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A MATHEMATICAL MODEL OF BLOCH NMR FLOW EQUATION FOR FIELD CYCLING TISSUE IMAGING 
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INTRODUCTION 

Field-cycling magnetic resonance imaging (FC MRI) allows switching of the magnetic field during an imaging scan1. FC MRI has been very successful in relaxometry studies and there 
arises the need to offer more theoretical supports to the rich experimental results available in NMR laboratories. These theories are expected to offer new ways of interpreting the results 
for new discoveries. In view of this, we have developed a methodology based on the time – independent Bloch NMR flow equations for calculating the transverse magnetization in terms 
of the applied RF field.  

MATHEMATICAL FORMULATION 

In this study, we shall consider fluid whose spins are in a motion in which the transverse magnetization does not change appreciably with time of motion2, 3. In a rotating frame of 
reference, we shall assume that under the influence of RF magnetic field as derived in the earlier studies2, resonance condition exists at Larmor frequency2, 3: 0=−= ωγBfo

 

From the Bloch equations, the following equation as been derived2, 3: 
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B1 is the spatially varying RF magnetic field and v is the spatial fluid flow velocity. We shall assume that the variable velocity is given as follows: 
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Therefore, if we sample the MRI signal at the point where the transverse magnetization has the largest magnitude (M0 ≈ 0), we have: 
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In the presence of magnetic field gradient, we shall write the spatially dependent frequency as follows: GxBx γγωωω +=+= 010)(  and 0ωωα −=   (4) 

Using Eqn (9), we can easily convert spatial information into frequency information such that: ( ) 0)1( 222
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Eqn (16) is an equation transformable to Bessel equation, whose solution is given as: [ ] [ ])()()()()( 1211
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nJ and

nY  are Bessel functions of the first and second kind respectively;

 

1C and
2C are constants. However, since the NMR signal must have finite value 

even when the RF B1 field is removed, C2 = 0, and then we have: )()( 1
2

11

0

δωω
δ

n

T

y JCM
−

=                (7) 

1000 104 105 106 107 108
�1

10

100

1000

104

105

M y

(a) 1000 104 105 106 107 108
�1

10

100

1000

104

105

M y

(b) 1000 104 105 106 107 108
�1

10

100

1000

104

105

M y

(c) 1000 104 105 106 107 108
�1

10

1000

105

M y

(d) 

My M y
M y M y

 

 DISCUSSIONS AND CONCLUSION 
Using Eqn (7) and the relaxation times of selected human tissues, we have shown that it is possible to do computational imaging with relaxometry data. Fig.1 illustrates spectroscopic 
capabilities of the results we have obtained in this study. The tissues we considered showed unique peaks which correspond to unique values of cycling RF B1 fields. Fig. 2 shows that the 
field cycling process can be easily transformed into 3D tissue mapping and it is quite interesting to see that patterns of the signals are very different as the pulse time changes. We also 
observed that 3D mapping shows very unique signal magnitude and slightly different patterns for different tissues at 1.5T. In conclusion, we see that we can easily use the results in this 
study to show contrast between various tissues and same tissues with changing T2 values. We can also use the results to map the changes in tissue molecular dynamics at higher RF field 
values.  
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Fig. 1: 2D Plots of the NMR transverse 
magnetization as function of ω1 using relaxation 
parameters (at 1.5T) of 4 (a) Skeletal muscle (b) 
Heart muscle (c) Liver (d) Kidney. We used δ = 
5ms and C1 = 5 × 106. 

Fig. 2: 3D images of the NMR transverse 
magnetization as function of ω1 and the pulse 
time δ for kidney at 1.5T4. We have shown 
the behaviour of My at different ranges of δ 
and T1 = 0.830s, T2 = 0.082s, C1 = 5 × 106. 
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