between α -FeOOH and the oxide particles. A possible mechanism for the efficient removal of hazardous heavy metal ions dissolved in an aqueous environment is presented.

Plenary Lecture 3

Giving Values to Science, Technology and Engineering for Sustainability

Professor Datin Dr. Azizan binti Baharuddin

Deputy Director - General Institut Kefahaman Islam Malaysia (IKIM) 2, Langgak Tunku, Off Jalan Duta, 50480 Kuala Lumpur, Malaysia.

Abstract

Currently there is a gap between ideas that promote the infusing of values into science, technology and engineering and those that see knowledge and applications of science, technology and engineering as producers and promoters of values to begin with. Are the 'values' spoken of by these two groups the same in their intent and effect or do they bespeak of contending worldviews that needs bridging and harmonizing to begin with? Is it possible for "sacred" principles to be appreciated by those refusing interference from "non-empirical" epistemologies? Current research and analyses of the relationship between science and culture/religion seems to indicate that it is possible to have reenchantment (respect, awe, care and love of the environment) without grievous supernaturalism (extreme rejection of reason).

Plenary Lecture 4

Adsorption and membrane filtration for water treatment

Associate Professor Dr. J. Paul Chen

Associate Professor, Department of Civil and Environmental Engineering National University of Singapore

Abstract

Due to industrialization, both surface and ground water has severely been contaminated. However, the demand for safer water has been increased in the last ten years. Water has become one of most important resources in the world. In this talk, a series of novel materials and technologies of adsorption and membrane filtration will be presented. The working mechanisms will be discussed in details. Important developments such as highly costeffective adsorbents and affinities membrane will be addressed for the removal of toxic contaminants (e.g., arsenic and copper). Mathematical models such as surface complex formation model and ion exchange model for better understanding of adsorption processes will be introduced. Several industrial cases will be presented.

CONTENTS

Foreword from the Vice Chancellor	Ι
Foreword from the Conference Chairman	II
Organising Committee	III
Conference Programme	VI
Keynote Speaker	VII
Plenary Speakers	VIII
List of Full Paper	XIII

Full Papers

Section 1	Green Technologies	1
Section 2	Sustainable Management of Environment, Wastewater,	152
	Solid, Hazardous Waste	
Section 3	Novel Solutions and Sustainable Technologies for the	421
	Benefits of Bottom Billions	
Section 4	Air Pollution Mitigation, Monitor, Control Technologies	477
Section 5	Life Cycle Assessment, Risk Assessment, Health and	501
	Safety Impact Assessment	
Section 6	Advances in Natural Resource Exploitation and	529
	Utilization	
Section 7	Innovative Technologies and New Directions in Solution	583
	of Environmental Issues	
Section 8	Issues of Energy in Sustainable Development	664
Section 9	Environmental Awareness, Policies and Regulations	689
Section 10	Other Related Environmental Issues	708
		700
Author In	ıdex	1067
Acknowla	daomonts	1071
Acknowle		10/1

Acknowledgements

List of Full Paper

SECTION 1: GREEN TECHNOLOGIES

NAME	ID	TITLE	PAGE
A.D. WIHEEB, I.K. SHAMSUDIN, Z. HELWANI, M.R. OTHMAN	S0343_UF011	METHANOL AND AMMONIA PRODUCTION: AN OVERVIEW	2
AHMAD HAFIIDZ MOHAMMAD FAUZI, NOR AISHAH SAIDINA AMIN	S0293_UF061	OPTIMIZATION OF OLEIC ACID CONVERSION INTO BIODIESEL USING IONIC LIQUID	10
ISRAA ABDULWAHAB AL- BALDAWI ¹ , SITI ROZAIMAH SHEIKH ABDULLAH, FATIHAH SUJA,NURINA ANUAR, MUSHRIFAH IDRIS	S0233_UF075	PHYTOTOXICITY OF <i>SALVINIA MOLASTA</i> IN DIESEL EXPOSURE	19
JAYA, M.A.T., HARUN W.M.H.F.W., AHMAD, M.A	S0279_UF156	CARBON MOLECULAR SIEVE HOLLOW FIBER MEMBRANE DERIVED FROM PPO: THE CORRELATION BETWEEN THERMAL SOAK TIME AND PERMEABILITY OF INERT GASES	29
K. AIN NIHLA, D.A.G. ALICE, A.J. MOHD FAIZAL, A.A. ROSLAILI	S0306_UF107	STUDY OF LANDFILL LEACHATE TREATMENT USING CONSTRUCTED WETLAND UNDER DIFFERENT HYDRAULIC LOADING RATE	34
K. AIN NIHLA, A. AFIFI, A.J. MOHD FAIZAL, A.A. ROSLAILI	S0306_UF134	NUTRIENTS REMOVAL FROM LANDFILL LEACHATE USING SUBSURFACE FLOW AND FREE WATER SURFACE (SSF-FWS) CONSTRUCTED WETLAND	46
MAHDI HASANZADEH, BAHRAM NASERNEJAD, ROUEIN HALLAJ, NARGES FALLAH	F0257_UF081	BIOSORPTION OF STYRENE FROM AQUEOUS SOLUTION BY SUGAR CANE WASTE (BAGASSE)	60
M. AUTA, B. H. HAMEED	S0545	KINETIC AND THERMODYNAMIC INFLUENCE ON ADSORPTION OF BASIC DYE FOR ENVIRONMENTAL SUSTAINABILITY	1054
NARJES KERAMATI, BAHRAM NASERNEJAD, NARGES FALLAH	FO256_UF080	PHOTOCATALYTIC DEGRADATION OF AQUEOUS STYRENE IN HIGH CONCENTRATION USING TIO ₂	72
PATRICK BRAEUTIGAM, MARCUS FRANKE, BERND ONDRUSCHKA	F0212_UF018	ENHANCEMENT OF BIOGAS YIELD FROM CHICKEN MANURE BY ACOUSTIC CAVITATION	82

PEY YI TOH, BEE WAHNG, CHI HAN CHONG,ABDUL LATIF AHMAD, CHAN JUINN CHIEH DEREK, JITKANG LIM	S0415_UF069	LOW GRADIENT MAGNETIC SEPARATION OF <i>CHLORELLA</i> sp.: EFFECT OF ELECTROPHORETIC MOBILITY	92
RABIA REHMAN, TARIQ MAHMUD	F0143_UF010	DETOXIFICATION OF ACID BLUE-W DYE FROM WATER USING CHEMICALLY MODIFIED PISUM SATIVUM PEELS AS BIOSORBENT-(A GREEN APPROACH)	103
ROZYANTI MOHAMAD, NORHANI JUSOH, MOHD FAIZ MAT SAAD	P0383_UF149	FEASIBILITY STUDY OF BANANA PEEL AS BIOSORBENT IN REMOVING DYE FROM WASTEWATER	112
RUSILA ZAMANI ABD RASHID,HADI PURWANTO, HAMZAH MOHD. SALLEH, MOHD HANAFI ANI, NURUL AZHANI YUNUS, TOMOHIRO AKIYAMA	S0338_UF044	USE OF PALM KERNEL SHELL AS ENERGY SOURCE FOR REDUCTION OF IRON ORE IN IRON MAKING	120
SALINEE SRIWONGCHAI , PRAYAD POKETHITIYOOK	F0277_UF065	EFFECT OF CARBON SOURCES ON LIPID ACCUMULATION IN THE OLEAGINOUS BACTERIA <i>RHODOCOCCUS ERYTHROPOLIS</i> CELLS	126
SITI MAISURAH ZAKARIA, SHARIF HUSSEIN SHARIF ZEIN, MOHD. ROSLEE OTHMAN	S0355_UF139	PREPARATION AND CHARACTERIZATION OF HA/PVB COMPOSITE NANOFIBERS VIA ELECTROSPINNING TECHNIQUE	133
TAU LEN-KELLY YONG, YUKIHIKO MATSUMURA	F0266_UF028	REACTION KINETICS OF THE LIGNIN DECOMPOSIITON IN SUB- AND SUPERCRITICAL WATER	141
VINAYA KUMAR AREPALLI, CHALLA KIRAN KUMAR, AND EUI-TAE KIM	F0304_UA114	SYNTHESIS OF CU ₂ ZNSNS ₄ THIN FILM BY CHEMICAL BATH DEPOSITION FOR LOW-COST NONTOXIC SOLAR CELLS	1064

SECTION 2: SUSTAINABLE MANAGEMENT OF ENVIRONMENT, WASTEWATER, SOLID, HAZARDOUS WASTE

NAME	ID	TITLE	PAGE
A.B AYU HASLIJA, N. CHIOMA, L. LISA	P0269_UF033	PRODUCTION OF PULP FROM RICE STRAW USING SODA-ANTHRAQUINONE	153
A. N. ATIAH, A.L. AHMAD, S.C. LOW	P0376_UF152	SYNTHESIS OF MAGNETITE NANOPARTICLES FOR MEMBRANE- WATER TREATMENT	159
C.P. LEO, WEE FON YONG, A.W. MOHAMMAD, LAW YONG NG	P0362_UF072	PREPARATION AND CHARACTERIZATION OF POLYSULFONE MEMBRANE BLENDED WITH ZnO: EFFECTS OF PVA	166
FRANZISKA ANSCHUETZ, PATRICK BRAEUTIGAM, MARCUS FRANKE, RUDOLF SCHNEIDER, BERND ONDRUSCHKA	F0273_UF095	ENVIRONMENT PROTECTION WITH INNOVATIVE CAVITATION TECHNOLOGIES – DEGRADATION OF 17α–ETHYNYL ESTRADIOL BY HYDRODYNAMIC-ACOUSTIC- CAVITATION	174
HAMIROSIMA HASANI, RAKMI ABD RAHMAN	S0435_UF117	PRODUCTION OF BIOGAS USING TWO- STAGE ANAEROBIC SEQUENCING BATCH REACTOR	183
NAM-KYU PARK, JONG- RYUL JEONG, SOO-YEOL LEE, CHEOL-GI KIM, AND EUI-TAE KIM	F0296_UA111	VISIBLE-LIGHT PHOTOCATALYSIS OF SELF C DOPED TIO ₂ NANOWIRES SYNTHESIZED VIA SIMPLE THERMAL OXIDATION	191
JAE-HEE LEE AND EUI-TAE KIM	F0312_UA137	SYNTHESIS OF F-DOPED SNO ₂ NANONET STRUCTURES FOR SOLAR CELL ELECTRODE APPLICATION	192
KARAM HAITHAM AND MOHD. ASRI NAWI	S0194_UF048	PARAMETERS AFFECTING THE PHOTOCATALYTIC DECOLOURATION OF METHYL ORANGE USING IMMOBILIZED NANOPARTICLES OF TITANIUM DIOXIDE	193
LATIFAH ABDUL GHANI NORA'AINI ALI AND NOOR ZALINA MAHMOOD	P0403_UF092	SUSTAINABLE USE OF ANIMAL BIOMASS VIA MATERIAL FLOW ANALYSIS (MFA) APPROACH: CASE STUDY FOR ENERGY AND CARBON AS INDICATOR	201
MAHMOUD A. EL-SHEIKH, BASUONY EL-GARHY, FAHMY F. F. ASAL and WALEED K. AL-HEMAIDI	F0173_UF151	WASTEWATER REUSE THROUGH SOIL AQUIFER TREATMENT	217

MAZZA S. ADAM , ABDURAHMAN H. NOUR, SAID NURDIN, NORAZWINA B. ZAINOL , EGBAL H. ELTOM, MOHAMMED B.SULIMAN	S0357_UF090	EVALUATION OF THE ULTRASONICATED MEMBRANE ANAEROBIC SYSTEM IN SEWAGE SLUDGE TREATMENT	232
MITSUHIKO KOYAMA, N. NAGAO, C. NIWA, J. IDA, K. ISHIKAWA, S. BAN, T. TODA	F0242_UF088	ENHANCING BIOGAS PRODUCTION OF AQUATIC WEEDS EXCESSIVELY GROWN IN LAKE BIWA	237
M. KISHI, K. TSUCHIYA, M. KAWAI, T. TODA	F0285_UF086	ALGAL-BACTERIAL TREATMENT OF ETHYLENE GLYCOL	242
MOHAMMAD MAHDI MARDANPOUR, MOHSEN NASR ESFAHANY, TAYEBEH BEHZAD, RAMIN SEDAQATVAND	F0341_UF019	DAIRY WASTEWATER TREATMENT IN A SINGLE CHAMBER MICROBIAL FUEL CELL	248
MOHD ASRI MD NOR, ONG KEAT KHIM, SYURIYA MOHAMAD, NAS AULIA AHMAD NASARUDDIN, NOR LAILI-AZUA JAMARI	P0451_UF161	SLUDGE AS DYE ADSORBENT	268
MUHAMMAD NAZRY CHIK, MOHD. HARIFFIN BOOSROH, LIYANA YAHYA	P0222_UF043	CHALLENGES AND OPPORTUNITIES FOR MICROALGAE AS THE CO ₂ EMISSION REDUCTION AGENT	273
NABILAH ZAYADI, NORZILA OTHMAN	S0351_UF137	BIOSORPTION OF HEAVY METALS BY TILAPIA FISH SCALES	281
N. F. JASNEY, A. L. AHMAD, S. ISMAIL	S0244_UF136	STUDY THE EFFECT OF TRANSMEMBRANE PRESSURE ON FOULING BEHAVIOR OF ULTRAFILTRATION MEMBRANE IN PALM OIL MILL EFFLUENT TREATMENT	292
N.H. ABDURAHMAN, N.H. AZHARI	P0356_UF057	EFFECT OF ORGANIC LOADING RATE ON THE PERFORMANCE OF AN ULTRASONIC-ASSISTED MEMBRANE ANAEROBIC SYSTEM (UAMAS) IN TREATING PALM OIL MILL EFFLUENT (POME)	302
NORA'AINI ALI, SOFIAH HAMZAH, MARINAH MOHD ARIFFIN & ABDUL WAHAB MOHAMMAD	P0403_UF070	FISH WASTE UTILIZATION FOR THE RECOVERY OF PROTEOLYTIC ENZYME USING HIGHLY SPECIFIC AFFINITY MEMBRANE	314
NORAZWINA ZAINOL, MOHD FAIZAN JAMALUDDIN, NURUL AIDILLA NORSAM	P0236_UF077	KINETIC STUDY OF ACETIC ACID PRODUCTION BY FACULTATIVE ANAEROBE ISOLATED FROM SOIL	323

NURUL AYU SHA'ARY, AB. AZIZ ABDUL LATIFF, ZAWAWI DAUD, ZULKIFLI AHMAD	S0275_UF074	DETERMINATION OF BIOKINETIC COEFFICIENTS OF PALM OIL MILL EFFLUENT (POME) USING MEMBRANE BIOREACTOR (MBR)	331
OFORI-BOATENG CYNTHIA, LEE KEAT TEONG	S0213_UF042	THERMODYNAMIC SUSTAINABILITY ASSESSMENT OF BIOETHANOL PRODUCTION FROM OIL PALM FRONDS VIA EXERGY ANALYSIS	339
PATCHARAPORN PIMMATA, ALISSARA REUNGSANG	F0350_UF076	EFFECT OF NATURAL ATTENUATION, BIOAUGMENTATION AND BIOSTIMULATION ON DEGRADATION OF CARBOFURAN IN CONTAMINATED SOIL	350
POH PHAIK EONG, DAVID TANDIONO TAN, TAN KIAN TIONG	P0160_UF046	EFFECT OF THE VARIATION ON DARK GREYWATER FRACTION ON AEROBIC OXIDATION USING SEQUENCING BATCH REACTOR (SBR)	360
SEYED NEZAMEDIN HOSSEINI, MASOUMEH GOHARI, SHAHRAM SHARIFNIA, MARYAM KHATAMI	F0153_UF037	BIOSORPTION KINETICS AND MORPHOLOGY OF SACCHAROMYCESS CEREVISIAES CELLS AFTER DISRUPTION IN METAL ION ADSORPTION PROCESS	366
SITI AFIDA, I & RAZMAH, G	P0218_UF062	BIODEGRADABILITY OF POORLY WATER SOLUBLE LUBRICANTS USING BOD OXITOP METHOD	372
S.SIVASUBRAMANIAN, S. KARTHICK RAJA NAMASIVAYAM	F0227_UF008	EVALUATION OF KINETIC PARAMETERS FOR PHENOL DEGRADATION USING <i>Candida</i> <i>tropicalis</i> SSK01 ISOLATED FROM PETROLEUM CONTAMINATED SOIL	377
YEAN LING PANG, AHMAD ZUHAIRI ABDULLAH	S0424_UF032	TIO ₂ NANOTUBES PREPARED BY HYDROTHERMAL SYNTHESIS OF ANATASE AND RUTILE PARTICLES: CHARACTERIZATIONS AND SONOCATALYTIC ACTIVITIES	384
Y. SASAKAWA, M. KAWAI, K. TSUCHIYA, T. TODA	F0221_UF094	BIODEGRADATION OF BISPHENOL A BY ALGAL-BACTERIAL PROCESS	394
Y. S. NGOH, M. A. NAWI	S0209_UF027	REUSABILITY OF IMMOBILIZED PHOTO-ETCHED TITANIUM (IV) OXIDE NANOPARTICLES COMPOSITE FOR PHOTOCATALYTIC REMOVAL OF HUMIC ACID	400
ZAHRA. HADDADIAN, MOHAMMAD AMIN. SHAVANDI, ZURINA. ZAINAL ABIDIN, MOHD HALIM. SHAH ISMAIL	P0434_UF116	CITRIC ACID MODIFIED DRAGON FRUIT)PITAYA) FOLIAGE FOR REMOVAL OF A CATIONIC DYE FROM AQUEOUS SOLUTION	411
			1

NAME	ID	TITLE	PAGE
NASSERELDEEN KABBASHI, ZALINA NORULDIN, M. ELWATHIG .S.M	P0399_UF114	COMPOSTING FROM EMPTY FRUIT BUNCHES, POME & CAKE FOR SUSTAINABILITY	422
NG, BEEWAH, A.L. AHMAD, DEREK, C.J.C., AND TAN, S.H	S0414_UF111	EICOSAPENTAENOIC ACID AND TOTAL LIPID CONTENT OF BENTHIC DIATOM AMPHORA COFFEAEFORMIS IN RELATION TO DIFFERENT CULTIVATION REGIME	431
NUR KAMILAH, M. I., MASHITAH, M. D.	S0444_UF145	STATISTICAL SCREENING OF MEDIA COMPONENTS FOR THE PRODUCTION OF GIBBERELLIC ACID	440
RACHANA JAIN, JYOTI SAXENA, VINAY SHARMA	F0226_UF022	PHOSPHATE SOLUBILIZATION BY ASPERGILLUS TUBINGENSIS S33 ISOLATED FROM SEMI-ARID REGION OF RAJASTHAN, INDIA	450
S. ROSWANI, A.L.AHMAD, S.C.LOW	S0368_UF099	EFFECT OF GLUTARALDEHYDE ON PROTEIN BINDING AND THERMAL STABILITY IN DEVELOPMENT OF LATERAL FLOW BIOSENSOR	461
SULEYMAN AREMU MUYIBI, MUNIRAT ABOLORE IDRI, PARVEEN JAMAL, SAEDI JAMI, ISMAIL ABDUL KARIM	S0429_UF050	INVESTIGATION OF EXTRACTION METHODS ON THE ANTIBACTERIAL ACTIVITY OF MORINGA OLEIFERA SEED EXTRACT	469

SECTION 3: NOVEL SOLUTIONS AND SUSTAINABLE TECHNOLOGIES FOR THE BENEFITS OF BOTTOM BILLIONS

NAME	ID	TITLE	PAGE
MOHD DINIE MUHAIMIN	S0404_UF059	THE EFFECT OF AEROBIC TREATMENT	478
SAMSUDIN, MASHITAH MAT		OF PALM OIL MILL EFFLUENT ON THE	
DON		EMISSION OF CARBON DIOXIDE	
SALIM H. AL-RAWAHY,	F0228_UF015	MONITORING SULFUR DIOXIDE	486
HAMEED SULAIMAN		LEVELS IN DIFFERENT AREAS OF	
		MUSCAT CITY, SULTANATE OF OMAN	
S. M. SHARIF, R. BAHRU, M.Z.	S0392_UF110	GAS SENSING PERFORMANCE OF SnO ₂	494
ABU BAKAR		CATALYTIC FILM IN DETECTION OF	
		ACETONE	

SECTION 4: AIR POLLUTION MITIGATION, MONITOR, CONTROL TECHNOLOGIES

SECTION 5: LIFE CYCLE ASSESSMENT, RISK ASSESSMENT, HEALTH AND SAFETY IMPACT ASSESSMENT

NAME	ID	TITLE	PAGE
AHMAD FAIZ ABD RASHID, SUMIANI YUSOFF	S0259_UF101	LIFE CYCLE ASSESSMENT IN THE BUILDING INDUSTRY: A SYSTEMATIC MAP	502
LETCHUMI THANNIMALAY, SUMIANI YUSOFF, CHEN SAU SOON, NORLIYANA ZIN ZAWAWI	\$0395_UF112	EUTROPHICATION POTENTIAL OF LAUNDRY DETERGENTS USED IN MALAYSIA	515
NOORAZAH, Z; SUMIANI, Y, VIJAYA, S	S0217_UF060	EVALUATION ON THE ENVIRONMENTAL IMPACTS OF THE PRODUCTION OF PALM-BASED POLYOL USING LIFE CYCLE ASSESSMENT APPROACH	523

NAME	ID	TITLE	PAGE
E. TOMCZAK, W. KAMINSKI	F0172_UF030	DESCRIPTION OF AZO DYES SORPTION KINETICS USING FRACTIONAL DERIVATIVES	530
KAI-LIANG YEO, CHOE- PENG LEO, DEREK JIUNN- CHIEH CHAN	S0430_UF162	CHARACTERIZATION OF MALAYSIAN PROPOLIS PRODUCED IN TROPICAL FRUIT FARM	538
MOHAMED MOSTAFA MOHAMED, SAMY ISMAIL ELMAHDY	F0365_UF098	GROUNDWATER POTENTIAL AREAS IN THE EASTERN REGION OF UAE	545
NURUL RIDANI, S., KU KASSIM, K.Y., RAJA BIDIN, R.H., LIHAN, T., MUSTAPHA, A.M.	S0292_UF142	DETERMINATION OF POTENTIAL FISHING GROUNDS OF <i>RASTRELLIGER</i> <i>KANAGURTA</i> (CUVIER 1817) IN THE EXCLUSIVE ECONOMIC ZONE (EEZ) OFF EAST COAST PENINSULAR MALAYSIA USING REMOTE SENSING AND GIS	553
PECK LOO KIEW, MASHITAH MAT DON	S0425_UF056	ISOLATION OF COLLAGEN FROM THE SKIN OF <i>KELI</i> : POTENTIAL ALTERNATIVE FOR MAMMALIAN TYPE I COLLAGEN	562
SIVATHASS BANNIR SELVAM, WAN LOFTI WAN MUDA, SHREESHIVADASAN CHELLIAPAN	P0416_UF013	COMPARATIVE BIOCHEMICAL COMPOSITION STUDY ON BAIT POLYCHAETES OF PORT DICKSON WATERS	569
S. USHA NANDHINI, M. MASILAMANI SELVAM	F0386_UF038	SCREENING OF STREPTOMYCETES FOR THE PRODUCTION OF BIOACTIVE METABOLITES ISOLATED FROM CHENNAI COASTAL AREAS	575

SECTION 6: ADVANCES IN NATURAL RESOURCE EXPLOITATION AND UTILIZATION

NAME	ID	TITLE	PAGE	
B.S.OOI, S.N.AMIRAH, J.H.HONG, H.P.NGANG, S.ISMAIL, V. M. VADIVELU, C.J.C. CHAN, J.K.LIM, S.C.LOW, C.P.LEO, S.RIZAL, K.A.KARIM, A.Z.ABDULLAH	P0353_UF128	POSSIBILITY STUDY ON GRAVITATIONAL MEMBRANE BIOREACTOR FOR FISH FARM WASTEWATER TREATMENT	584	
C.T. TYE, R.C. VETTIVELLU	P0361_UF047	RECYCLING OF USED MOTOR OIL VIA CATALYTIC HYDROCRACKING	591	
MOHD SYAHRIR BIN MOHD ROZI, SHAMSUL KAMAL BIN SULAIMAN	P0239_UF147	NEUTRALIZATION OF MILL WASTES USING LIMESTONE AT RAHMAN HYDRAULIC TIN MINE VIA STATIC NET ACID GENERATION (NAG) TEST METHOD.		
NORILHAMIAH YAHYA, WAN MUHAMAD HAFIZI WAN AHMAD ADNAN, SUHAINI MAMAT, LAW JENG YIH	P0243_UF031	OPTIMIZATION OF TURBIDITY (NTU) AND TOTAL SUSPENDED SOLID (TSS) REMOVAL FROM POLLUTED RIVER WATER BY USING ELECTROCOAGULATION AND CHEMICAL COAGULATION METHOD	606	
NORINSAFRINA MUSTAFFA KAMAL, SHAMSUL KAMAL SULAIMAN, KHOR PENG SEONG	P0272_UF150	ARSENIC REMOVAL FROM GOLD MINE WASTEWATER USING SCHWERMANNITE	614	
NUR ATHIRAH BINTI KHALEB, JAMALIAH MD. JAHIM	S0287_UF079	TREATMENT OF PALM OIL MILL EFFLUENT (POME) FOR DARK HYDROGEN FERMENTATION	620	
NUR IZZATI IBERAHIM , JAMALIAH MD. JAHIM, SHUHAIDA HARUN ,MOHD TUSIRIN MOHD NOR ,OSMAN HASSAN	S0286_UF118	ALKALINE PRETREATMENT AND ENZYMATIC HYDROLYSIS OF OIL PALM MESOCARP FIBER	629	
PUTRI N FAIZURA MEGAT KHAMARUDDIN, M AZMI BUSTAM, A AZIZ OMAR	P0231_UF058	DEVELOPMENT OF AN EMPIRICAL RATE LAW USING INITIAL RATE FOR THE DEGRADATION OF DIISOPROPANOLAMINE USING FENTON'S REAGENTS	637	
ROBERT L. MNISI, PETER P. NDIBEWU, NTEBOGENG S. MOKGALAKA	F0190_UA052	SURFACE AND ADSORPTIVE PROPERTIES OF A NATURAL BIOPOLYMER PROPOSED FOR WATER PURIFICATION	645	
WLADYSLAW KAMINSKI, ELWIRA TOMCZAK	F0171_UF029	LOW COST SORBENTS FOR WATER AND WASTE WATER PURIFICATION	655	

SECTION 7: INNOVATIVE TECHNOLOGIES AND NEW DIRECTIONS IN SOLUTION OF ENVIRONMENTAL ISSUES

NAME	ID	TITLE	PAGE
AHMAD ZUHAIRI ABDULLAH, MUHAMMAD AYOUB	P0339_UF054	CRITICAL REVIEW ON THE SIGNIFICANCE OF CRUDE GLYCEROL RESULTING FROM BIODIESEL INDUSTRY TOWARDS MORE SUSTAINABLE RENEWABLE FUEL PRODUCTION	665
HOANG NHAT HIEU, JI-MIN KIM, NGUYEN QUOC DUNG, DOJIN KIM [*] , SOON-KU HONG, CHEOL GI KIM	F0315_UA149	PHOTOELECTROCHEMICAL CELL OF HIGH EFFICIENCY FOR WATER SPLITTING	1065
SHAHABALDIN REZANIA, MOHD FADHIL MD DIN, SHAZA EVA MOHAMAD, HESAM KAMYAB, FARZANEH SABBAGH MOJAVERYAZDI	S0431_UF066	A BIOETHANOL FROM CELLULOSIC MATERIALS: A SURVEY	676
THANH-TUNG DUONG , SOON-KU HONG, SOON-GIL YOON	F0207_UA163	ENHANCED PHOTOELECTROCHEMICAL ACTIVITY OF THE TiO ₂ /ITO/SWCNT NANOCOMPOSITES GROWN AT A LOW TEMPERATURE BY NANO-CLUSTER DEPOSITION	1066
W.M.H.F.W. HARUN, M.A.T. JAYA, M.A. AHMAD	P0267_UF157	THE INFLUENCE OF PYROLYSIS TEMPERATURE ON GAS PERMEANCE OF HOLLOW FIBER CARBON MEMBRANE	683

SECTION 8: ISSUES OF ENERGY IN SUSTAINABLE DEVELOPMENT

SECTION 9: ENVIRONMENTAL AWARENESS, POLICIES AND REGULATIONS

NAME	ID	TITLE	PAGE
MUHAMMAD IHSAN SHAHARIL ¹ , SHAMZANI AFFENDY MOHD DIN ¹	S0363_UF100	THE EFFECTS OF AIRBORNE PARTICULATES FROM COAL POWER PLANT TOWARDS RESIDENTS IN MANJUNG, PERAK DARUL RIDZUAN.	690
NAJIHAH MAT LAZIM, M. SHUHAIMI-OTHMAN	S0413_UF168	TOXICITY OF ZINC OXIDE AND NICKEL OXIDE NANOPARTICLES TO FRESHWATER PRAWN Macrobrachium lanchesteri	700

NAME	ID	TITLE	PAGE
ABDURAHMAN H.NOUR,	S0369_UF049	EXTRACTION AND	709
RANITHA MATHIALAGAN,		CHARACTERIZATION OF ESSENTIAL	
AZHARI H.NOUR		OIL FROM GINGER (ZINGIBER	
		<i>OFFICINALE</i> ROSCOE) BY MICROWAVE- ASSISTED HYDRODISTILLATION	
		ASSISTED HYDRODISTILLATION	
ABDUL TAWAB KHAN, ATTI	F0437_UF120	GEOCHEMISTRY AND TECTONIC	717
LA KILINC, AKHTAR		SETTING OF THE VOLCANIC ROCKS OF	
MUHAMMAD KASSI		ZIARAT AREA, PAKISTAN	
ALAMGIR Z. CHOWDHURY,	S0235_UA043	OCCURRENCE OF ORGANOCHLORINE	731
M NAZRUL ISLAM, M		INSECTICIDE RESIDUES IN SURFACE,	
MONIRUZZAMAN, S H GAN,		IRRIGATED WATER SAMPLES FROM	
M KHORSHED ALAM		SEVERAL DISTRICTS IN BANGLADES	
AMELIA HAZREENA, A.G.,	S0303_UF141	SOIL EROSION PREDICTION USING	732
LIHAN, MUSTAPHA, A.M., T.,		INTEGRATION OF RUSLE MODEL AND	
SAHIBIN, A.R., ZULFAHMI,		GIS IN CAMERON HIGHLANDS,	
A.R., WAN MOHD RAZI, I.		PAHANG, MALAYSIA	
AZLAN KAMARI, ESTHER	P0396_UF023	METAL UPTAKE IN SPINACH GROWN	741
PHILLIP,		ON MINE TAILINGS AMENDED WITH	
SHAHRULNIZAHANA		CHICKEN MANURE AND	
MOHAMMAD DIN		COCONUT DREGS	
DIPESH S. PATLE, AHMAD, Z	P0452 UF165	SIMULATION, COST AND ENERGY	749
······································		ANALYSIS OF ECO-FRIENDLY	
		BIODIESEL PRODUCTION PLANT	
F. OTHMAN, M.	S0314 UF096	DIRECT AND INDIRECT EFFECTS OF	759
S.SADEGHIAN, M.HEYDARI	50511_01090	DROUGHT USING FUNCTIONAL	100
		ANALYSIS SYSTEMS TECHNIQUE	
		DIAGRAM	
FARRUKH JAMIL, MURNI M.	S0426 UF153	PARAMETRIC STUDIES ON CRACKING	765
AHMAD, SUZANA YUSUP	_	OF MODEL COMPOUNDS OF BIO-OIL	
JING XIANG LIM, VEL	S0449 UF164	CHARACTERIZATION OF AEROBIC	776
MURUGAN VADIVELU	-	BIOMASS TREATING PALM OIL MILL	
		WASTEWATER IN SEQUENCING BATCH	
		REACTOR	
KIAN FEI YEE, ABDUL	S0418_UF025	SEPARATION OF ETHERIFICATION	787
RAHMAN MOHAMED, SOON		REACTION MIXTURE USING MWCNTs	
HUAT TAN		BUCKYPAPER/POLYVINYL ALCOHOL	
		MEMBRANE VIA PERVAPORATION	
LING, T.Y., SRIKARAN, R.,	P0205_UF129	MODELING WATER QUALITY OF SERIN	795
KHO, C.P., NYANTI, L.		RIVER, MALAYSIA, USING QUAL2K	
		MODEL	

SECTION 10: OTHER RELATED ENVIRONMENTAL ISSUES

LIU WEN TAO, RAHMAT AZAM MUSTAFA	S0164_UF016	HOUSING CONDITION IN BEIJING FENGTAI DISTRICT	805		
MAY RAKSMEY, SITI RAHAYU BINTI ANUAR	P0432_UF104	SPECIFIC VULNERABILITY ASSESSMENT OF GROUNDWATER IN THE LOWER LANGAT BASIN, SELANGOR	815		
MOHAMMAD BAHARVAND, MOHD HAMDAN BIN AHMAD, ROSHIDA BINTI ABDUL MAJID, TABASSOM SAFIKHANI	S0374_UF024	THERMAL PERFORMANCE OF SIDE-LIT ATRIUM IN TROPICAL CLIMATE	837		
MOHAMMAD NASEERALYEMENI, LEONARD WIJAYA, SHAMSUL HAYAT	F0249_UF085	55 PHYSICO-CHEMICAL AND HEAVY METAL STATUS OF WASTEWATER AND SEDIMENT OF WADIHANIFAH: A CASE STUDY			
MUHAMMAD AKMAL ROSLANI, WAN JULIANA WAN AHMAD, MUZZNEENA AHMAD MUSTAPHA	S0291_UF143	DETERMINATION OF REFLECTANCE CHARACTERISTICS OF MANGROVE SPECIES AT MATANG MANGROVE FOREST RESERVE, MALAYSIA USING RAPIDEYE IMAGERY	860		
MUHAMMAD AYOUB, AHMAD ZUHAIRI ABDULLAH	S0333_UF053	CHARACTERIZATION OF LITHIUM INTERCALATED MONTMORILLONITE K- 10 CLAY AS A SOLID BASIC CATALYST	869		
MUTHANNA AL OMAR, FADI AL JALLAD	F0255_UF087	DIURNAL TRENDS OF AIR POLLUTANTS IN FUJAIRAH CITY-UAE	878		
MUZZNEENA AHMAD MUSTAPHA, CHUNG JING XIANG AND TUKIMAT LIHAN	P0289_UF154	SPATIAL AND TEMPORAL VARIABILITY OF CHLOROPHYLL-A OFF PAHANG COASTAL AREA	889		
NOOR AMIRA SARANI, AESLINA ABD KADIR	S0271_UF103	PROPERTIES OF FIRED CLAY BRICK INCORPORATED WITH CIGARETTE BUTTS AT DIFFERENT HEATING RATES	898		
NORAZIAH J., SHAHARUDDIN M.S., SHARIFAH NORKHADIJAH S.I.	P0163_UF055	NITRATE POLLUTION IN GROUNDWATER: A CROSS SECTIONAL STUDY IN THREE VILLAGES IN BACHOK DISTRICT, KELANTAN	905		
NORHAYATI ABDULLAH, ADIBAH YAHYA [,] ALI YUZIR	P0448_UF159_ 3B	FRACTAL DIMENSION OF AEROBIC GRANULAR SLUDGE	916		
NURUL ASYIKIN IBHARIM, TUKIMAT LIHAN, MUZZNEENA AHMAD MUSTAPHA	S0290_UF155	LAND USE AND LAND COVER CHANGES IN MATANG MANGROVE FOREST USING MULTI TEMPORAL SATELLITE IMAGERIES	922		

NURULL MUNA DAUD, SITI ROZAIMAH SHEIKH ABDULLAH, HASSIMI ABU HASAN	S0240_UF083	PRE-TREATMENT OF BIODIESEL WASTEWATER THROUGH COAGULATION PROCESS	931
NYANTI, L., LING, T.Y., JONGKAR G.	P0215_UF130	WATER QUALITY OF BAKUN HYDROELECTRIC RESERVOIR	941
RAIHANA BAHRU, MOHAMAD ZAILANI ABU BAKAR, AHMAD ZUHAIRI ABDULLAH	S0390_UF132	LOW OPERATING TEMPERATURE POLYANILINE-TITANIUM OXIDE COMPOSITE SENSOR FOR DETECTION OF ACETONE VAPOUR	949
RAKMI ABD. RAHMAN, ROSNANI ALKARIMIAH	S0238_UF084	REVIEW ON CO-COMPOSTING OF EFB AND POME WITH THE ROLE OF NITROGEN-FIXERS AS ENHANCER IN COMPOSTING PROCESS	957
REZA MESGARIAN	F0346_UF035	MANAGEMENT OF GAS FLARING AN IMPORTANT STEP TOWARDS GREEN RODUCTIVITY	968
SALHA H.M. AL-ZAHRANI, AFRAA M. MAGHDADI	F0412_UF119	EVALUATION OF THE EFFICIENCY OF NON ALCOHOLIC-HAND GEL SANITIZERS PRODUCTS AS AN ANTIBACTERIAL	979
S. ISMAIL, I. IDRIS, A.L AHMAD	S0284_UF109	THE EFFECT OF TEMPERATURE AND PRETREATMENT STUDY ON MEMBRANE DISTILLATION'S PERFORMANCE	988
S.N.M. KAMAL, C.P. LEO, A.L. AHMAD, M.U.M. JUNAIDI, T.L. CHEW	S0359_UF138	TEMPLATE REMOVAL FROM SAPO-44 ZEOLITE MEMBRANE: EFFECTS OF TEMPERATURE	995
SWEE PIN YEAP, KIT TING KU, ABDUL LATIF AHMAD, BOON SENG OOI, JIT KANG LIM	S0393_UF071	CHARACTERIZATION OF FE ₃ O ₄ /PSS CORE-SHELL MAGNETIC NANOFLUID TAILOR TOWARDS ENVIRONMENT REMEDIATION	1004
TERENCE RICKY CHIU, NOOR FARAHIN AMIRUDDIN, MASNI MOHD ALI	S0446_UF133	DISTRIBUTION AND SOURCES OF STEROLS IN SUNGAI MUAR ESTUARY	1014
TUKIMAT LIHAN, NURUL SHAHIRAH MOHD SOFI, MUZZNEENA AHMAD MUSTAPHA, ZULFAHMI ALI RAHMAN AND SAHIBIN ABD RAHIM	P0288_UF167	VERTICAL PROFILE OF PHYSICAL PARAMETERS IN SUNGAI PAHANG PLUME	1019
TURKI. M. HABEEBULLAH	F0247_UF125	TREND OF PARTICULATE MATTER IN MAKKAH AND THE HOLY PLACES DURING HAJJ 1432H	1025

W.Z. WAN NURUL HUDA, M.A. AHMAD	S0254_UF135	EFFECT OF PYROLYSIS HEATING RATE ON CO ₂ SEPARATION OF PEI/PEG BASED CMS MEMBRANES	1035
NAZLIZAN BIN NASIR, ZAWAWI BIN NAUD	S0274_UF063	EFFECT OF PH AND COAGULANT DOSAGE ON EFFECTIVENESS OF COAGULATION IN BIODIESEL WASTEWATER TREATMENT	1045
M. SHUHAIMI-OTHMAN, M.L. NAJIHAH	P0354_UA178	TOXICITY OF ACID MINE DRAINAGE (AMD) TO FRESHWATER PRAWN (Macrobrachium lanchesteri) AND GUPPY (Poecilia reticulata)	1053

M. AUTA, B. H. HAMEED* School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia *E-mail: <u>chbassim@eng.usm.my</u>

SUSTAINABILITY

ABSTRACT

The rate and mechanism of pollutants removal as a means of serene environment sustainability was investigated. This was done through adsorption of Basic Blue 3 dye pollutant using environmentally friendly raw and chemically activated waste tea adsorbent. The study involved equilibrium, isotherm, kinetic and thermodynamic study of the adsorption process. The adsorption processes were best described by pseudo-second-order kinetic model; the processes were spontaneous and exothermic in nature. Intra-particle diffusion mechanism was the rate limiting step. The modified waste tea gave higher adsorption capacity (176.16 mg/g) and was faster in BB3 removal from aqueous solution than the raw waste tea adsorbent (84.74 mg/g). Waste tea adsorbent can be used to contribute immensely towards environment sustainability.

Key word: Diffusion, Adsorption, Activation, Waste tea, Dye

1.0 Introduction

The impact of green technology globally which emanated some few decades ago is immense and its consciousness should be cherished like heart beats in every sane individual if the world dream of sustainable tomorrow is to be achieved. This material based technology has tried to reduce global warming and curb depletion of natural resources as well cater for the well being of all living things but there has been series of challenges in implementation in Malaysia and other parts of the world (Chua and Oh, 2011, Schreurs, 2012). But man's intrusion through technological advancement has outweighed mitigating measures put in place through green technology. Pollutants such gases, heavy metals, dyes, spills of oil and so on introduced to the environment due to anthropogenic activities not only serve as menace but also negatively affects plants, humans, animals whether in aquatic or terrestrial region (Ahmad and Alrozi, 2010).

Colors are used for identification, as styles, to determine economic position and even connote ones class. These and many reasons have geared man's love for colors and have gone beyond harnessing the natural existing dyes into synthetically producing it. Approximately 10,000 varieties of dyes and pigments are available and 70,000 tons of the dyes are produced annually (Auta and Hameed, 2011). Indiscriminate discharge of dyes (10-15 %) as pollutants alters the

physico-chemical parameters from the existing levels of the receiving body; this in turn has an adverse effect (Iqbal and Ashiq, 2007). Most synthetic dyes are known for their resistance to biodegradation, some adverse effects of plants photosynthesis in aquatic region and carcinogenic and mutagenic effects on humans (Cicek N. et al., 2012). Dyes are generally classified into anionic (acidic, direct and reactive), non-anionic (disperse) and cationic (azo basic, anthraquinone disperse) dyes (Turabik, 2008).

In pursuance of green technology objectives, many methods have been devised to salvage the ecosystem from dye pollution, this include biological treatment, coagulation, flotation, adsorption, oxidation and hyper-filtration. Quite an effect has been felt by each of this method but not without some challenges that negates their efficiency. Several researches have been carried out with a view to producing cheaper and renewable alternative adsorbents that will replace the pricey commercial activated carbon which adversely increases the cost of applying adsorption process for pollutants remediation (Nasuha et al., 2010).

This research is aimed at looking inwardly to harness possible cheaper adsorbents that can help in salvaging menace of basic dye (Basic Blue 3) pollution as part of contribution to green technology for sustainable tomorrow. The study will involve evaluating the equilibrium, isotherm, kinetic and thermodynamic mechanisms of the process.

2.0 Materials and method

Basic Blue 3 dye (BB3) was purchased from Sigma-Aldrich (M) Sdn Bhd, Malaysia, hydrochloric acid (HCl) and sodium hydroxide (NaOH) were obtained from Merck chemical company, Malaysia; all the chemicals were of analytical grade and used without any purification. Waste tea was taken from Cafeteria of Engineering campus, Universiti Sains Malaysia. The chemical structure of BB3 (molecular weight 359.89 g/mol) is shown in Fig. 1.

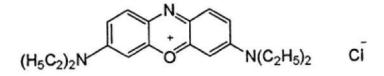


Fig. 1 Chemical structure of Basic Blue 3 dye

2.1. Adsorbent preparation method

The raw waste tea was washed thoroughly with boiled water until the supernatant became colorless and dried in an oven set at 110 $^{\circ}$ C for 24 h, sieved into 300-500 µm particle sizes and then packaged. Some quantity of the raw dried waste tea (RWT) was treated with 5 M HCl and allowed for 72 h to dwell. Thereafter, it was dried in an oven for 24 h, packaged and labeled as MWT (modified waste tea).

2.2. Equilibrium adsorption studies

To a set of Erlenmeyer 250 mL flasks containing 100 mL of different concentrations (40-200 mg/L) of BB3 was added 0.5 g of the adsorbent (RWT and MWT). The flasks were placed in isothermal water bath shaker set at 30 °C, 140 rpm for 10 h to allow for attainment of equilibrium. Before equilibrium stage, the residual dye concentration in the solution was determined at intervals with the of a double beam UV – vis spectrophotometer (Shimadzu, Model UV 1601, Japan) at maximum wavelength λ_{max} , 654 nm; this was to determine the kinetic of the sorption process. The amount of BB3 adsorbed at intervals of time, q_t (mg/g) was determined by:

$$q_t = \frac{(C_0 - C_t)V}{W} \tag{1}$$

While amount of BB3 adsorbed at equilibrium $q_e (mg/g)$ was calculated by:

$$q_e = \frac{(C_o - C_e)V}{W}$$
(2)

where C_o and C_e (mg/L) are the initial and equilibrium concentration of BB3, V (L) is volume of the solution and W (g) is mass of the adsorbent.

2.3. Effect of pH of the solution

In a similar set up as the equilibrium experiment at 120 mg/L, the solution initial pH 2-12 was varied to study its effect on the adsorption process. 0.1 M of both NaOH and HCl were used to initialize the solution pH which was ascertained by using pH meter (Ecoscan, EUTECH Instruments, Singapore).

3.0 Results and discussion

3.1. Effect of pH on BB3 adsorption

Adsorption of BB3 both RWT and MWT was much better at higher pH as can be seen in Fig. 2. Low adsorption at lower pH 2-4 could be due to repulsive activities between the amino groups of BB3 with the protons of the solution, while electrostatic attraction activities may have dominated the higher pH where adsorption was enhance, similar observation has been reported (Nasuha et al., 2010, Hameed, 2009).

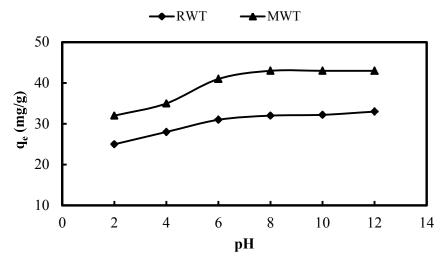


Fig. 2 Effect of solution pH on adsorption of BB3 by RWT and MWT at 30 °C *3.2. Effect of initial concentration on BB3 adsorption*

Increase in driving force that is concentration gradient lead to higher adsorption of BB3 on the adsorbent, high solute concentration occupied the readily available numerous vacant site on the adsorbent. Adsorption of BB3 increased in amount from 14.38 to 50.28 mg/g on RWT and 16.22 to 62.32 mg/g on MWT. Higher percentage of adsorption was observed when lower initial concentration of solution was used, this may be attributed to limited or inadequate solute molecules in the solution which were outstripped by the vacant sites on the adsorbent. A differential of 18 and 25% for RWT and MWT adsorbents, respectively were observed as the percentage increase of adsorption when initial concentration of the solution were varied between 40 and 200 mg/L. Proportionality of increase in adsorption with corresponding concentration increase and higher percentage adsorption with lower initial solute concentration has been reported (Auta and Hameed, 2011).

3.3. Adsorption equilibrium isotherm studies

Langmuir (Langmuir, 1916), Freundlich (Freundlich, 1906) and Temkin (Temkin and Pyzhev, 1940) equilibrium isotherm models were used to investigate the interaction pattern between the sorbent and sorbate. The non-linear equations of Langmuir (3), Freundlich (4) and Temkin (5) are expressed as follows:

$$q_e = \frac{q_m c_e b}{(1+bc_e)} \tag{3}$$

$$q_e = k_f C_e^{1/n} \tag{4}$$

$$q_e = BIn(k_T C_e)$$
⁽⁵⁾

where $C_e (mg/L)$, is the equilibrium concentration of BB3 adsorbed; $q_e (mg/g)$, is the amount of MB adsorbed; $q_m (mg/g)$ and b (L/g) are the Langmuir constants representing monolayer adsorption capacity and affinity of adsorbent towards adsorbate, respectively; the Freundlich constants are K_F

 $((mg/g) (L/mg)^{1/n})$ and 1/n (values of n>1 represents favorable adsorption condition) which connotes amount adsorbed and adsorption intensity, respectively; Temkin constant k_T (L/mg), is for equilibrium binding constant correlating the maximum binding energy while B=RT/b_T; where R is Universal gas constant (8.314 J/mol K), T (K) is absolute temperature and b_T (J/mol) is related to heat of adsorption.

Analysis of the isotherm models showed that Langmuir model best described BB3 adsorption on both RWT and MWT and the least was by Temkin model as shown in Table 1. The inconsistency of the correlation coefficient R^2 for justification of the best model necessitated use of Chi square (χ^2) statistical method to adjudged the best fitting model, inability of R² to determine best fit model has been reported (Azizian and Yahyaei, 2006). The best fitted model was selected based on the least χ^2 values of which Langmuir model had the least values in magnitude while Temkin parameters model χ^2 values were larger. Similar adsorption trend was observed when methylene blue was adsorbed on spent tea leaves (Hameed, 2009). Conformation of Langmuir equilibrium isotherm model to BB3 adsorption on both adsorbents denotes the followings: the BB3 adsorption took place on specific homogeneous sites within the adsorbent, and upon adsorption of a molecule on any active site no further adsorption was allowed by the site, all active sites were energetically equivalent and identical, and no interaction between adsorbed molecules took place. The Freundlich isotherm model's parameters revealed that the dimensionless constant 'n' had values greater than unity (n>1) signifying favorability of physical adsorption process of BB3 on the adsorbents (Treybal, 1987). The assertion by Temkin model that because of some indirect adsorbate/adsorbate interactions on adsorption isotherms that heat of adsorption of all the molecules in the layer would linearly decrease with coverage did not hold on BB3 adsorption process. This was because the adsorbed molecules on the surface of the adsorbent did not interact and as such the heat of adsorption of BB3 molecules had no effect on each other couple with the fact that the energy on layers was universally and evenly distributed.

Chi square statistical analysis was carried out using equation (6):

$$\chi^{2} = \frac{\Sigma (q_{e,meas} - q_{e,cal})^{2}}{q_{e,meas}}$$
(6)

where $q_{e,meas}$ is the experimental q_e calculated and $q_{e,cal}$ is the predicted model q_e data obtained.

U	,	1		
Model	Kinetic parameters	RWT	MWT	
Langmuir	$q_e (mg/g)$	84.74	176.16	
-	$k_{\rm L}({\rm L/mg})$	0.0157	0.0343	
	R^2	0.995	0.987	
	χ^2	3.72	2.15	
Freundlich	$k_F((mg/g)(L/g))1/n$	3.800	5.828	
	1/n	0.565	0.553	
	R^2	0.968	0.999	
	χ^2	3.88	2.34	
Temkin	A (L/g)	0.190	0.266	
	В	16.354	20.054	
	\mathbb{R}^2	0.977	0.988	
	χ^2	4.819	5.117	

Table 1 Langmuir	Freundlich and	Temkin isotherm	models	parameters at 30 °C
Tuore I Dunginum	1 I Callalloll alla		1110 4010	

3.3. Kinetics of BB3 adsorption on RWT and MWT

Two kinetic models pseudo-first-order (Lagergren, 1898) and pseudo-second-order (Ho, 1999) were tested to determine the best fitted model to the BB3 adsorption on RWT and MWT data. The non-linear form of pseudo-first-order (7) and pseudo-second-order (8) models equations are given as:

$$q_{t} = q_{e}(1 - e^{-K_{1}t})$$
(7)
$$q_{t} = \frac{K_{2}q_{e}^{2}t}{(1 + K_{2}q_{e}t)}$$
(8)

where q_e and q_t (mg/g), are the amount of BB3 adsorbed at equilibrium and at time t (h), respectively; k_1 (h⁻¹) and k_2 (g/mgh) are the rate constants pseudo-first-order and pseudo-second-order kinetic models, respectively. The models parameters generated from their plots (figures not shown) are summarized in Table 2.

The two kinetic models analysis for BB3 adsorption on the two adsorbents showed pseudosecond-order model best described the adsorption process. This was due to closer to unity nature of their R^2 values even though the differences were insignificant. The Chi square analysis further justified the fitness of the model as its Chi square values were smaller as can be seen in Table 2. Pseudo-second-order model described the entirety of adsorption process as against pseudo-firstorder which is limited to initial stage of adsorption process. Faster rate and higher adsorption capacity of BB3 on MWT (180 min) than on RWT (300 min) were observed, it could be attributed to modification or treatment of the waste tea with hydrochloric acid. It has been reported that treatment of carbonaceous material with HCl not only help in evacuating some inorganic contents, but helps in improving the surface area as well as increasing accessibility to the carbonaceous content of the material (Ros et al., 2006, Ros A. et al., 2007).

Model	Parameters	Initial BB3 concentration (mg/L)				
		40	80	120	160	200
RWT	q_{exp} (mg/g)	14.38	25.26	35.71	42.20	50.28
Pseudo-first-order	$k_1(\min^{-1})$	0.0115	0.0122	0.0143	0.0183	0.0164
	$q_{e,cal}$ (mg/g)	29.51	52.59	73.41	86.43	111.35
	$q_{e cal} (mg/g)$ R^2 χ^2	0.9918	0.9965	0.9908	0.9905	0.9953
	χ^2	0.68	1.18	6.17	8.64	7.13
Pseudo-second-order	$k_2 (g mg^{-1} min^{-1}) x 10^4$	4.36	1.84	1.72	1.99	1.39
	$q_{e_{cal}} (mg/g)$	36.00	65.96	89.20	102.62	132.95
	R^2	0.9942	0.9967	0.9910	0.9913	0.9955
	$\frac{R^2}{\chi^2}$	0.37	1.26	6.06	1.45	5.39
MWT						
Pseudo-first-order	q_{exp} (mg/g)	16.22	30.18	43.09	53.33	62.34
	$k_1(\min^{-1})$	0.0207	0.0162	0.0175	0.0273	0.0218
	$q_{e cal} (mg/g)$ R ²	34.18	61.70	86.50	102.67	127.68
	R^2	0.9793	0.9691	0.9504	0.9823	0.9703
	χ^2	2.89	13.99	42.40	21.71	56.18
Pseudo-second-order	$k_2 (g mg^{-1} min^{-1}) x 10^4$	6.51	2.63	2.19	3.13	1.94
	$q_{e cal} (mg/g)$	39.47	72.93	100.30	115.73	145.90
	\mathbf{R}^2	0.9939	0.9911	0.9744	0.9977	0.9902
	χ^2	0.85	4.01	21.84	2.86	18.50

Table 2 Adsorption kinetic models parameters at 30 °C

3.4. Adsorption mechanism

Weber and Morris (Weber and Morris, 1963) equation was used to determine the actual mechanism of sorption of BB3 on the adsorbent as the kinetic models only relay order of the process. The equation often termed intra-particle diffusion model expresses diffusion of components dependency on time. It postulates that if sorption process is dependent on adsorbate-adsorbent interaction, then the process is diffusion controlled (Toor and Jin, 2012). The intra-particle diffusion model is expressed as:

$$q_t = k_{Pi}t^{0.5} + C$$

(9)

where, kpi (mg/(g min^{0.5})) is the intra-particle diffusion rate constant, and C relays information about the boundary effect. The models parameters generated are summarized on Table 3. The plots q_t against t^{0.5} gave two features (figures not shown) for both RWT and MWT adsorption of BB3. The steeper section represents the boundary layer diffusion with kp1 as the intra-particle diffusion parameter while the slower and gradual flattened segment represents the intra-particle diffusion region with k_{p2} as its diffusion parameter. The k_{p2} (intra-particle diffusion parameter) values for the two adsorbents were smaller than those of k_{p1} (boundary layer diffusion); this reflects lesser collision of BB3 molecules at this stage thereby limiting the rate of adsorption. More so, intraparticle boundary effect C was more immense than that of boundary layer diffusion effect; this is seen by the larger values of C (Li et al., 2010a).

Initial	Boundary	Layer	Diffusion	Intra-particle	diffusion	
Conc. (mg/L)	$k_{p1}(mg/g \min^{\frac{1}{2}})$	C_1	R^2	$k_{p2} (mg/g min^{\frac{1}{2}})$	C_2	R^2
RWT						
40	1.27	9.84	0.985	0.32	23.74	0.986
80	3.28	12.57	0.995	0.47	42.76	0.999
120	3.80	17.31	0.977	0.50	64.31	0.974
160	3.09	40.98	0.943	0.88	71.02	0.901
200	4.94	38.34	0.939	0.94	105.20	0.982
MWT						
40	2.65	1.95	0.981	0.54	25.54	0.916
80	4.26	3.39	0.986	1.10	35.17	0.986
120	5.63	9.35	0.992	1.16	67.54	0.913
160	8.02	12.19	0.976	1.06	87.02	0.959
200	9.49	19.02	0.995	1.62	102.50	0.983

Table 3 Parameters generated from intra-particle diffusion model

3.5. Thermodynamics studies of the adsorption process

Gibbs free energy ΔG , enthalpy ΔH and entropy ΔS thermodynamic parameters were studied to determine the nature of the adsorption process. Van't Hoffs equation was used to determine the Gibbs free energy, it is expressed as:

$$\Delta G = -RTIn K_0$$

(10)

where R is the universal gas constant (8.314 J/Kmol); T (K) the absolute temperature; K_o is the distribution coefficient expressed as $K_o=q_e/C_e$.

Standard enthalpy change of BB3 adsorption on RWT and MWT were determined with rearranged Van't Hoff equation given as:

$$InK_{o} = \frac{-\Delta G}{RT} = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$
(11)

The values of ΔH and ΔS were obtained from the plot of InKo against 1/T (figures not shown) as shown in Table 4.

ruble i memouyhume putumeters for Rev I und Mev I description of DDS							
Adsorbent	$\Delta H (J/mol)$	ΔS (J/mol)	$\Delta G (J/mol)$				
			303 K	313 K	323 K		
RWT	-1154	29.41	-2167	-1962	-1750		
MWT	-13319	40.47	-3898	-3257	-3012		

Table 4 Thermodynamic parameters for RWT and MWT adsorption of BB3

Sorption of BB3 on RWT and MWT were all spontaneous but with less severity on the surface of RWT. The sorption process increased with decrease in temperature signifying exothermic and physical nature of the adsorption; this is due to magnitude of enthalpy values which were less than 20 kJ/mol (Li et al., 2010b). Similar observation has been reported for dye adsorption on adsorbent surface (Auta and Hameed, 2011).

Acknowledgement

Authors acknowledge the financial support provided by Universiti Sains Malaysia under the Research University (RU) Scheme (Project No. 1001/PJKIMIA/814072) and RU-PRGS grant scheme (Project No. 1001/PJKIMIA/8045026).

Conclusion

Two adsorbents, raw and modified (HCl) waste tea were prepared and tested for BB3 removal from aqueous solution through batch adsorption process. The adsorption of BB3 by the adsorbents was best described by Langmuir isotherm model, pseudo-second-order model, and was also found to be exothermic and spontaneous. The MWT adsorbent had higher adsorption capacity (176.16 mg/g) than RWT (84.74 mg/g), faster rate of adsorption and more spontaneous. Intraparticle diffusion mechanism was the limiting step for BB3 adsorption on both surfaces of the adsorbents. This research has revealed that waste tea adsorbent can be employed in BB3 pollutant remediation as part of green technology measure towards sustainable tomorrow.

Reference

- Ahmad, M. A., Alrozi, R. 2010. Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. *Chemical Engineering Journal*, 165, 883-890.
- Auta, M., Hameed, B. H. 2011. Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. *Chemical Engineering Journal*, 171, 502-509.
- Azizian, S., Yahyaei, B. 2006. Adsorption of 18-crown-6 from aqueous solution on granular activated carbon: A kinetic modeling study. *Journal of Colloid and Interface Science*, 299, 112-115.
- Chua, S. C., Oh, T. H. 2011. Green progress and prospect in Malaysia. *Renewable and Sustainable Energy Reviews*, 15, 2850-2861.
- Cicek N., Efeoglu B., Tanyolac D., Ekmekci Y., R.J., S. 2012. Growth and photochemical responses of three crop species treated with textile azo dyes. *Turk J Bot* 36, 9.
- Freundlich, H. M. F. 1906. Over the adsorption in solution. J. Phys. Chem, 57, 385-470.
- Hameed, B. H. 2009. Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. *Journal of Hazardous Materials*, 161, 753-759.
- Ho, Y. S., Mckay, G. 1999. Pseudo-second order model for sorption processes. *Process Biochemistry*, 34, 15.
- Iqbal, M. J., Ashiq, M. N. 2007. Adsorption of dyes from aqueous solutions on activated charcoal. *Journal of Hazardous Materials*, 139, 57-66.

- Lagergren, S., Svenska, B.K. 1898. On the theory of so-called adsorption of dissolved substances. *The Royal Swedish Academy of Sciences Document, Band,* 24, 1-13.
- Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids Part I Solids. Journal of American Chemical Society, 75.
- Li, L., Liu, S., Zhu, T. 2010a. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. *Journal of Environmental Sciences*, 22, 1273-1280.
- Li, Q., Yue, Q.-Y., Su, Y., Gao, B.-Y., Sun, H.-J. 2010b. Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. *Chemical Engineering Journal*, 158, 489-497.
- Nasuha, N., Hameed, B. H., Din, A. T. M. 2010. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. *Journal of Hazardous Materials*, 175, 126-132.
- Robert E. Treybal, Mass Transfer Operations, McGraw-Hill International, New York, 1987.
- Ros, A., Lillo-Rodenas, M. A., Fuente, E., Montes-Moran, M. A., Martin, M. J., Linares-Solano, A. 2006. High surface area materials prepared from sewage sludge-based precursors. *Chemosphere*, 65, 132-40.
- Ros A., Lillo-Ródenas M.A., Canals-Batlle C., Fuente E., Montes-Morán M.A., Martin M.J., A., L.-S. 2007. A New Generation of Sludge-Based Adsorbents for H2S Abatement at Room Temperature. *Environmental Science & Technology*, 41, 7.
- Schreurs, M. A. 2012. Breaking the impasse in the international climate negotiations: The potential of green technologies. *Energy Policy*, 48, 5-12.
- Temkin, M. J., Pyzhev, V. 1940. Recent modifications to Langmuir isotherms. *Acta Physiochim.* USSR, 12, 217-222.
- Toor, M., Jin, B. 2012. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. *Chemical Engineering Journal*, 187, 79-88.
- Turabik, M. 2008. Adsorption of basic dyes from single and binary component systems onto bentonite: Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. *Journal of Hazardous Materials*, 158, 52-64.
- Weber, W. J., Morris, J. C. 1963. Kinetics of adsorption on carbon from solution *J. Sanit. Eng. Div. Am. Soc. Civil Eng.*, 89, 30.