
Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1450

Analysis of Statically Determinate Trusses using

Exact Method (Joint Resolution Method) and

Matrix Stiffness Method

A. Abdullah , I. T. Yusuf², M. Abubaka , H. O. Aminula , A. Yusuf5 and

B. Alhaj
1,3,4,5,6Civil Engineering Department, Federal University of Technology,

Minna, Nigeria
2Civil Engineering Department, University of Ilorin,Ilorin, Nigeria

katchali20@yahoo.com ityusuf4@gmail.com

Abstract
Matrix Stiffness Method (MSM) as a tool for static analysis of structures is

premised on the principle of Finite Element Method (FEM), which in itself is
a numerical/approximate method capable of giving only approximate results.

However, Joint Resolution Method (JRM) is one of the most popular

classical/exact methods of static analysis capable of giving exact results. This

paper presents an analysis of a statically determinate 2-D truss using

Exact/Joint Resolution Method (JRM) and Matric Stiffness Method (MSM)

to ascertain the validity of the latter against the former. In the JRM, the

support reactions and internal member forces were obtained from

considerations of the equilibrium conditions of the entire truss and isolated

joints respectively. On the other hand, a computer program was written in

MATLAB 7.8.0 (R2009a) based on the principles of MSM for ease of

computation and increased accuracy to solve for member forces and reactions

of the same truss. The element properties were obtained and employed to
calculate the element stiffness matrices, these were then assembled into the

global stiffness matrix, from which the unknown displacements, member

forces and support reactions were calculated. The results obtained from using

both JRM and MSM were found to be exactly the same or very close, with

percentage errors ranging between 0% and 3%. Hence MSM results as

compared to JRM have 97% accuracy and above, and can therefore be relied

upon.

Keywords
Statically Determinate, Joint Resolution Method, Matrix Stiffness

Method, 2-D Truss, MATLAB,

mailto:katchali20@yahoo.com
mailto:ityusuf4@gmail.com

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1451

1. Introduction

Exact methods of analysis such as Joint Resolution Method, although have

proven very useful over time, are found to be tedious, time consuming and

highly prone to manual errors. This has led to the emergence of faster
methods (e.g. Matrix Stiffness Method), which, although amenable to

computer manipulations, are mostly premised on numerical methods which

in themselves are approximate methods and give approximate results which

must be checked/validated

A truss is a Civil Engineering Structure consisting of an assemblage of

straight members connected together at their ends. These members are

subjected to loads and reactions only at the joints (Megson, 2005). An ideal

truss is one whose members develop only axial forces (tension and

compression) when the truss is loaded (Kassimali, 2009).

For design requirements of safety, economy and aesthetic preservation as
specified by BS 8110-1997 to be met, it is important that the truss be well

designed, hence the internal forces in the members have to be correctly

analyzed (Megson, 2005). It is worth mentioning that a structural design is

only as good as the analysis that precedes it, which in turn depends on the

accuracy of the method employed in the analysis.

Various methods of analysis can be used for trusses, some of which are

exact/classical methods while others are approximate/numerical methods.

Classical methods, such as joint resolution method and method of sections

for truss analysis, make use of analytical formulations that are applied to

simple elastic models and are often solved manually, while numerical
methods such as finite element analysis (for continuum structures) from

which Matrix Stiffness Method of analysis emanates (for discrete or

discontinuous structures) easily suites computers since they require majorly

matrix manipulations (Chandramouli, 2013). The method of joint resolution

is basically suited for the analysis of statically determinate structures and

uses the free-body-diagram of joints in the structure to determine the forces

in each member by using the force balance in the horizontal (x) and vertical

(y) coordinates of the Cartesian plane at each of the joints in the truss

structure. Matrix Stiffness Method on the other hand, is particularly suited for

computer-automated analysis of complex structures including the statically

indeterminate type as its steps are more definite rather than arbitrary. It is a

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1452

matrix method that makes use of the member’s stiffness relations for

computing member forces and displacements in structures (Kharagpur,

2008). In applying this method, the system is discretized as a set of simpler,

idealized elements interconnected at the nodes. The material stiffness

properties of these elements are then, through matrix mathematics, compiled

into a single matrix equation which governs the behavior of the entire

idealized structure, thus member forces of the truss as well as reactive forces

are obtained. nIn this wise, the comparison of results as generated by both

methods is worthwhile.

2. Methodology

Figure 1 shows a truss with thirteen (13) members and eight (8) nodes. This

truss is analysed using JRM and MSM. Both methods involve the use of

member angles, member lengths and node coordinates that can be gotten

from basic trigonometric and mathematical theorems.

Figure 1: A 12.5m by 9.5m Statically Determinate 2-D Truss

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1453

2.1 Joint Resolution Method (JRM)

This method relies on the fact that a structure in equilibrium has all its

constituent joints in equilibrium. The structure was descretized into

joints/nodes, which were denoted by letters or numbers; equations of static

equilibrium were then employed to obtain all forces emanating from and

coming into each joint. This process was repeated until all member forces

and reactions were obtained as specified by (Hibbeler, 2006).

2.2 Matrix Stiffness Method (MSM) using MATLAB

This method uses the matrix equation 2.1 and 2.2 to obtain member forces,
support reactions as well as nodal displacements.

(

) [

] (

) (1)

This implies that;
() ()

() () (2)

(Ray and Joseph, 1975

Where = external force applied at free node(s), Fc = support Reactive

force(s) = stiffness at the node(s) free in horizontal and vertical

directions, = stiffness at the node(s) free in horizontal and constrained in

vertical directions, = stiffness at the node(s) constrained in horizontal and

free in vertical directions, = stiffness at the node(s) constrained in

 = constrained displacements

In using MSM to analyze the given truss, some lines of codes were written

for the MATLAB program as recommended by (Kattan, 2006) to determine

the member forces in accordance with the operating principles of MSM. For

this MATLAB program, two text files - element-properties file and load-

properties file are required. The first file contains the coordinates in x and y

directions for nodes 1 and 2 respectively, for a particular member, cross

sectional area, modulus of elasticity, and separated by tab, while the second

text file contains the node number, load in x-direction, load in y-direction and

support constraints (null- for external loads, roller for roller support and
pinned for pin support) respectively, for nodes with loads/reactions and

separated by tab.

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1454

2.3 Flow Chart for both Methods

The procedures for the use of JRM and MSM (along with the MATLAB

program) as employed in the truss analysis are as shown in the flow chart

presented in Figure 2. Figure 2: Flowchart employed

Figure 2: Flowchart employed in the analysis

Start

MATLAB Joint Resolution

Method
Matrix Stiffness

Method

Input: Text files

containing Element

properties

Obtain the element

properties

Obtain the forces in

the members

Sectionalize the Force

Vector

Determine the

support reactions

Sectionalize the global

stiffness matrix

Assemble the global

stiffness matrix

Determine the element

stiffness matrices

End

Input: Text files with

Load Properties

Input: Number of

nodes

Solve for unknown

displacements

Input: Number of

members

Calculate support

reactions and angles

Apply equilibrium

equations to joint

Run the script or M

File Discretize the truss

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1455

3. Results and Discussions

3.1 Responses from using the Method of Joint Resolution

Figure 3 shows the external forces acting on truss AB and the reactions

developed therefrom, while the concurrent force at joint A are shown in

Figure 4..

Taking moment about Joint A in Figure 3 results in,

Ʃ

Ʃ

 =

A typical JRM Operation on joint A

From Figure .3,

5000
A

9500

B G

30kN

RB RA

Figure 3: A Section of external forces and the reactions

developed reactions and external force

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1456

From Figure 4,

Ʃ

And,

 (3)

Ʃ

From Equation (3),

 ()

3.2 Responses from using the Matrix Stiffness Method

First Input Data

Tables 1 and 2 represent the input data for the written MATLAB program

premised on the Matrix Stiffness Method.

FAD

θ1

FAB

27kN

A

Figure 4: Concurrent forces at joint A

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1457

Table 1: Externally applied loads and constraints

Node Load in x-direction Load in y-direction Constraints

1 0 -30 Null

7 0 0 Roller

8 0 0 Pinned

Table 2: Element properties.
X1coord Y1coord. X2coord Y2coord. Area Modulus Node1 Node2

9.5 11 3.5 12.5 0.001 1000 1 2

3.86 9.5 9.5 11 0.001 1000 4 1

0.76 9.5 3.5 12.5 0.001 1000 3 2

3.86 9.5 3.5 12.5 0.001 1000 4 2

0.76 9.5 3.86 9.5 0.001 1000 3 4

0.4 5 0.76 9.5 0.001 1000 6 3

4.40 5 0.76 9.5 0.001 1000 5 3

4.40 5 3.86 9.5 0.001 1000 5 4

0.4 5 4.40 5 0.001 1000 6 5

0 0 0.4 5 0.001 1000 8 6

0 0 5 0 0.001 1000 8 7

5 0 0.4 5 0.001 1000 7 6

5 0 4.40 5 0.001 1000 7 5

First Output Data

The output/results as obtained from the MATLAB program are as shown

below:
matrixstiffnesstruss

enter no of nodes:

enter no of members:

Second Input Data

matrixstiffnesstruss

enter no of nodes: 8

enter no of members: 13

Second Output Data

A typical stiffness matrix (for member GF)

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1458

K(GF) = (1/ α)*

 1 2 3 4

 0.1522 -0.0380 -0.1522 0.0380

 -0.0380 0.0095 0.0380 -0.0095

 -0.1522 0.0380 0.1522 -0.0380

 0.0380 -0.0095 -0.0380 0.0095

Displacements in mm

 = 1228.0975α; = -5434.2496α; = 2028.4194α;

 = -704.6498α; = 517.3803α; = 268.6877α;

 = 331.3803α; = -696.4495α; = -59.7653α;

 =-354.5233α; =-14.7653α; = 137.4793α;

 = -10.8000α; = 0.0000α; = 0.0000α

 = 0.0000α; where α=

Reactive Forces

 = 57.0000kN

 =-0.0000kN

 =-27.0000kN

Member Forces

 () , () (C); F(EF) = 73.92 kN (T);

F(HF) = 69.61 kN (C); F(EH) = 60.00 kN (C); F(DE) = 38.37 kN (T);

 () = 21.00 kN (T); () = 85.19 kN (C); () = 11.25 kN (C);

 () = 27.09 kN (T); () = 2.16 kN (C); () = 15.29 kN (T);

 () = 68.74 kN (C);

3.3 Comparison of Responses from both Methods

Table 3 shows the forces in each member of the truss using JRM and MSM.

The table shows that the forces in members AB, AD, DC, CH and GF are

exactly the same while forces in members BD, BC, DE, CE, EF, EH, HF and

HG differ by a little percentage, with 2.91% as the highest percentage error in

the member forces which may have resulted from accumulated

approximations. It can therefore be deduced from the results that the Matrix

Stiffness Method has at least 97% accuracy as compared to the Joint
Resolution Method. The reactions at nodes A and B are 57 and -27 kN,

respectively for Joint resolution and Matrix Stiffness methods,

correspondingly as presented in Table 4.

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1459

Table 3: Forces in each member using both methods

Table 4: Reactions as obtained from both methods

Reactions Method of Joint

Resolution(kN)

Matrix Stiffness

Method (kN)

RA 57 57

RB -27 -27

4. Conclusions

The analysis of the 2-D statically determinate truss was successfully carried

out. It was based on the Joint Resolution Method (an exact method) and

Matrix Stiffness Method (an approximate method) to determine the member

forces and support reactions. The Joint Resolution Method used was

essentially done manually, while MATLAB 7.8.0. (R2009a) was employed to
write a computer program on the basis of the Matrix Stiffness procedure. F

For the Joint Resolution Method, the different member forces were obtained

by resolving each joint one after the other until all the internal forces were

gotten. For the Matrix Stiffness Method, the element and load properties

were gotten and placed in the text files, the program was then run,

afterwards, the number of nodes and members were entered as the inputs to

Member Method of Joint

Resolution(

kN)

Matrix Stiffness

Method

(kN)

Difference

in Forces

(kN)

Percentage

Difference

(%)

AB 2.16(C) 2.16(C) 0.00 0.00

AD 27.09(C) 27.09(C) 0.00 0.00

BD 15.28(T) 15.29(T) 0.01 0.06

BC 68.73(C) 68.74(C) 0.01 0.01

DE 38.41(T) 38.37(T) 0.04 0.10
DC 11.26(C) 11.26(T) 0.00 0.00

CE 21.02(T) 21.00(T) 0.02 0.10

CH 85.19(C) 85.19(C) 0.00 0.00

EF 73.90(T) 73.92(T) 0.02 0.03

EH 61.80(C) 60.00(C) 1.80 2.91

HF 69.13(C) 69.61(C) 0.48 0.69

HG 60.16(C) 60.17(C) 0.01 0.02

GF 59.93(T) 59.93(T) 0.00 0.00

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1460

the program, and this gave the necessary parameters and also the internal

forces for each member of the truss as the output.

From the outcome of the study, the following conclusions were drawn:

(i) the member forces from the JRM and MSM, when compared, were found

to be very close with at least 97% similarity.

(ii) the Matrix Stiffness Method can, therefore, be safely used in the analysis

of trusses as its approximations were found to be reasonable.

References

BSI-British Standard Institution: BS 8110 (1997): Code of Practice for

Design and Construction.

Chandramouli, P. N. (2013). Fundamentals of Strength of Materials. PHI

Learning Private limited, New Delhi

Hibbeler, R. C. (2006). Structural Analysis. Prentice Hall, Pearson
Education, Singapore

Kassimali, A. (2009). Structural analysis. Cengage Learning.

Karagpur, T. (2008). Structural Analysis: Civil Engineering Course Material

from Kharagpur. Retrieved from: http://civilbook.blog.ir/1394/03/17/iit-

Kharagpur-Structural-Analysis-2nd-ed-2008

&sa=U&ved=0ahUKEwiNrrKh0M_OAhXLB8AKVKYCz0FgglMAI&usg

on 20th June, 2016.

Kattan, P. I. (2006). MATLAB Guide to finite Elements: An Interactive
Approach. Second Edition, Springer Berlin Heidelberg, New York

Megson, T. H. G. (2005). Structural and Stress Analysis,. Elsevier

Butterworth-Heinemann Linacre House Oxford

Ray, W. C. and Joseph, P. (1975). Dynamics of Structures. Mc Graw Hill

Book Company, New York.

http://civilbook.blog.ir/1394/03/17/iit-Kharagpur-Structural-Analysis-2nd-ed-2008
http://civilbook.blog.ir/1394/03/17/iit-Kharagpur-Structural-Analysis-2nd-ed-2008

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1461

Appendix I

Written Functions used in the Program MATLAB (R2009a)

To calculate the Individual Member Stiffnesses

functionmemstiff = assembly(lengt,area,modulus,cos_angle,sin_angle)

%ASSEMBLY collates and returns the individual member stiffnesses

% Function ASSEMBLY helps to develop the individual member stiffnesses

% of a truss, once the element properties are gotten and passed in the

% right order.

% Calling sequence:

% memstiff = assembly(length,area,modulus,angle,node1,node2)

% Define variables:

% constant = stiffness constant

 constant = area * modulus/lengt;

 memstiff =

[cos_angle^2cos_angle * sin_angle -(cos_angle^2) - (cos_angle* sin_angle)

cos_angle * sin_anglesin_angle^2 -(cos_angle* sin_angle) -(sin_angle^2)

 -(cos_angle^2) -(cos_angle * sin_angle) cos_angle^2cos_angle* sin_angle-(cos_angle*

sin_angle) -(sin_angle^2) cos_angle * sin_anglesin_angle^2] .*constant;

End

To calculate the Global stiffness Matrix

function [globstiff] = assembled(globstiff,memstiff,node1,node2)

%ASSEMBLED collates and returns the entire global stiffness.

% Function ASSEMBLED helps to develop the global stiffness matrix for

% the entire truss structure, once the member stiffnesses and node

% numbers of the members are known and passed in the right order.

% Calling sequence:

% globstiff = assembled(globstiff,memstiff,node1,node2)

% Define variable:

% position = Array containing the sequential values of the degrees

% of freedom for that member

 position = [(2 * node1)-1 (2 * node1) (2 * node2)-1 (2*node2)];

globstiff(position, position) = globstiff(position, position) + memstiff;

end

To calculate the Internal Member Forces

function [meforce] =

memforce(area, modulus, lengt, cos_angle, sin_angle, u, node1, node2)

%MEMFORCE collates and returns the internal member forces of a truss.

% Function MEMFORCE helps to calculate the internal member forces in a

% truss once the element properties are known and passed in the right

% order.

% Calling Sequence:

% meforce =

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1462

memforce(area, modulus, lengt, cos_angle, sin_angle, u, node1, node2)

% Define Variable:

% displacement = displacement vector for each member

 displacement =

[(u((2 * node2)-1) - u((2 * node1)-1)); (u(2 * node2) - u(2 * node1))];

meforce =

(area * modulus /lengt) .* ([cos_anglesin_angle] * displacement);

end

Appendix Ii

MATLAB (R2009a) script (Matrix Stiffness Method for 2-D truss)

% Script file :Matrixstiffness.m

% Purpose:

% This program calculates the member forces of a 2-D truss from a

% given set of data for each element.

% Define Variables:

% nodes = The number of nodes in the truss.

% member = The number of members in the truss.

% area = The area of the member.

% modulus = modulus of the member.

% x1coord,y1coord,x2coord,y2coord = Coordinates in x and y directions

% for the first and second nodes of a member respectively.

% node1,node2 = The first and second nodes of a member respectively.

% node = The nodes with either external forces or support reactions.

% loadx,loady = Loads in x and y-directions on a node respectively.

% constraints = conditions- stating either null for external loads,

% pinned for pin support or roller for roller support.

% memstiff = Cell array containing the individual member stiffnesses.

% meforce = Array containing the internal member forces.

% dof = The total number of degrees of freedom for the truss.

% globstiff = The global stiffness for the entire truss.

% pins, rollers = The number of pinned and roller supports in the

% truss respectively.

% lengt = Array containing the lengths of each member.

% cos_angle, sin_angle = The cos and the sine of the angle formed

% respectively by each member.

% i, m, k = loop index.

% restnode = The number of restricted degrees of freedom.

% loads = Array containing external loads.

% position = Array containing the degrees of freedom for each member.

% const = Arrays containing the restricted degrees of freedom.

% kcu = Stiffness corresponding to constrained-unconstrained.

% kuu = Stiffness corresponding to unconstrained-unconstrained.

% uu = Unknown displacements.

% react_force = Support Reaction Forces.

% u = Total displacements.

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1463

nodes = input ('enter no of nodes: ');

member = input ('enter no of members: ');

[x1coord,y1coord,x2coord,y2coord,area,modulus,node1,node2] =

textread ('C:/Users/Dania/Desktop/elementproperties.txt','%f%f%f%f%f%f%d%d');

[node,loadx,loady,constraints] =

 textread('C:/Users/Dania/Desktop/loadproperties.txt','%d%f%f%s');

memstiff = cell(member,1);

meforce = zeros(member, 1);

dof = 2 * nodes;

globstiff = zeros (dof);

 pins = 0;

 rollers = 0;

lengt = zeros(member);

cos_angle = zeros(member);

sin_angle = zeros(member);

fori = 1:member;

lengt(i) =

sqrt((x2coord(i) - x1coord(i))^2 + (y2coord(i) - y1coord(i))^2);

cos_angle(i) = (x2coord(i) - x1coord(i))/lengt(i);

sin_angle(i) = (y2coord(i) - y1coord(i))/lengt(i);

end;

fori = 1:max(size(node));

ifstrcmpi('roller',constraints(i));

 rollers = rollers + 1;

elseifstrcmpi('pinned',constraints(i));

 pins = pins + 1;

end;

end;

end;

restnode = 2 * pins + rollers;

 loads = zeros((dof - restnode), 1);

 letters = ['G','F','E','H','C','D','B','A'];

for m = 1:member;

memstiff{m} =

assembly(lengt(m),area(m),modulus(m),cos_angle(m),sin_angle(m));

fprintf ('K(%s%s) \n', letters(node1(m)), letters(node2(m)));

 position =

[(2 * node1(m))-1 (2 * node1(m)) (2 * node2(m))-1 (2*node2(m))];

firstPos = position(1);

secondPos = position(2);

thirdPos = position(3);

fourthPos = position(4);

fprintf('%10d%10d%10d%10d \n', firstPos, secondPos, thirdPos, fourthPos);

disp(memstiff{m});

globstiff = assembled(globstiff,memstiff{m},node1(m),node2(m));

end;

disp('K =');

disp(globstiff);

const = zeros (1,restnode);

Abdullahi USEP: Journal of Research Information in Civil Engineering, Vol.14, No.2, 2017
et al.

1464

fori = 1:max(size(node));

ifstrcmpi('roller',constraints(i));

const (i) = 2 * node(i);

elseifstrcmpi('pinned',constraints(i));

const (i) = (2 * node(i)) - 1;

const (i + 1) = 2 * node(i);

else

loads((2 * node(i)-1):(2 * node(i))) = [loadx(i);loady(i)];

end;

end;

end;

fori = 1:max(size(const));

if (const(1) == 0)

const(i) = [];

end;

end;

transposed_load = loads';

disp('External loads =');

disp(transposed_load);

globstiff(:,const) = [];

kcu = globstiff(const,:);

globstiff(const,:) = [];

kuu = globstiff;

disp('Kuu ='),disp(kuu);

disp('Kcu ='),disp(kcu);

uu = kuu \ loads;

react_force = kcu * uu;

u = uu;

u(const) = 0;

for k = 1:dof

fprintf ('U%d = %.4fmm;\t', k , u(k));

end;

fprintf('\n');

disp('Reaction Forces =')

disp (react_force);

disp('Member Forces =')

for k = 1:member

meforce(k) =memforce(area(k), modulus(k), lengt(k), cos_angle(k), sin_angle(k), u, node1(k),

node2(k));

if (meforce(k) > 0)

fprintf ('F(%s%s) = %.2fkN (T);\t', letters(node1(k)), letters(node2(k)), abs(meforce(k)));

elseif (meforce(k) < 0)

fprintf ('F(%s%s) = %.2fkN (C);\t', letters(node1(k)), letters(node2(k)), abs(meforce(k)));

else

fprintf ('F(%s%s) = %.2fkN;\t', node1(k), node2(k), meforce(k));

end;

end;

end;

