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ABSTRACT

Software like ILWIS and GRASS GIS can be employed for remote sensing image processing
and geographic information systems applications. The modules of the aforementioned image
processing software are based on conventional multi-class classifiers/algorithms such as maximum
likelihood classifier. These conventional multi-class classifiers/algorithms are usually written in
programming languages such as C, C++, and python. The objective of this research is to experiment the
use of a binary classifier/algorithm for multi-class remote sensing task, implemented in MATLAB.
MATLAB is a programming language just like C, C++, and python. In this research, the support vector
machine binary classifier/algorithm based on a one-against-one approach implemented in MATLAB is
applied to remote sensing multi-class problem. Both simulated and empirical satellite remote sensing
data are used to train and test a one-against-one support vector machine classifier. For the purpose of
validating the experiment, the resulting classified satellite image is compared with the ground truth data.
The polynomial kernel function is used for the modelling. In the simulated application, 25 pixels are used
for the experiment, out of which 6 pixels are used for training while 19 pixels are used for testing. Out of
the 19 tested pixels 18 pixels are correctly classified while only 1 pixel is left unclassified. In the
empirical application, 256 and 7182 pixels are unclassified and misclassified respectively out of a total
of 62500 pixels; and the computed overall accuracy of the experiment is 88.1%. The satisfactory result
of the experiment indicates substantial agreement between the classification result and the reference
data.
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1. Preamble
Support Vector Machine (SVM) (Cortes &

Vapnik, 1995) is intrinsically a binary classifier
(Melgani & Bruzzone, 2004). However,
applications of binary classification are very
limited especially in remote sensing land cover
classification where most of the classification
problems involve more than two classes. Two
prominent methods of implementing multi-class
tasks using binary classifiers are: one-against-
one (1A1) and one-against-all (1AA). One major
disadvantage of 1A1 and 1AA is that both
methods often yield unclassified  regions. The

objective of this work therefore is to illustrate how
a binary 1A1 polynomial kernel based SVM
classifier can be applied to multi-class satellite
remote sensing task. Both simulated and
empirical data are applied in this research to
illustrate the implementation of a 1A1 SVM
approach.

2. Support vector machine
The concept of the SVM was introduced

by Cortes and Vapnik (1995). SVM employs the
principle of Structural Risk Minimization (SRM),
which makes them robust and independent of
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underlying data distributions (Joachims, 1999).
Given a binary classification problem that

belongs to classes -1 and +1 respectively; these
two classes can be separated with a linear
hyperplane (see Figure 1). To separate these two
sets of objects, we need to choose a few training
samples. Now, let us assume that our training set
has n-training samples, that is,

),(),...,,(),,( 2211 nn yxyxyx , where N
ix  is

an N dimensional vector that belongs to one of
classes }1,1{ iy . The stated binary
classification problem can only be separated
using a linear decision function (Vapnik, 2000),

bxwxf )( (1)

where Nw  is a vector that determines the orientation of our desired hyperplane required for the
separation, and b is called the “bias.”

We can see from Figure 1 that our optimal hyperplane needed to separate the two objects is,
1)(  bxwyi  . (2)

Figure 1: Separating non-separable data with linear separable hyperplanes. Adapted from Ivanciuc
(2007, p. 318)

       As shown in Figure 1, some of the objects that belong to the two datasets we are trying to classify
may end up being misclassified. It is important to account for this misclassification in our modelling; in
that case, we have to introduce variables ; they are called “slack variables;” they will be used to
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represent objects that were misclassified. Let us now incorporate the slack variable in equation 2; which
can be revised as,

ii bxwy  1)(  . (3)

      We can see from Figure 1 that our optimal hyperplane is 0)( xf , which lies between classes +1
and -1; it is actually located at the point of maximum separation between classes +1 and -1, as well as
the point of minimum error in course of the separation. At this point, the solution to this problem can be
found by solving the following constrained optimization problem (or primal problem) (Vapnik, 2000),

Minimise 



n

i
iCww

12
1  (4)

subject to: ii bxwy  1)( , 0i , and for ni ,...,1 ; where C  , C0 , is called the
penalty value or regularization parameter.
      According to Ivanciuc (2007), C  is a trade-off between misclassified points and achieving the
maximum margin during the training; C  is usually chosen by trial-and-error. According to Vapnik
(2000), we can solve the primal problem given in equation 4 using the Lagrangian function,
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      The optimization problem or dual form resulting from the application of equations 6 – 8 to the primal
problem given in equation 4 can be expressed as,

Maximise:  
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subject to: 
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0 , and, Ci 0 , for ni ,...,1 .

      Therefore, the decision function for the linear case can be given as,
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where ix  are the training samples; iy are the target labels of the training samples (such that,

}1,1{ iy ); 0
i  are the Lagrangian multipliers; 0b  is known as  the “bias;” while x  denotes the test

set.
According to the Karush-Kuhn-Tucker (KKT) optimality condition (Fletcher, 1987), some of the

the Lagrangian multipliers will be zero. The points of ix whose Lagrangian multipliers are nonzero
values are called “support vectors.”

Now let us consider a nonlinearly separable problem; that is a case where a linear hyperplane
cannot separate the data without error or having some points misclassified. As shown in Figure 2, a
nonlinearly separable problem can be separated using a nonlinearly separable hyperplane. The result is
a nonlinear separation between classes +1 and -1 (see Figure 2). This task is done by using a nonlinear
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function   to map the data onto a higher dimensional feature space (see Figure 2). In that case a
kernel function K  is introduced, such that (Vapnik, 2000),

)()(),( j
T

iji xxxxK   . (11)

Figure 2: The process of classifying a nonlinearly separable data. Adapted from Ivanciuc (2007, p. 323)
Separation in the feature space does not require that  be determined explicitly; therefore it is

more convenient to use the kernel function for our computation. The derivation of ),( ji xxK from

)()( j
T

i xx  is based on the Mercer's theorem (Mercer, 1909; Cristianini & Shawe-Taylor, 2000). The

optimization problem for the nonlinear case can be derived by replacing ixx   with ),( ji xxK in
equation 9, and we can revise equation 9 as,

Maximise:  
  


n

i
jiji

n

i
j

n

j
ii xxKyy

1 1 1
),(

2
1  (12)

subject to: 
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       The decision function given in equation 10 can also be revised by replacing  with

; therefore the decision function for the nonlinear case can be written as,
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Given two arbitrary support vectors Ax  class A and Bx  class B, the bias can be evaluated as,
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1   (Vapnik, 2000). (14)

The kernel ),( ji xxK can be any of the following common kernel functions: the linear kernel ixx  ,

polynomial kernel d
ixx )1(  , and Radial Basis Function (RBF) kernel
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xx
xxK   (Vapnik, 2000). The polynomial and RBF are nonlinear kernel

functions. The parameters: gamma   and polynomial order d  control the shape of the separating
hyperplane.

3. Simulated application: One-against-one SVM classification

Given a simulated ground truth data (Table 1) with a matrix size of 5 x 5, and equivalent simulated
satellite remote sensing multi-spectral data that consist of three spectral bands (see Tables 2, 3, and 4),
we intend to the classify the satellite data given in Tables 2, 3, & 4 into  three classes: water,
undeveloped, and developed. Our objective here is to use the satellite spectral bands given in Tables 2,
3, & 4 to derive the ground truth data given in Table 1. All the three spectral bands in Tables 2, 3, and 4
contain hypothetical DN values.

Table 1: Ground truth data (water=1, undeveloped cells=2, and developed cells=3)

1 1 1 1 2
1 1 1 2 2
3 3 1 2 2
3 3 2 2 2
3 3 3 2 2

Table 2: Band 1

1 0 4 2 26
8 10 9 27 20
42 40 7 26 24
47 43 22 29 30
46 45 50 23 25

Table 3: Band 2

78 73 72 74 103
75 70 80 104 101
180 190 76 106 108
186 182 100 109 107
188 184 183 105 110
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Table 4: Band 3
30 36 34 37 66
33 38 31 67 63
90 93 39 68 62
97 96 60 65 61
92 98 99 66 64

            To classify the satellite data given in Tables 2, 3, & 4, a training set has to be randomly selected.
The training data (six pixels) consist of elements from the three classes (see Table 5).

Table 5: Training data

Water Band 1 (1,2) =
0

Band 2 (1,2) = 73 Band 3 (1,2) = 36

Water Band 1 (2,1) =
8

Band 2 (2,1) = 75 Band 3 (2,1) = 33

Undeveloped Band 1 (1,5) =
26

Band 2 (1,5) =
103

Band 3 (1,5) = 66

Undeveloped Band 1 (2,4) =
27

Band 2 (2,4) =
104

Band 3 (2,4) = 67

Developed Band 1 (3,1) =
42

Band 2 (3,1) =
180

Band 3 (3,1) = 90

Developed Band 1 (4,2) =
43

Band 2 (4,2) =
182

Band 3 (4,2) = 96

For modelling convenience let the
remaining nineteen cells that were not used for
training the classifier (see Table 6) represent the
test set. Conventionally the size of the test set is

usually smaller than that of the training set in
machine learning. But for the purpose of
illustration, let the remaining nineteen cells serve
as the test set.
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Table 6: Test data

Band 1 (1,1) = 1 Band 2 (1,1) = 78 Band 3 (1,1) = 30
Band 1 (4,1) =

47
Band 2 (4,1) = 186 Band 3 (4,1) = 97

Band 1 (5,1) =
46

Band 2 (5,1) = 188 Band 3 (5,1) = 92

Band 1 (2,2) =
10

Band 2 (2,2) = 70 Band 3 (2,2) = 38

Band 1 (3,2) =
40

Band 2 (3,2) = 190 Band 3 (3,2) = 93

Band 1 (5,2) =
45

Band 2 (5,2) = 184 Band 3 (5,2) = 98

Band 1 (1,3) = 4 Band 2 (1,3) = 72 Band 3 (1,3) = 34
Band 1 (2,3) = 9 Band 2 (2,3) = 80 Band 3 (2,3) = 31
Band 1 (3,3) = 7 Band 2 (3,3) = 76 Band 3 (3,3) = 39
Band 1 (4,3) =

22
Band 2 (4,3) = 100 Band 3 (4,3) = 60

Band 1 (5,3) =
50

Band 2 (5,3) = 183 Band 3 (5,3) = 99

Band 1 (1,4) = 2 Band 2 (1,4) = 74 Band 3 (1,4) = 37
Band 1 (3,4) =

26
Band 2 (3,4) = 106 Band 3 (3,4) = 68

Band 1 (4,4) =
29

Band 2 (4,4) = 109 Band 3 (4,4) = 65

Band 1 (5,4) =
23

Band 2 (5,4) = 105 Band 3 (5,4) = 66

Band 1 (2,5) =
20

Band 2 (2,5) = 101 Band 3 (2,5) = 63

Band 1 (3,5) =
24

Band 2 (3,5) = 108 Band 3 (3,5) = 62

Band 1 (4,5) =
30

Band 2 (4,5) = 107 Band 3 (4,5) = 61

Band 1 (5,5) =
25

Band 2 (5,5) = 110 Band 3 (5,5) = 64

The formulation of the 1A1 technique is
such that an 2/)1( NN  binary classifiers are
required to train any two classes of interest;
where N  denotes the number of classes. One-
against-one (1A1) classification is also called
“pairwise classification.” The rule of the 1A1
classification is that the class label that occurs

most is assigned to that point otherwise that pixel
is left unclassified.
      The modelling was implemented in MATLAB
using the polynomial kernel of degree, d=2. The
penalty value was, C=100. The training and test
results are given in Table 7.
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Table 7: Training and test results (training result: 0b & 0 ; test result: )(xf )

Water (+1) versus Undeveloped (-
1)

( )3074.20 b

Developed (+1) versus Water (-1)
( )151054.70  eb

Undeveloped (+1) versus Developed
(-1)

( )1741.20 b
0 )(xf 0 )(xf 0 )(xf

0 1.0554 0.1429*1.0e-06 -1.9739 0 1.6661
0.2322*1.0e-07 -7.2163 0 2.4358 0.2843*1.0e-08 -1.2775
0.2322*1.0e-07 -7.0489 0 1.4966 0.2843*1.0e-08 1.6954

0 1.0018 0.9002*1.0e-06 -0.4052 0 -1.2283
-7.0825 -0.2757 1.7061
-7.0862 2.1642 1.6307
1.0908 -1.2254 1.1327
0.9062 -1.2160 -1.2432
0.8577 -0.9749 1.6307
-0.6363 0.6100 1.1327
-7.2028 3.7322 -1.2432
1.0005 -1.4550 1.6753
-1.1863 1.3749 0.9623
-1.2553 1.5435 0.9205
-1.0338 0.8222 1.0050
-0.7379 0.4043 1.1033
-1.0377 0.5959 0.9787
-1.0569 1.5756 0.9806
-1.1998 0.7594 0.9257

      From Table 7, scores with 0)( xf  were coded 1, while scores with 0)( xf  were coded 0. The
results from the three binary classifiers are given in Tables 8, 9, and 10. These MATLAB codes were
applied to the outcome of the three classifiers given in Tables 8, 9, and 10 to derive the result of the
final classified satellite image given in Table 11:

WATER = (WATER_UNDEVELOPED==1) & DEVELOPED_WATER==0);
DEVELOPED = (DEVELOPED_WATER==1) & (UNDEVELOPED_DEVELOPED==0);

UNDEVELOPED = (UNDEVELOPED_DEVELOPED==1) & (WATER_UNDEVELOPED==0);

RESULT_1A1 = WATER + 3* DEVELOPED + 2* UNDEVELOPED

Only one cell remained unclassified; while eighteen cells were correctly classified. The resulting
classified satellite image using the 1A1 SVM model (see Table 11) was compared with the actual
ground truth data given in Table 1; the classification accuracy is therefore 18/19 = 94.74%. Using the
cell-by-cell method of evaluation, the actual (ground truth data) and the predicted data (classified
satellite image) were used to derive the confusion matrix given in Table 12. The classification overall
accuracy (computed from Table 12) = Sum of diagonal elements ÷ Sum of all elements in the matrix.
Therefore, overall accuracy = 24/25 = 96%.
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Table 8: Result for water versus undeveloped (water = 1; undeveloped = 0)

1 1 1 1 0
1 1 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Table 9: Result for undeveloped versus water (undeveloped = 1; water = 0)

0 0 0 0 1
0 0 0 1 1
1 0 0 1 1
1 1 1 1 1
1 1 1 1 1

Table 10: Result for undeveloped versus developed (undeveloped = 1; developed = 0)

1 1 1 1 1
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1

Table 11: Final classified satellite image for 1A1 SVM (unclassified =0, water =1, undeveloped =2, and
developed =3)

1 1 1 1 2
1 1 1 2 2
3 0 1 2 2
3 3 2 2 2
3 3 3 2 2

Table 12: Confusion matrix for 1A1 SVM result

Reference data
Water Undeveloped Developed Unclassified

Predicted data
Water 8 0 0 0

Undeveloped 0 10 0 0
Developed 0 0 6 0

Unclassified 0 0 1 0

4. Empirical application: One-against-
one SVM classification

A multi-spectral Landsat 7 ETM image of
Porirua, New Zealand, acquired in 2006 was
used for the experiment (see Figure 3). The
Landsat image consists of seven spectral bands,
and has a cell size of 25m x 25m. The original

satellite data were first reviewed in GIS (ArcGIS
software); and all seven bands were extracted
using the layer properties tool and visualised in
MATLAB (see Figure 3). Before importing the
data into MATLAB, they were first converted from
raster to ASCII data using the ArcGIS conversion
tool. MATLAB cannot read raster files; hence the
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data must be in ASCII format for onward
processing in MATLAB. In MATLAB the final
study area was extracted from the original
satellite image. Some regions of the satellite
image were affected by cloud, which was why the
final study area did not include those regions
affected by cloud. All the seven bands were used
for the classification experiment. The stratified
random sampling was used to select the training
data. The experiment was implemented with a

polynomial kernel of degree d = 20, and penalty
value C = 100. The resulting classified image
was visualised in the GIS. The results of the one-
against-one SVM experiment are given in Figure
4 and Table 13. The confusion matrix given in
Table 13 was computed by comparing the result
of the 1A1 SVM classification and the reference
data given in Figure 4. Using the confusion matrix
given in Table 13, the computed overall accuracy
was 88.1%.
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Figure 3 Extracted bands 1 - 7 of Landsat image of Porirua and original Landsat image of Porirua, New Zealand
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Table 13: Confusion matrix for 1A1 SVM classification (unclassified pixels = 256)

Reference data
Developed Undeveloped Water Unclassified

Predicted data
Developed 11856 1472 1 0

Undeveloped 5307 36393 0 0
Water 95 308 6812 0

Unclassified 29 223 4 0

CONCLUSION
This study illustrated basically how the

1A1 SVM algorithm can be applied to the
classification of satellite remote sensing data.
The essence of first illustrating the experiment
using simulated data was to help explain how the
empirical experiment was implemented. In the
simulated modelling, from Table 12, no water and
undeveloped cell was wrongly predicted; while
one developed cell was left unclassified.   In the
empirical modelling, from Table 13, 1472 and 1
undeveloped and water cells respectively were
wrongly predicted as developed; 5307 developed
cells were wrongly predicted as undeveloped; 95
and 308 developed and undeveloped cells
respectively were wrongly predicted as water;
while 29, 223, and 4 developed, undeveloped,
and water cells respectively were left
unclassified. From Tables 12 and 13, note that,
the diagonal elements are the correctly classified

pixels. This research has shown that the
modification of binary classifiers like the support
vector machine can help extend their use to
solving multi-class problems; therefore binary
classifiers could become veritable substitutes for
conventional multi-class classifiers such as, K
Nearest Neighbour (KNN) and Maximum
Likelihood Classifier (MLC).
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