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ABSTRACT 

 

The study of Boundary layer flow of a nanofluid in an inclined moving plane at an angle   is carried out 

analytically using Adomian decomposition method (ADM). The Mathematical equations presented 
incorporate the effects of Brownian motion, thermophoresis and Magnetic parameter. Unlike the previously 

published works which considered a convective heating boundary condition. The present study considered an 

inclined moving plane at angle  in 2-dimensions with thermal conditions of constant temperature and heat 

flux. The solutions to the momentum, temperature and concentration distributions were obtained via the ADM 

and  depends on, Magnetic parameter M, Prandtl number Pr, Lewis number Le, the Brownian motion 

parameter Nb, the thermophoresis parameter Nt and Grashof numbers Gr and Gc. A good agreement was 
established between the Adomian Decomposition method and the Numerical method (Shooting technique) for 

some values of M while other Physical terms on the velocity profile are set to 0. Results are presented in 

graphical forms illustrating the effects of these parameters on Momentum, thermal and concentration 
boundary layers. The momentum boundary layer reduces with increase in the magnetic parameter. 

Keywords: Adomian decomposition method (ADM), nanofluid, boundary layers, inclined plane and 

hydromagnetic. 
 

 

1. INTRODUCTION 

 

The importance of fluid flow over a moving surface in applications like extrusion, wire 

drawing, metal spinning, hot rolling can never be over emphasis. It is crucial to understand the 

heat and flow characteristics of the process so that the finished product meets the desired quality 
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specifications (Altan et al.; 1979). A wide v ariety of problems dealing with heat and fluid flow 

over a stretching sheet have been studied with both Newtonian and non-Newtonian fluids and 

with the inclusion of imposed electric and magnetic fields, different thermal boundary conditions, 

and power law variation of the stretching velocity. Both similarities as well as direct numerical 

solutions of the convective transport equations have been reported. A representative sample of the 

recent literature on the topic is provided by reference (Prasad et al., 2010). 

The stagnation flow for a nanofluid over a stretching sheet was studied by Mustafa et al. 

(2011) analytically. Rashidi et al. (2014) compared the two phases and single phase of heat 

transfer and flow field of copper-water nanofluid in a wavy channel numerically. Beg et al. 

(2014) presented a comparative numerical solution for both single and two-phase models for Bio-

Nano-fluid transport phenomena. Makinde and Aziz (2011), carried the study of boundary layer 

flow of a nanofluid past a stretching sheet with a convective boundary condition using Numerical 

approach and Abu-Nada et al. (2010) illustrated the impacts of variable properties in natural 

convection nanofluid flow. Rashidi et al. (2013) showed how the second law of thermodynamics 

can be applied to MHD incompressible nanofluid flow over a porous rotating disk. Yusuf et al. 

(2016) presented analytical solution of a nanofluid in an inclined permeable wavy channel 

unsteady with Soret and Duffour effects using the Adomian Decomposition Method. Recently, 

Yusuf et al. (2018) considered Boundary layer flow of a nanofluid in an inclined wavy wall with 

convective boundary condition. The problem was solved at  
2

Lx


  (Where Lx is a point on the 

wavy wall) and a flow back was observed in the region closed to the wavy wall.  

Ayub et. al (2016) considered boundary layer flow of nanofluid that is electrically conducting 

over a Riga plate. The numerical model fuses the Brownian motion and the thermophoresis 

impacts because of the nanofluid and the Grinberg term for the wall parallel Lorentz force due to 

the Riga plate in the presence of slip effects. Bahtti et al (2016) describes the combine effects of 

thermo-diffusion and thermal radiation on Williamson nanofluid over a porous stretching sheet. 

Similarity transformation variables have been used to model the governing equations of 

momentum, energy, solute, and nanoparticle concentration. Successive linearization method 

(SLM) and Chebyshev spectral collocation method (CSC) are applied to solve the resulting 

coupled ordinary nonlinear differential equations. The numerical comparison has also presented 

for skin friction coefficient and local Nusselt number as a special case. Qing et al.(2016), 

investigate entropy generation on MHD Casson nanofluid over a porous Stretching/Shrinking 

surface. The influences of nonlinear thermal radiation and chemical reaction were also taken into 

account. They established that concentration profile decreases for higher values of chemical 

reaction parameter and Brownian motion parameter but its behaviours seem to be opposite for 

thermophoresis parameter increases. Bhatti et al (2018) carried out analysis of stagnation point 

flow over a permeable shrinking sheet under the influence of Magnetohydrodynamics (MHD) 

using Successive linearization method. The governing equations are simplified with the help of 

similarity variables. The impacts of various pertinent parameters are demonstrated numerically 

and graphically. It was found that the present methodology converges more rapidly. Hassan et al 

(2018), presentented a study which deals with the PVA solution-based non-Newtonian Al2O3-m 

nanofluid flow along with heat transfer over wedge. It was noticed that resistance between 

adjacent layers of moving fluid is enhanced due to these nanoparticles which leads to decline in 

velocity profile and increases in shear stress at wall. 

To the best of our knowledge, this work, analysis of a boundary layer flow of a nanofluid over 

an inclined plane via ADM is new in the literature.  

 

2. PROBLEM FORMULATION 

 

Considering 2-dimensional steady nanofluid flow in a moving plane, inclined at angle . 

The flow is along y=0 and at this point the wall velocity is assumed to be ax, temperature and 
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concentration are constant, ie TW  and CW   respectively. The velocity is 0 and the temperature and 

concentration are  and CT 
at larger values of y ( y  ). Following the work of Yusuf et 

al.(2019), the 2-dimensional steady state  is governed by the following: 

 

y                                         g 

 

T T  C C  

(x, y) 0u   

 

     

  

 

 

 

 

 

 y=0                                                        

(x, y)u ax                           

 

Figure 1.  Diagram Showing the Flow Model 

 

T=TW    C=CW     
 

Continuity equation: 
 

  0
u v

x y

 
 

 
                                                                                                                           (1)          

                                                                  

Momentum equation: 
 

22 2

0

2 2
( )Sin ( )Sin

Bu u u u
u v u g T T g C C

x y x y


  


 

    
         

    
       (2)  

 

Energy equation:  
 

222 2

2 2
( ) ( ) T

B

DT T T T C T C T T T
u v D

x y x y x x y y T x y
 



                                        

  (3)                                                              

 

Nanofraction equation: 
  

2 2 2 2

2 2 2 2

T
B

DC C C C T T
u v D

x y x y T x y

         
        

         
                                (4)                                                           

 

Subject to the boundary conditions:             
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0 :     ,    0,  ,      ,    

:      0,        ,         ,       

W Wy u ax v T T C C

y u T T C C 

     


    
                                           (5)   

 

Nomenclature 

x  and y  are fluid distances 

u   velocities along  x                                                                                thermal diffusivity 

v   velocities along y                                                                            kinematic viscousity 

0B external magnetic field                                                             pC      specific heat capacity 

at constant pressure 

BD    Brownian diffusion coefficient                                             TD  is the thermopheric 

diffusion coefficient 

( )

( )

p

f

c

c





   ratio between the effective heat                                 density,  

g acceleration due to gravity                                                               electrical conductivity  

   volumetric coefficient of thermal expansion                              dimensionless fluid 

distance  

 f    dimensionless fluid velocity                                                 dimensionless fluid 

temperature 

     dimensionless fluid concentration            
 1 W

T

g T T
Gr

a






    Thermal grashof 

number 
 1 W

C

g C C
Gr

a






   Concentration Grashof number             

2

0B
M

a




  

Magnetic parameter                                             Pr



  Prandtl number                                                                    

B

Le
D


  Lewis Number  

( ) ( )

( )

p B W

b

f

c D C C
N

c



 


    Brownian diffusion                   

( ) ( )

( )

p T W

t

f

c D T T
N

c T



 






  Thermopheris parameter 

 

 

From the following dimensionless variables:- 
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a
y


 ,  a xf    

W

T T

T T
  







, and  

W

C C

C C
  







  , we 

have that 
 

  

 

 

 

    

    

   

 

1
2

/

/ / /

/ /

2 / /

2 /2

2 2

2 2

2 2

2

, 0,  

0

a
a x

y x f

f
u axf

y f y

v a f
x

u a
axf axf

y y y y

u
axf af

x x y x

u
v a xf f

y

u
u a xf

x

u

x x y

u

y y

  




  





 

 
 

 


 

 





  
  

  

   
  
   


   



     
   

     

    
   

    


 








   
  

   

 


 
 

 

 

2 / / /

/ /

2

1 

a xfa
axf

y y

ax
Let x

 


  


 




























    

           

 


                (6)                                                                 
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   

   

     

     

   

   

 

/

22 2
/ /

2 2

/

2
/ /

2

2

2

2

2

0

0

0, 0

W

W

W W

W W

W

W

W

T T T T

C C C C

T a
T T T T
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T T a
T T T T

y y y y
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C C

y
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C C

y

T
T T

x x

T

x

C C

x x

 

 

 
 

 

 
 

 

 


 


 



 

 

 

 










   
  

  

    
   


                       




  
 


 



  
  

  






 
 

  













          (7) 

 

Introducing equation (6) and (7) into equations (1) to (5), the equation reduced to the 

following local similarity solution:-  
 

   / / / / / /2 /

/ / / / / /2

/ / / / /

0

Pr Pr Pr 0

0

T C

b t

f ff f Mf Gr Sin Gr Sin

f N N

Nt
Lef

Nb

   

    

  


       





    




   


                        (8)         

 

with corresponding boundary conditions: 

 

       

     

/0 0, 0 1,      0 1,       0 1,  =0

0,     0,        0,   

f f

f

  

  

   




       

                                     (9) 
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3. ANALYTICAL SOLUTION VIA ADM 

 

By ADM, equation (8) can be written as  
 

     

 

 

     

2
1 / / /2 /

2

1 / / / /2

1

1 / / /

1

/ / / /

2

1 Pr Pr Pr

1

  0 , 0  and = 0

T C

b t

f L ff f Mf Gr Sin Gr Sin

L f N N

Nt
L Lef

Nb

where f


      

      

    

    








           





        


 

      
  

  

(10)                        

 

Where  1

2L d d d      and   1

1L d d     

 

Decomposing the dependent variables in (10) by introducing the Adomian polynomials, we 

have  
 

2
1 /

2

0 0 0 0 0 0

1

1

0 0 0 0

1 / /

1

0 0 0

2
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1

n m m m T m C m

n m m m m m

n m b m t m
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n m m

n m m
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L Le G
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 

  

     


     

   


   

  


  

 
          

 



  
       

  



  
      

  

     

   

  

  (11)  

 

Where / / / / / / / / / / /,  ,  C ,  E ,  F  and m n k k m n k k m n k k m n k k m n k k m n k kA f f B f f f G f                , 

Therefore, 
 

 

1 / / / /

1 2

0 0

1 / / / / /

1 1

0 0 0

1 / / /

1 1

0
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n n

n n k k n k k n T n C n
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n
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k
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Nb

 
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  



  

 



   

  



 



 
        

 



  
     

  



  
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 

  



            (12)  
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Where 
0 0 0,    and f e e e           , and Maple 18 were used to compute 

the integrals. 

 

4. RESULTS AND DISCUSSION              

 

The nonlinear coupled ordinary differential equation in (8) with boundary condition (9) has 

been solved using the improved ADM as showed above. Maple 18 was used to obtain the 

integrals and the skin friction has been compared with that of Numerical for different values of 

Magnetic parameter as showed below in Table 1. The values of the auxiliary constants 

,   and     are obtained by invoking the initial conditions in other for the boundary 

conditions to be satisfied and the graphical variation of the physical properties are presented 

below. 

Figures 2 presents the effects of magnetic parameter on velocity profile (a), temperature 

profile (b) and concentration (c). The fluid velocity dropped for higher values of magnetic 

parameter due the drag like force while temperature and concentration thickens for higher values 

magnetic parameter. As the magnetic parameter increases, the rate at which the concentration 

profile thickens becomes low as showed in Figure 2(c). 

 

  
                                      (a)                                                    (b) 

 
(c) 

 

Figure 2. variation of magnetic parameter on Velocity, temperature and concentration profile 
 

G. Bolarin, A. Yusuf, S.T. Adekunle, Y.M. Aiyesimi, M. Jiya    / Sigma J Eng & Nat Sci 37 (2), 475-488, 2019 



483 

 

 
                                         (a)                                                                         (b) 

 

Figure 3. Variation of Thermal Grashof number on Velocity and temperature profile 

 

 
                             (a)                                                  (b) 

 
(c) 

 

Figure 4. variation of Concentration Grashof number on velocity, temperature and concentration 

profiles 
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Figures 3 shows the variation of thermal Grashof number on velocity (a) and temperature 

profile (b).  The velocity and temperature profile of the fluid increases with an increase in the 

thermal Grashof number due to the presence of buoyancy effects. It was also observed that the 

effects of buoyancy is more pronounced in the region far from the moving plane in the 

temperature profile.     

Figures 4 depicts the variation of concentration Grashof number on velocity (a), temperature 

profile (b) and concentration profile (c).  The velocity, temperature and concentration profile of 

the fluid raises as the concentration Grashof number rose which is due to the buoyancy effect.  

The rate of increase in the velocity and temperature profile with increase in concentration Grashof 

number is low. 

 

 
                         (a)                                                 (b) 

 
(c) 

 

Figure 5. Variation of angle of inclination on velocity, temperature and concentration profiles 

 

G. Bolarin, A. Yusuf, S.T. Adekunle, Y.M. Aiyesimi, M. Jiya    / Sigma J Eng & Nat Sci 37 (2), 475-488, 2019 



485 

 

 
                          (a)                                        (b) 

 

Figure 6. Variation of Prandtl number on temperature and concentration profile 

 

 
                            (a)                                                    (b) 

 
(c) 

 

Figure 7. Variation of Lewis number on velocity, temperature and concentration profiles 
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                     (a)                                                     (b) 

 
(c) 

 

Figure 8. Variation of thermopheric parameter on the velocity, temperature and concentration 

profiles 

 

Table 1. Comparison of Skin Friction  / /f  
 

M NM ADM 

0.1 1.0519 1.0488 

0.2 1.0977 1.0955 

0.3 1.1402 1.1418 

0.4 1.1844 1.1832 

0.5 1.2256 1.2248 

0.6 1.2655 1.2649 

0.8 1.3419 1.3416 

1 1.4144 1.4142 

 

Figures 5 present variation of angle of inclination on velocity, temperature and concentration 

profile of the fluid. The fluid velocity is enhanced as the angle increases due to the presence of 

gravity and since the flow is in favour of it. At a very high value of angle of inclination the fluid 

velocity at the wall rises before it finally dropped and the concentration has the tendency to 
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behave sinusoidal. It is also observed that temperature and concentration are also enhanced with 

the angle of inclination.  

Figures 6 is the variation of Prandtl number on the fluid temperature (a) and concentration 

profile (b). As Prandtl number increases, both temperature boundary layer of the fluid and the 

concentration dropped. This shows that at a very high value of Prandtl number, heat is able to 

diffuse out of the system.   

Figures 7 show the effects of Lewis number on the velocity (a), temperature (b) and 

concentration (c) boundary layer. This parameter enhances the fluid velocity boundary layer and 

temperature, but the concentration boundary layer is reduced.  The rate of increase in the 

temperature is very low.    

Figures 8 show the effects of thermopheris parameter on the velocity (a), temperature (b) and 

concentration (c) boundary layer. Increase in this parameter dropped the fluid velocity boundary 

layer and concentration as the fluid moves far from the plane, but has an insignificant effect on 

the temperature boundary layer. It is also observed that there is no significant effect of this 

parameter in the region closer to the wall on the velocity profile.    

 

5. CONCLUSION 

 

The problem of laminar flow in an inclined stretching sheet has been considered in 2-

dimension with magnetic field effect (M) without convective heating. The local similarity  

solution were obtained and solved using the improved ADM and the analytical solution were 

presented which depends on magnetic parameter (M),  thermal and concentration Grashof number 

(Gr and Gc respectively), Lewis number, and Prandtl number. It was found that:- 
 

1. All the graphs presented in this work clearly obey the boundary conditions. 

2. A negative temperature was observed at a very high Prandtl number. 

3. The analytical result presented in this work gives a solution at every point unlike the 

numerical results presented by Makinde and Aziz (2011) which only give results at mesh points. 

4. The flow velocity is in favour of gravity. 

5. The method is in good agreement with numerical method which further enhances the 

integrity of the Adomian Decomposition Method in handling nonlinear coupled differential 

equations. 

6. This work, if implemented will serve as a guide to industrialists that specialises in the 

development of high thermal conductivity fluid as to how each of the physical property influences 

the fluid velocity, temperature and concentration profile.  
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