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Abstract—Knowledge of the line resistance is very important 
in the analysis of the electrical power systems (EPS) and their 
control operations. Some of the existing line resistance 
estimation methods require the utilization of many devices, 
involve the injections of disturbances to the systems and are 
computationally intensive. Hence, the processes take longer 
times to accomplish, have the possibility of making errors, could 
affect the power quality and inquire additional costs for the 
system. Surrogate modelling is an excellent alternative to ease 
the burden associated with complex computation, save cost and 
increase the reliability of the system. In this paper, an artificial 
neural network (ANN)-based surrogate model is proposed for 
the estimation of line resistance in the DC grid of the more 
electric aircraft (MEA) electrical power system (EPS). A neural 
network (NN) model is employed and trained based on a set of 
data obtained from multiple simulations to serve as a dedicated 
surrogate model of the detailed MEA EPS simulation model. 
The surrogate model is trained to establish the relationship 
between the output current of the converters to the 
corresponding line resistance within the design space with high 
accuracy. Thereafter, for every change in the line resistance 
between the parallel-connected converters and the DC bus in the 
MEA EPS, the output current of the converter can be provided 
as input to the surrogate model to predict the corresponding line 
resistance. The results obtained show that the surrogate model 
can accurately estimate the line resistance with an error of less 
than 1% provided the line resistance is within the design space 
used in training it. 
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I. INTRODUCTION 

The aviation industry is making concerted efforts to 
decrease the pollution level in the atmosphere by moving 
toward more electric aircraft (MEA). The MEA concept is a 
major trend in the modern aircraft industry for the 
development of aircraft that are fuel-efficient.  This will 
ultimately lead to a reduction in gas emission, fuel 
consumption, maintenance and cost of operation [1]. In the 
MEA, the conventional secondary sources of power for the 
aircraft such as the pneumatic, mechanical actuators, and 
hydraulic will be replaced by the electrical power. As a result, 
there is a huge increase in the electrical loads onboard the 
aircraft, and this leads to significant demand for electrical 
power by the loads. Hence, it is paramount to extract electric 
power from both the high-pressure (HP) and low-pressure 
(LP) engine shafts. As shown in Fig.1, the HP and LP shafts 
that are situated within the engine of the aircraft are each 
driving a generator and feeding power to a single DC bus via 
a power converter.  

The droop control method is normally employed for load 
current sharing among multiple sources. However, the 
conventional droop control method has limitations in realizing 

accurate current sharing among the multiple parallel-
connected power converters and DC bus voltage regulation 
due to the influence of the mismatched line resistance and 
nominal voltage reference offset [2]. Thus, the knowledge of 
the line resistance can be utilized to adjust the droop 
parameters to achieve accurate current sharing and good 
voltage regulation [3]. 

In most of the existing methods, the line impedance is 
estimated using many hardware measurement devices. 
However, the use of many hardware resources makes such 
existing line resistance estimation methods prone to errors, 
time-consuming and costly [4, 5]. Also, the injection of 
current harmonics into the grid and then measuring the 
corresponding voltage and current is one of the common 
techniques employed in estimating the line resistance [6, 7]. 
However, the injection of disturbance into the grid could 
potentially affect the power quality of the electrical power 
system [8]. In [6, 3], the line resistance information is used to 
compensate for the droop coefficient to achieve enhanced 
current sharing among the multiple sources in the grid and to 
realize good voltage regulation.  

In practical terms, the line resistance is unavoidable, 
unknown and cannot be controlled. However, the line 
resistance is usually a function of the conducted current and 
the cable length [9]. Furthermore, the line resistance may not 
be constant during the electrical power system (EPS) 
operation and could vary with changes in environmental 
conditions [10]. Therefore, there is a need to find a cost-
effective way to estimate the line resistance in the DC 
microgrid. The estimation of line resistance using 
mathematical calculation is proposed in [3]. However, the 
proposed method still requires the measurement of the bus 
voltage and the converter’s output currents. 

Artificial neural networks have been widely employed in 
the field of power electronics research for parameters 
estimations as can be seen in [11, 12]. The resistance of the 
cable linking the parallel-connected converters to the DC bus 
in the DC grid of the MEA EPS is estimated with the aid of an 

CRU 

AC DC

 
Fig. 1. Typical Multi-source Single DC Bus configuration for Future MEA EPS 
[4] 



artificial neural network in [5]. Furthermore, they have been 
employed to find the solution to diverse and difficult problems 
such as the identification and control of nonlinear systems and 
load power forecasting by training the NN model in a 
supervised way. The surrogate model can make predictions 
effectively without running the original system it is required 
to emulate. To this end, the surrogate model is developed by a 
supervised learning algorithm until when it can be used to 
replace the original system to perform a task [13]. 

The method proposed in this paper is hinged on the fact 
that for every change in the resistance of the lines connecting 
the parallel-connected converters to the DC bus bar shown in 
Fig. 1, the output currents of the converters will also change. 
Based on this premise, this paper proposes an intelligent and 
data-driven approach for the estimation of line resistance in 
the DC microgrid of the MEA EPS in an accurate and fast 
manner. In the proposed method, the output currents of the 
converters which are usually measured to control the 
converter are recorded for every combination of the line 
resistance within a design space. Thereafter, a surrogate model 
is trained to effectively map the output currents of the 
converters to the corresponding line resistance. When 
compared to the existing approaches used in the estimation of 
line resistance, the proposed method will save cost and 
enhance the EPS reliability. This is because the output current 
of the converter is the only parameter that is required to be 
known. Moreover, the knowledge of this parameter is 
essential in the normal control operation of the microgrid.  

The rest of the paper is organized as follows. In section II 
the system description and its control model are discussed. 
Section III presents the proposed NN-based surrogate model 
approach in the estimation of line resistance. The validation of 
the proposed approach is provided in Section IV using 
simulation studies. Section V concludes the paper. 

 

II. SYSTEM DESCRIPTION AND BASIC ANALYSIS OF THE 

DROOP CONTROL METHOD 

A. Brief Description of the System under Study 

The MEA EPS under study in this paper is an islanded DC 
microgrid that is made up of multiple sources (i.e. permanent 
magnet synchronous generators (PMSGs)), power 
converters, capacitor bank and loads as shown in Fig. 2. The 
sources are connected in parallel and supply power to a 

common DC bus. The power converters which are interfaced 
to the variable frequency generators are active front end 
controlled rectifiers (AR). They are used for the control and 
regulation of the output voltage of the sources they are 
interfaced with using the pulse-width modulation technique. 
C1-Cn and Cb represent the local and main capacitor banks 
respectively. The load is usually comprised of resistive and 
constant power loads (CPL).  

B. Analysis of the Basic Droop Control Concept 

The basic MEA system with two sources is considered 
first in this paper. This will provide a general solution, with 
more than two sources to be considered in the future study. 
For ease of analysis, the generators (G1-3) with their 
interfacing parallel-connected converters shown in Fig. 2 can 
be modelled as an ideal voltage source under the droop control 
as shown in Fig. 3. Similarly, for steady-state analysis, the 
cable can be modelled as resistance. With only two sources 
considered, the equivalent circuit of the MEA EPS 
distribution network is shown in Fig. 3. A more detailed 
analysis of the droop control method as related to the DC 
microgrid can be found in [2]. 

If the voltage drop on the lines is not ignored and the 
voltage control dynamics are not put into consideration, the 
DC bus voltage as obtained from Fig. 3 in steady-state is 
expressed in (1). It can be observed from (1) that due to the 
droop action and coupled with the voltage drop across the line 
resistance, the DC bus voltage regulation becomes 
deteriorated. 

 𝑉 = 𝑉 − 𝑅 𝐼 = 𝑉 − (𝑅 + 𝑅 )𝐼  

where i = 1,2 represents the converter 1 and 2 respectively, 
Vdc

* is the common nominal voltage reference for each of the 
DC sources under no-load conditions, Vdci is the output 
terminal voltage of the ith DC source, Rdi is the equivalent 
output resistance (or droop resistance) of the ith DC source, 
and Idci is the output current from the ith DC source, Ri is the 
resistance of the lines connecting the ith DC source to the load 
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Fig. 4.  Voltage-mode droop control scheme of a generator source fed by an 
active rectifier (AR) in the studied MEA EPS. 
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Fig. 2.  DC grid Architecture for Future MEA EPS with Multiple 
Generators 
  



and Vb is the main DC bus voltage. Under the no-load 
condition, Vdc1

* = Vdc2
*= V0. Therefore, from (1), the current 

sharing ratio between the sources is as expressed in (2), 
assuming the sources are supplying together. 

 𝐼 : 𝐼 = :  

where kd1=Rd1 and kd2=Rd2 are the droop gains of each of the 
converters.  

It can be observed from (2) that the current sharing ratio of 
the sources will be influenced by both the line resistance and 
droop coefficient. Hence, the accuracy of the output current 
sharing among the converter may not be as desired because of 
the unequal voltage drop across the mismatched line 
resistance. To achieve accurate current sharing and suppress 
the circulating current in the DC microgrids, the authors in [3] 
proposed the estimation of the line resistance to adjust the 
droop coefficient using the expression in (3). 

 𝑅 =
∗

− 𝑘  

It can be seen from (3) that by measuring the DC bus 
voltage, the output current of the converters and knowing the 
droop coefficient of the converters, the line resistance can be 
estimated. This implies that, for every change in the line 
resistance, the DC bus voltage and output current of the 
converter is required to be measured to estimate the line 

resistance. Thus, an approach that is data-driven and 
intelligent and that only requires the measurement of the 
output current of the converter is proposed in this paper. 
However, the method proposed in [3] will be used in this paper 
to estimate the initial line resistance and for data generation. 

III. PROPOSED LINE RESISTANCE ESTIMATION APPROACH 

Fig. 4 shows the detailed MEA EPS control model and will 
be used as the case study of the proposed line resistance 
estimation method. The power converter shown in Fig. 4 and 
interfaced to the PMSG is controlled using the voltage-mode 
droop control scheme. Only one source is shown in Fig. 4 to 
conserve space. The NN-based surrogate model can be well 
trained after obtaining the datasets. This can be achieved by 
exploring all the combinations of the line resistance in the 
design space.  

 

A. Methodology 

There are three stages involved in the proposed intelligent 
and data-driven based line resistance estimation method. A 
flowchart of the proposed line resistance estimation method is 
shown in Fig. 5. In the first stage, for every combination of the 
line resistance (R1 and R2) within the design space, a detailed 
simulation model of the MEA EPS is run in a loop and the 
corresponding output DC currents of the converters (Idc1 and 
Idc2) are recorded. It is important to also mention that, the line 
resistance combinations are used as input to the detailed MEA 
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Fig. 6. Structure of the three-layer FFNN which serves as a surrogate model 
of the MEA EPS Control model shown in Fig. 4.  
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EPS simulation model in this stage. The droop coefficients of 
the converters are kept constant as is the case with the 
traditional droop control method.  

In the second stage, the NN is trained to serve as a 
surrogate model of the system under the case study using the 
data generated from stage one. The NN-based surrogate model 
is trained offline with the recorded output currents of the 
converters as input and the line resistance as output. In the 
third and final step, for every change in the line resistance, the 
output current of the converters will be provided to the trained 
NN model to estimate the corresponding line resistance very 
fast and accurately. The data generation and training of the NN 
stages are required to be executed once for the detailed system 
model parameters. 

 

B. Data generation 

The detailed MEA EPS system control model shown in 
Fig. 4 was developed using the MATLAB SIMULINK©. A 
constant power load (CPL) of 40 kW was applied to the MEA 
EPS for the data generation. The system parameters and the 
initially estimated equivalent DC line resistance are as shown 
in TABLE I and TABLE II respectively.  

For the proposed method, the line resistance design space 
is defined based on the initial estimated line resistance shown 
in TABLE II. A range of ±10% of the initial estimated line 
resistance is used for data generation and to accommodate any 
error in the initial estimation of the line resistance. However, 
the EPS designer can decide the percentage of the initial 
estimated cable resistance to be used as the design space. The 
design space and sampling step of the line resistance (R1 and 
R2) used for data generation are shown in TABLE III. As 
shown in TABLE III, 26 settings for each of the line 
resistances were tested, thus, making a total of 262 = 676 
combinations of the line resistance. The NN model is then 
trained and evaluated with 676 sets of data. 

TABLE I.  ELECTRICAL POWER SYSTEM PARAMETERS 

Parameter Symbol Value 
Rated Voltage of DC Bus V0 270 V 
Local Shunt Capacitor Ci 1.2 mF 
Main DC bus capacitor Cb 0.6 mF 
Droop Coefficient of 
Converters 

kd1 1/4.250 
kd2 1/4.250 

TABLE II.  INITIAL ESTIMATED LINE PARAMETERS 

 Resistance (𝑅 )-(0.6 
mΩ/m) 

Inductance (𝐿 ) -
(0.2 µH /m) 

Length (m) 

Cable 1 15 mΩ 5 µH 25 
Cable 2 30 mΩ 10 µH 50 

TABLE III.  DESIGN SPACE 

Paramter Range 
(mΩ) 

Step (mΩ) Samples 

R1 [13.5 16.5] 0.12 26 x 26= 
676 R2 [27 33] 0.24 

 

C. ANN Structure and Training 

In this paper, the Feed-forward neural network (FFNN) 
structure is preferred to train the NN model. The FFNN is 
chosen because of the static relationship between the output 
current of the converters and line resistances [5]. The structure 

of the FFNN model used in this paper is shown in Fig. 6. It is 
made up of an input layer with 2 neurons, a hidden layer with 
6 neurons and an output layer with 2 neurons. The 2 neurons 
in the input layer represent the two output DC current of the 
converters (Idc1 and Idc2), while the two-line resistances (R1 and 
R2) are represented by the 2 neurons in the output layer of the 
FFNN. The training was carried out using the Levenberg-
Marquardt backpropagation technique to optimize the weights 
and bias of the NN model. This is implemented by the NN 
fitting toolbox in MATLAB. 

The 676 data sets are divided into three: 70% were used 
for training, 15% for validating the training, and the other 15% 
were used to test the performance of the trained NN model. 
The root mean square error (RMSE) was used to validate the 
training performance of the NN-based surrogate model. The 
closer the value of the RMSE between the output of the trained 
NN model and the targeted data used in training to zero, the 
better the training of the surrogate model. The calculated 
RMSE are 0.0003696 (Ω) and 0.00037953(Ω) for R1 and R2 
respectively. Hence, it can be concluded that the surrogate 
model is well trained. The comparison between the NN model 
prediction and the target data used for training is shown in Fig. 
7. 

 

IV. SIMULATION RESULTS 

To validate the proposed approach, a simulation study was 
conducted. The electrical power system parameters used for 
the simulation are the same as those shown in TABLE I. A 
CPL of 40 kW was applied during the simulation just as the 
case in data generation.  

To assess the accuracy of the trained NN-based surrogate 
model in estimating the line resistance, a set of randomly 
selected line resistance values are used in the detailed 
simulation model of the MEA EPS model and the output 
current of the converter is recorded. The recorded output 
current of the converter is then used as input for the trained 
NN model. TABLE IV shows the recorded changes in the 
output currents of the converters as the randomly selected line 
resistance are simulated.  

TABLE IV.  RECORDED OUTPUT CURRENT FOR DIFFERENT RANDOMLY 
SELECTED  LINE RESISTANCE 

Cases 
(n) 

Simulated Ri 
(mΩ) 

 

Output DC 
Current (A) 

R1 R2 Idc1 Idc2 

1 14.0 28.0 82.33 77.97 

2 16.0 28.5 82.16 78.26 

3 16.4 29.5 82.27 78.19 

4 15.0 30.0 82.56 77.86 

5 15.5 30.5 82.54 77.91 

6 15.8 31.4 82.65 77.83 

7 16.2 31.6 82.63 77.88 

8 15.0 32.5 82.95 77.53 



9 13.8 31.3 82.94 77.49 

10 13.3 26.5 82.22 78.07 

 

It can be observed from Fig. 8 that the simulated and 
estimated cable resistance matched excellently well for 
changes in the line resistance that are within the design space. 
However, when the change in line resistance is not within the 
design space (as in case 10), the estimation capability of the 
trained NN model is poor for obvious reasons. Despite the 
small changes in the output current of the converters as shown 
in TABLE IV, the trained neural network can effectively 
estimate the corresponding line resistance.  

 

V. CONCLUSION 

This paper presents a neural network-based surrogate 
model that can be used as a tool for the fast and accurate 
estimation of line resistance in the DC microgrid of the MEA 
EPS. The only parameter that needs to be known is the output 
current of the converter, hence, this will reduce the number of 
resources required for measurement, save cost and enhance 
the system reliability. Based on the results obtained, both the 
simulated and estimated line resistance matched excellently 
well.  
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