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Abstract. In recent years, tremendous attention, and efforts are focused on the development of 

novel drug delivery systems to improve health care. Substantial improvement of current thera-

pies has necessitated the use of therapeutic modalities that allow for efficient and site-specific 

transport of drugs to the target tissues. However, there are enormous barriers that a drug mole-

cule must overcome before it reaches its target site within the body. Therefore, discovery of 

new modalities allowing for effective drug delivery to the brain and central nervous system 

(CNS) is of great need and importance for treatment of neurodegenerative disorders. In this 

study, we have solved the time dependent Bloch NMR flow equation analytically for the analy-

sis of glucose content, total protein content and blood cell count in the CNS and brain using 

MRI experimental data. The associated Laguerre polynomials obtained are applied to evaluate 

biological flow in the central nervous system. The application of fluid velocity, the NMR relax-

ation times and the path length for biological flow in the central nervous system are demon-

strated. 
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1 Introduction 

The principal reason for the rapid growth of research interest in NMR molecular 

dynamics for the analysis blood–brain barrier (BBB) is the realization that substantial 

improvement of current therapies will be crucial for the development of new thera-

peutic modalities allowing for efficient and site-specific transport of drugs to the tar-

get tissues affected by disease [1]. This is because of the enormous barriers that drug 

molecules need to overcome before it reaches its target site. The BBB has an im-

portant feature which proves to be a challenge in effective site – specific drug deliv-

ery. This feature is a barrier which impedes the entry of compounds into the brain 

from the periphery [1] and consequently, many low molecular weight drugs as well as 

bio-macromolecules, such as DNA and proteins, for treatment of neurological diseas-

es, cannot easily be utilized [1]. The low permeability of the BBB is attributed, in 

large part, to the brain micro-vessel endothelial cells, which form tight extracellular 

junctions with low pinocytic activity [1 - 3]. Passive diffusion of substances across 

the brain microvessel endothelial cells may occur depending on the lipophilicity and 

molecular weight of these substances. Aside from approaches that cause short-term 

disruption of the BBB, drug delivery systems need to improve the transcellular routes 

of drug transport through the micro-vessel endothelial cells [1]. Therefore, discovery 

of new modalities allowing for effective drug delivery to the central nervous system 

(CNS) is of great need and importance for treatment of neurodegenerative disorders 

[1]. Currently, three relatively new approaches for improving drug transport through 

the BBB have been described [1]:  

(i) inhibition of drug efflux transporters in BBB by amphiphilic block co-

polymers  

(ii) using receptor-mediated transport of drugs encapsulated into nanopar-

ticles, and 

(iii) artificial hydrophobization of peptides and proteins by fatty acid resi-

dues. 
The BBB is the separation of circulating blood from the brain extracellular fluid in 

the central nervous system [4, 5]. It occurs along all capillaries and consists of tight 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 861



3 
 

junctions around the capillaries that do not exist in normal circulation [4]. Endothelial 

cells restrict the diffusion of microscopic objects (e.g., bacteria) and large hydrophilic 

molecules into the cerebrospinal fluid (CSF), while allowing the diffusion of small 

hydrophobic molecules (O2, CO2, hormones). Therefore, a molecular analysis of CSF 

could be very vital in accessing blood brain barrier and every change that occur 

around them [4].  

In this investigation, the Bloch NMR flow equation [6 - 9] has been solved analyti-

cally in terms of the associated Laguerre polynomials to obtain the NMR transverse 

magnetization for the analysis of biological flow in the central nervous system. The 

motivation for this is that amphiphilic block copolymers and fatty acid polymers both 

have hydrogen protons which are always available for magnetic resonance [10]. In 

addition to this, NMR nanoparticles can be easily developed [11] for specific neuro-

logical drug discovery. This shows that magnetic resonance may prove to be very 

important within the framework of current approaches for improving drug transport 

through the BBB. 

Delivering therapeutic agents to specific regions of the brain has proved to be ma-

jorly challenging to treatment of most brain disorders [12]. In its neuroprotective role, 

BBB functions to hinder the delivery of many potentially important diagnostic and 

therapeutic agents to the brain. Therapeutic solutes and antibodies that might other-

wise be effective in diagnosis and therapy are unable to cross the BBB in adequate 

amounts [12]. Mechanisms for drug targeting in the brain involve going either 

"through" or "behind" the BBB. Modalities for drug delivery/Dosage form through 

the BBB entail its disruption by osmotic means; biochemically by the use of vasoac-

tive substances [11]. Other methods used to get through the BBB may entail the use 

of endogenous transport systems, including carrier-mediated transporters such as 

glucose and amino acid carriers; receptor-mediated transcytosis for insulin or 

transferin; and the blocking of active efflux transporters such as p-glycoprotein.  

The role of this study in overcoming these challenges rests in the fact that different 

solutes (including different kinds of designed proteins) have unique hemodynamic 

and magnetic resonance relaxation parameters. Fortunately, these parameters have 

being shown by the solutions presented above to determine the value of the transverse 
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magnetization under several conditions. Secondly, it is worthy of note that T2 signifi-

cantly changes [13] when molecular interaction changes. That is, the interaction of 

drugs with local solutes around the BBB and with receptor sites can easily be cap-

tured in a well defined parameter that has direct influence on MRI signal. Further-

more, temporary or permanent disruption to the BBB integrity affects the radius of the 

space through which the drug or solutes are expected to pass. 

 

2 The General Bloch NMR Flow Equation  

When polymers and NMR sensitive nanoparticles are placed within a magnetic 

field B0 and RF field is applied to induce spin excitation, the spins move dynamically 

about the magnetic fields. This spin dynamics is described by the Bloch NMR flow 

equations [14-16] and can be written as: 

2T

M

x

M
v

t

M xxx 








                            (1a) 

2
1 )(

T

M
xBM

x

M
v

t

M y

z

yy










                             (1b) 

1
1 )(

T

MM
xBM

x

M
v

t

M zo
z

zz 










                           (1c) 

From equation (1b, 1c), we have [12-14]: 
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Equation (1d) is a general second order differential equation which can be applied 

to any NMR fluid flow problem. At any given time t, we can obtain information about 

the system, provided that appropriate boundary conditions are applied. Starting from 

equation (1d), we can assume a solution of the form: 
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This can be written in generalized coordinate system as: 
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 is the gyromagnetic ratio, D is the  diffusion coefficient, v is the fluid velocity, T1  

is the spin lattice relaxation time, T2 is the spin relaxation time, Mo is the equilibrium 

magnetization, B1(x,t) is the  applied magnetic field and My is the transverse magneti-

zation. Solutions to equation (1) have been discussed by a number of analytical meth-

ods [6-9, 14-16], where D represents the diffusion coefficient. Equation (1i) is the 

equation of diffusion of magnetization as the nuclear spins move. The function 

 txB
T

F

o

o ,1   is the forcing function, which shows that the application of the RF B1 

field has an influence on the diffusion of magnetization within a voxel. It is interest-
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ing to note that the dimensions of Equation (1h) exactly match that of diffusion coef-

ficient. Equation (1i) is only applicable when D in non – directional. That is, we have 

a constant diffusion coefficient (isotropic medium) and hence, 
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Because these cells will have to queeze their way through the capillaries, we as-

sume that the system which equation (1j) describes has the same radius as the eryth-

rocyte. Therefore, if the MRI signal describing the erythrocytes does not vary appre-

ciably with   and  : 
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For the purpose of this study, we shall define the RF B1(x,t) field as  
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Using the method of separation of variables, we write 
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Both sides of equation (7) must be equal to a constant 2 . Therefore, we have 

the following equations: 
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where vrFv 6  represent the viscous drag, r is the hydrodynamic radius of the 

cell, v is the velocity of micro fluidic flow, η is the viscosity of the medium, 0M is the 
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equilibrium magnetization,   is the reduced Planck constant and n is a dimensionless 

parameter. Equation (11) then becomes:  
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We shall introduce a dimensionless variable as follows: 2rk     (17) 
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If we substitute for equation (29) and (30) in equation (24), we have: 
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Equation (32) may hold only if  
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Equation (33) is the generalized (or associated) Laguerre equation which has a so-

lution )(
aL  known as the associated Laguerre polynomial where  

1
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From equations (17, 18, 25), we have: 
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Finally, using equation (6, 10ii, 34), we may write: 
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Setting 0
2   (where 0  is the Larmor frequency), the transverse NMR magnet-

ization becomes 
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3 Analysis of Results 

Cerebrospinal fluid (CSF) flows throughout the inner ventricular system in the 

brain and is absorbed back into the bloodstream, rinsing the metabolic waste from the 

central nervous system through the BBB. This allows for homeostatic regulation of 

the distribution of neuroendocrine factors, to which slight changes can cause prob-

lems or damage to the nervous system. Hence, due to the access that CSF has in and 

around the BBB, we shall analyse the above results with physical and relaxation pa-

rameters of CSF at 1.5T: T1 = 2.65s, T2 = 0.28s, η = 0.0007Nsm-2, D0 = 2.34 × 10-

9m2s-1 [11, 14-16] and v = 1.75 × 10-7ms-1 [5]. Using the relaxation times as end-to-

end boundaries, we shall show the changes in the NMR transverse magnetization as a 

function of the hydrodynamic radius r and changes in relaxation parameters (as ex-

pressed by the term n equation (22)). This may prove to be very invaluable in real – 

time imaging of processes around the BBB in the presence of solutes (used as drugs). 

From the above data, we have the following plots: 
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Fig. 1. Plots of My against the relaxation parameter n for r = 5.0nm, ω0 = 64MHz, A = 8000 and 
(a) t = 4.0ps (b) t = 4.0ns 

 

(a) (b) 

Fig. 2. 3D maps of My as it varies with relaxation parameter n and r for (a) t = 4.0ns (b) t = 
4.0ps. ω0 = 64MHz, A = 8000. 
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Fig. 3. Plots of My against the relaxation parameter n for 4.0ps, ω0 = 64MHz, A = 8000 and (a) 
r = 5.0nm  (b) r = 0.5nm (b) r = 50pm (d) r = 5.0pm. 

(a) (b)

(c) (d) 

Fig. 4. 3D maps of My as it varies with relaxation parameter n and r for t = 4.0ns and r within 
(a)  micrometer range (b)  nanometer range (c)  picometer range (d)  femtometer range. ω0 = 
64MHz, A = 8000. 
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(a)  (b) 

(c) (d) 

Fig. 5. Plots of My against the relaxation parameter n for 4.0ps, ω0 = 64MHz, A = 8000 and (a) 
r = 50nm  (b) r = 0.5nm (b) r = 50fm (d) r = 5.0fm. 

 

3.1 Molecular Dynamics of Drugs Targeting The Brain 

We have earlier noted that the interaction of drugs with local solutes around the 

BBB and receptor sites can be captured in a well defined parameter. Fortunately, the 

parameter n has the dynamic information from different interactions. This is because 

it incorporates both MR relaxation and hemodynamic properties of molecular struc-

tures. In cases of temporary or permanent disruption to the BBB, cellular integrity 

abnormalities have direct influence the radius of the space through which the drug or 

solutes would pass and the viscosity. 

Therefore, this study may prove to be very useful in the molecular spectroscopic 

studies of drug interaction within the brain and real – time imaging of these processes. 

It is quite interesting to note that Figures 1 and 2 show that processes within picose-
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conds range can be easily observed on MR scans. In fact, it is observed that meaning-

ful image contrast does not exist at higher time range. This confirms that this study is 

particularly suited to molecular imaging. 

Figures 3 and 5 show that different radial openings of the BBB show unique con-

trast with magnificent NMR signal magnitude. This shows the possibility of using this 

study to investigate progressive disruption to BBB especially as it concerns inflamma-

tion processes. With these methods, we may be able to observe and design better 

treatment plans for meningitis [17], brain abscess [17], epilepsy, multiple sclerosis, 

neuromyelitis optica [18], progressive multifocal leukoencephalopathy, Alzheimer's 

Disease, etc. Figure 2 and 4 show that 3D reconstruction of the molecular processes 

around the BBB can easily be done. Figure 4(a) is particularly strange because it 

shows that at microscopic r, the NMR signal is incredibly high but only captures a 

very small section of the region we have considered in the simulation of results. 

 

4 Conclusion 

We have solved the time dependent Bloch NMR flow equation analytically for the 

analysis of biological flow at the molecular level. The associated Laguerre polynomi-

als obtained as solutions to the Bloch NMR flow equation can be applied to evaluate 

biological flow around the BBB in the brain and central nervous system.  Using ap-

propriate MRI experimental data, the dynamics of fluid velocity, the NMR relaxation 

times and the path length for biological flow in the blood brain barrier are demon-

strated. Figures (2, 4) show the density images and the corresponding 3D plots of 

NMR transverse magnetisation based on experimental data [11, 14-16]. Since the 

diffusion coefficient varies very slowly with the radial distance r, it is interesting to 

note that parameter f(r) in equations (3, 13) can be appropriately defined to solve 

specific biological and medical problems in the brain. It is very interesting to note that 

f(r) is related to the viscous drag involving brain hemodynamics. This means that we 

can define this function for different brain diseases. Specifically, equations (1h, 18, 

22, 37) can be very vital for molecular analysis of CSF in accessing blood brain barri-
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er and every change that occur around them. Based on these equations, the viscous 

drag, the hydrodynamic radius r, the velocity v of micro fluidic flow, the viscosity η 

and the diffusion coefficient for specific biological and medical problems in the brain 

and nervous system can be simultaneously determined by computational MRI as 

demonstrated in this study.  
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