
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 10 (2015) pp. 152-163

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

Static Code Analysis of Permission-based Features

for Android Malware Classification Using Apriori

Algorithm with Particle Swarm Optimization

Olawale Surajudeen Adebayo1, Normaziah Abdul Aziz2

1Computer Science Department, International Islamic University Malaysia, and

CSS Department, Federal University of Technology Minna, Nigeria
adebayo.olawale@live.iium.edu.my, waleadebayo@futminna.edu.ng

2Computer Science Department,

International Islamic University Malaysia
naa@iium.edu.my

 Abstract: Several machine learning techniques based on

supervised learning have been applied to classify malware.

However, supervised learning technique has limitations for

malware classification task. This paper presents a classification

approach on android malware using candidate detectors

generated from an unsupervised association rule of Apriori

Algorithm. The algorithm is improved with Particle Swarm

Optimization that trains three different supervised classifiers. In

this method, permission-based features were extracted from

Android applications byte-code through static code analysis,

selected and were used to train supervised classifiers. Using a

number of candidate detectors from an improved Apriori

Algorithm with Particle Swarm Optimization, the true positive

rate of detecting malicious code is maximized, while the false

positive rate of wrongful detection is minimized. The results of

the experiments show that the proposed combined technique has

better results as compared to using only supervised or

unsupervised learners.

Keywords: Android Malware; Apriori Algorithm; Particle Swarm

Optimization; Malware Detection; Static Analysis; Supervised

Learning; Unsupervised Learning

I. Introduction

Static code analysis of malware is an analysis of malware
code without actually running the code [36]. In this method,
researcher acquires malicious code from available sources,
decompile the code using a combination of static analysis
tools and interpret the equivalent malicious features. The
available features in android application include Permission-
based features, and API-based features (methods, classes, calls,
functions, Activities, Services etc.) [45]. Permission-based
features are usually requested from the users by the

application before apps can be installed on the android phone.
Only after permission is granted then the apps will be installed
on the phone. The permission-based features could be
categorized into dangerous, normal, and signature. The
dangerous permission, however varies in different
applications, it could be low-level to high-level dangerous
permission. For example, an apps permission that request
access to send, modify or delete memory contents of a phone
is of high security risk (dangerous) while the one with
permission request for network access or prevent phone from
sleeping is of less security risk.

Data mining method of detecting malware has been very
effective in the classification of malware. This field of study
can be classified into supervised and unsupervised learning
strategies and several techniques [1]. The strategy or
technique to be adopted by an expert for the classification task
depends on the nature of data and the problem to be solved,
that is whether the output of the data is categorical or
numerical. Learning techniques for supervised data mining
includes Rain Forest Neural network, decision tree, Bayesian,
Naïve Bayes, Classification-based Multiple Association Rule
(CMAR) [24].
An unsupervised learning technique is based on clustering
algorithm such as k-Nearest Neighourhood and some other
clustering algorithms. Supervised learning can be basically
used for three purposes namely classification, prediction, and
estimation depending on the output of data or whether to
determine present or future circumstances.

In this research, association rules mining of Apriori
Algorithm is improved and used for automatic candidate
generation and selection of android applications’ features for
effective classification. The original Apriori Algorithm was
proposed by Agrawal R. et al [2] in order to address the
problem of mining association rules. The need to improve the
efficiency of mining of frequent item sets (highest occurring

Static Code Analysis of Permission-based Features for Android Malware Classification

153

items), by reducing the times of scanning the database and
reducing the number of candidate item sets, prompted [3] to
propose an improved Apriori Algorithm based on the classic
Apriori Algorithm. The basic idea of Apriori Algorithm is to
generate the frequent itemsets using iterative method in order
to generated rules that meet the minimum confidence to form
rule sets and outputs [3].

Android malware is able to compromise the security of
information on the smartphone. It is a threat since most
facilities available on the conventional operating systems on
computer are also present on the android operating system.
This has made the security of android phone an important task
in order to secure vital information of the users. This security
threat on the android smartphone is compounded as a result of
several attack vectors and surfaces. Attack vectors are
methods through which an attacker carried out its act i.e.
electronic mail attachment, clickable URL, and API functions
while attack surfaces are target’s open flanks or characteristics
of a target that makes it vulnerable to attack i.e. web related
technology (http, html, css, etc.), piece of code from attacker
[37].

The basic ideas in this paper are 1) improving Apriori
Algorithm using Particle Swarm Optimization as the selection
approach for the classification of android malware permission-
based features, and 2) classifying android malware features
using an improved Apriori Algorithm as selection technique to
show its effectiveness over the original Apriori Algorithm and
some other selection techniques for malware classification.
Apriori Algorithm task is basically divided into three namely:
candidate generation, candidate counting, and candidate
selection.

This research adopts Particle Swarm Optimization to
improve the generation of candidate detectors (flagbearers)
which shall otherwise improve the classification process by
maximizing the true positive detection and minimizing the
false positive detection. Particle Swarm Optimization is used
initially to generate candidates for later stage while Apriori
Algorithm is applied for candidate counting and selection in
order to have the best set of candidate detectors for the
supervised training. The researchers obtained several android
applications both good and malicious for the purpose of
classification and prediction. The features were extracted from
both samples after a thorough analysis of .apk files. Three
feature selection approaches were used to select high ranked
features from the set of generated features.

The rest of this paper is organized as follows: related
works to this research is discussed in section II. Section III
discussed the proposed model with its constituent frameworks.
In section IV, empirical study, results and conclusion is given
to the work. Section V is used to explain the experimental
study and discussion. Section VI concludes the discussion of
this paper.

II. Related work

A malware is a computer program that has various kinds of
malicious intents [4]. Mobile malwares are those malwares
designated to operate on the mobile facilities through mobile

applications for malicious activities. Android operating
system being a flexible and open source operating system on
the smartphone has been a major target by malware over time.
Malware detector is a model or algorithm developed to detect
and contain the dastard effects of malicious program [5].
Machine learning techniques have been widely applied in the
classification of malware. The work in [30] used three
different features namely: program header, string features,
byte sequence features and four classifiers (Naïve Bayes, Rule
based classifier, signature based, and Multi-Naïve Bayes
classifier) in classifying malware with all other three
classifiers outperform signature based method. Another work
in [31] combined N-Gram feature with k-nearest neighour
classifier for the classification. Researches in [32], [33] have
also trained different classifiers using malware features
collection and obtained improved performance for different
classifier.

API-based android malware detection has been used in [45]

where the performance of API features malware detection was

compared with permission based detection using four different

classifiers. The behavioural malware detection on mobile

handset in order to curb the casualty in the mobile community

is another detection technique by [6]. Their approach is unique

in the definition of application behaviour. Their approach

observes the programs’ run-time behaviour at a higher level

(i.e., system events or resource-access) than system calls of

[47] and machine instructions of [48]. This higher-level

abstraction improves resilience to polymorphism and

facilitates detection of malware variants, as it abstracts away

more low-level implementation details. Also, the approach

employs a runtime analysis, effectively bypassing the need to

deal with code/data obfuscation [49].

Among the recent and leading literatures on the detection of

malware on mobile platform include Framework For

Analyzing Android Applications (ANANAS) [50] and

lightweight Malware Detection System for Android-based

mobile devices (ANDROMALY) [51]. ANANAS focused on

automated static and dynamic malware analysis using core

framework and analysis plugins while Andromaly monitors

both the smartphone and user's behaviours by observing

several parameters, spanning from sensors activities to CPU

(central processing unit) usage and using several features to

describe behaviours.

Crowdroid [52] is another android malware detector that

uses system calls to detect malicious patterns on the Android

phones. It helps users by sending non-personal, but behaviour-

related data of each application they use to the central server

for malware analysis. A Multi-level Anomaly detector for

Android Malware (MADAM) [53] by Gianluca Dini et al.

detects malware using machine learning classification and

Adebayo and Aziz

154

anomaly-based system by concurrently monitor android at

kernel-level (machine low level) and user layers (application

layer). It combines system calls with the activity monitors and

SMS monitors in order to detect malware. An automated

behavioural analysis system (AMDA) [54] determines

malicious behaviour from benign behaviour through the use of

machine learning techniques.

T. Bläsing et al. [55] also develop an Android Application
Sandbox system for suspicious software detection using
dynamic, single API, clustering and fake API injection
techniques. This application only works on an android
platform. Suhas Holla and Mahima M Katti [56] discussed
Android mobile platform for the mobile application
development, layered approach and the details of its security
information. Andrew Walenstein et al. [57] proposes an
approach for selecting features of mobile malware by using
knowledge of malicious program structure to heuristically
identify malicious portions of applications.

One of the basic techniques of classifying malware into
malicious or benign is data mining. The initial problem of
mining association rules was addressed by Agrawal R. et al.
[2]. Apriori Algorithm where the generated frequent itemsets
were used to generate rules that meet the minimum confidence
to form rule sets and output. The research in [5] used an
association rules mining of Apriori Algorithm to
automatically generate frequent itemsets of program
signatures (malware and benign) and extract features from the
parsed files for subsequent supervised learning. In another
work, Shabtai A. et al. [27] classified games and tools using
features extracted from android .apk files of both application.

Due to the challenges of Apriori Algorithm in generating

large quatities of itemsets and time consuming in testing and

verifying candidate frequent k-items [3], which have resulted

to its inefficiency, different versions of Apriori Algorithm

have been developed that manifested an improvement in the

original algorithm like an improved Apriori Algorithm that

addressed the inefficiency in Apriori Algorithm [3]. This

research, in an effort to improve Apriori Algorithm for the

detection of malicious programs, adopts Particle Swarm

Optimization in the candidate generation of detector so as to

increase the detection process and reduce false alarm rate.

III. The Proposed Improved Model and Its

Associated Frameworks

This proposed improved system is composed of Apriori
Algorithm and Particle Swarm Optimization combined in a
strategic way with negative border as the fitness function for
selection process and signature extraction. The essence of
mining association in malware detection system is to generate
the best set of features called candidate detectors through
unsupervised learning for the supervised training. Association
rule could also be used to extract important information from
the collected features and to discover useful association rules
in the signature. This task can be decomposed into two viz

[24]: first, discovering the large itemsets, that is the sets of
items that have support s above a predetermine threshold;
second, use the large itemsets to generate the signature rules
for the features that have confidence above a predetermine
threshold.

 The Apriori Algorithm consists of three basic steps
namely; generate phase, count phase, and select phase. The
generate phase generates candidate itemsets repeatedly to
discover large itemsets (Large-k-itemsets) using Lk * Lk that
meet up with minimup support and confidence [24]. The

operation is given as in equation 1. Lk * Lk = {A B where A,

B ϵ Lk, and A B= k – 1}…. (1), where k = 1 then Ck of k-
itemsets were generated using equation 2 as candidate in the

next iteration. Lk *(Lk - 1)/k ……………………. (2)

Note: | Lk| denotes absolute value of Lk ; Ck is the subset of k-
itemsets.

The second phase of the algorithm scans the (k-1)-itemsets
to count the support the support for every candidate and select
a large k-itemsets Lk for which support s ≥ min threshold. In
the select phase, only candidates whose support meets the
mininmum threshold are selected for next phase of candidate
generation using minima support and minima confidence. The
detector generated by [5] proved not to be effective due to the
slow generation of candidate detectors by Apriori Algorithm.
Other researches which include [11], [9], [12] have attempted
to provide solution to the association problem of detecting
malware using Apriori Algorithm of association rule mining.

Particle swam optimization (PSO) was developed by
Eberhart and Kennedy [34] in 1995 to address the problem of
optimization. The problem was model against the behavior of
a group of birds searching for food and follows a particular
bird that is nearest to the food. Particle Swarm Optimization
has been applied successfully for the generation of candidate
detector in negative selection algorithm for spam detection [7],
[14], virus detection [8], feature selection [13], [15], [16],
anomaly detection [10], [20], intrusion and misuse detection
[17] [18], [19]. PSO has also proved to be a successful
optimizer in fuzzy system [38], [39], multi-objective problems
[40], and tracking system [41]. It was used with rough set by
[32] in order to improve the effectiveness and efficiency of
selection method. PSO has also evolved in various forms [44],
[42], [43] in a bid to improve the original PSO by Kennedy
[34].

A. Support of the Rule and Confidence

A mathematical formality of support of the rule and

confidence of the rule of association rule used in this research

is as follows:

D represents dataset;

P and Q denote itemsets;

Si denotes sequences;

P => Q denotes if a sequence s contain in itemset P then it is

also likely to contain in itemset Q.

Static Code Analysis of Permission-based Features for Android Malware Classification

155

The threshold minsupp & minconf are parameters specified by

user to indicate rule interested in.

Given a minsupp, an itemset P is said to be frequent in the

dataset D if support D (p) ≥ minsupp

A sequence whose support satisfies minsupp is called a

frequent sequence

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 𝑃 =

> 𝑄 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝐷 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑆 𝑖𝑠 𝑡ℎ𝑒

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (%)𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆 𝑖𝑛 𝐷 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛

𝑃 → 𝑄

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐷(𝑃 → 𝑄) =>
|{𝑆′ ∈ 𝐷| |𝑃 → 𝑄 ∁ 𝑆′}|

|𝐷|

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 𝑃 =

> 𝑄 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝐷 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑆 𝑖𝑠 𝑡ℎ𝑒

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (%)𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆 𝑖𝑛 𝐷 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛

𝑃 𝑡ℎ𝑎𝑡 𝑎𝑙𝑠𝑜 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑃 → 𝑄

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐷(𝑃 → 𝑄) =>
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐷(𝑃 → 𝑄)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐷(𝑠)

=
|{𝑺′∈𝑫| |𝑷 →𝑸 ∁ 𝑺′}|

|{𝑺′∈𝑫| |𝑷 ∁ 𝑺′}|

The Original Apriori Algorithm Pseudocode

// Input: Database D, minimum support threshold; min-sup

// Output: Frequent itemsets F in D

Let L1 be large 1-itemsets

Let k be counter, the number of instances in the database D

For k = 2

 Lk-1 ≠ ϕ

 k = k+1

Ck = Itemset.gen {Fk-1, minsup}; // Randomly generate

candidate itemsets

Public Sub Itemset.gen:

For each itemset I1 ϵ Lk-1

 For each itemset I1 ϵ Lk-1

 If (I1[1] = I2[1]) and (I1[2] = I2[2]) and … and (I1[k-2] =

I2[k-2]) and (I1[k-1] = I2[k-1]) Then

 Concatenate I1 and I2 to form p; // the generated

candidates

 If there exist infrequent.subset (p, Lk-1) Then

 Delete p; // remove infrequent itemsets

 Else insert p into P

 End

 End

 End for

Return C

End Sub

Public Sub infrequent.subset:

 For each itemsets(k-1).subset g of p

 If g ϵ Lk – 1 then return TRUE else Return FALSE

End Sub

For all transactions t ϵ D

 Ps is a subset of (Pk, s)

For all candidates p ϵ Ps

Pc: p = p + 1

End for

Fk = {p ϵ Ps | Pc ≥ minsup}

End for

Return L = set of Lk

Figure 1. Original Apriori algorithm Pseudocode [2]

B. Optimization of Apriori Algorithm Candidate

generator with Particle Swarm Optimization (AA-PSO)

The most important task in Apriori Algorithm is the candidate
generation of large k-itemsets with highest frequency and the
association of rules. The problem is to generate large k-
itemsets that meet the minima support and confidence in a
short period of time with efficiency. This paper presents a
technique to optimize the generation of large k-itemsets using
PSO in order to increase the effectiveness of feature selection,
classification and detection model. The particle’s velocity and
position in an updated standard PSO was given in equations (3)
and (4) respectively below:

𝑉𝑖𝑑(𝑡 + 1) = 𝑤𝑉𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑖𝑑𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖𝑑(𝑡) +

 𝑐2𝑟2(𝑃𝑔𝑑𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖𝑑(𝑡) (3)

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑉𝑖𝑑(𝑡 + 1) (4)

where i = 1, 2, …, n, n represent the number of particles in the

swarm, d = 1, 2, …, D, D is the dimension of solution space.

w ϵ [0,1] is the inertia weight associated to the given particle

velocity and position to ensure balance between the local and

global search best. Also c1 and c2 represent the nonnegative

learning factor while r1 and r2 uniformly distributed random

numbers in the interval [0, 1]. The velocity Vid ϵ [-Vm, Vm],

where Vm is a maximum velocity predefine by the users in

relation to the objective function. In this paper, we used

infrequent items otherwise known as negative border or

atypical factor as the fitness function in order to reduce the

time and space complexity.

Adebayo and Aziz

156

Figure 2. Particle Swarm Optimization model [34]

Table 1. Samples of Common Dangerous Permissions in the
Android Applications.

Permissions Descriptions Malicious Effects

android.permission.WRITE_C

ONTACTS

Allows Application to

modify the contact data

store on the phone

Malicious Apps can use

this permission to erase or

modify contact data

android.Permission.READ_C

ONTACTS

It reads contact data Malicous Apps can use

this permission to send

data to third party

android.permission.ACCESS_

COARSE_LOCATION

Access network-based

location sources

Allows malicious apps to

determine an approximate

user’s location

android.Permission.WRITE_E

XTERNAL_STORAGE

Modify/delete SD card Allows app to write to the

SD card

android.permission.RESTART

_PACKAGES

Restart the application Allows app to be restarted

android.permission.SEND_SM

S

Send SMS to undisclosed

location

Allows SMS to be sent

without user consent

android.permission.READ_LO

GS

Read the contents of

system’s log files

Allows apps to discover

information using phone

for

android.permission.RECEIVE

_SMS

Receive content of user

SMS

android.Permission.INTERNE

T

Full Internet Access Allows application to

create network sockets

android.permission.READ_PH

ONE_STATE

Read phone state and

Identity

This permission allows

app to determine phone

number and serial number

of a particular phone

C. Proposed Model Framework

The existing detection algorithm uses Apriori association
analysis for its signature extraction which was characterized
with shortcomings. This proposed model used Apriori
association analysis that has been improved with Particle
Swarm Optimization in order to improve the effectiveness and
efficiency of the detection and model performance. The
Particle Swarm Optimization is used to generate candidates in
the early stage with updated velocity and distance as given in

equation (3) and (4). After the candidate generation stage, the
Apriori Algorithm is applied to calculate the supports and
eventually generate set of best candidate detectors for
supervised learning as shown in figure 3.

Figure 3. Proposed Improved AA-Particle Swarm
Optimization candidate generation model

D. Fitness Function

Negative border otherwise called Atypical factor was used in
this research as fitness value to calculate fitness function in
order to generate set of acceptable and high ranked features
that were otherwise use for model training. Negative border is
a set of candidate detectors that are infrequent in the data but
whose support is counted. These values increase the efficiency
in the generation of large candidate detectors. Orthogonalized
Gnanadesikan-Kattenring estimator, OGK estimate [28] was
adopted in estimating the distance between the instances of

Start

Initialise the variables parameters

Update the Particles iteratively using Vid and Xid

 global best particle = Pgbest

Measure the Fitness value for each particle

 Pgbest = Update the Particles Vid and Xid

 Pgbest?

All Particle Search?

Max Cand or Cand = fitnesss? value?

 Return Candidate detectors with min Threshold

Stop

Count ≥ minSup?

Count the Support of each Candidate

Select the Lk-1Candidates that meet minSup &

Confidence

Select the Lk Largest andidates minSup ≥

Threshold

Yes No

Yes

No

No

Yes

Yes

No

Start

Initialize the variables parameters

Update the Particles iteratively using Vid and Xid

Store the global best particle i.e M = Pgbest

Evaluate Fitness function

Termination using stop criteria i.e. Max no of generation or

presetting solution accuracy

End

Return best particle(s)

Static Code Analysis of Permission-based Features for Android Malware Classification

157

the particle population while an efficient outlier mining
algorithm [29] was used in getting the atypical instances
called outlier.

The algorithm that used to generate typicality instances and

atypical factors is given below:

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺
= {𝐺1, 𝐺2, … 𝐺𝑁 𝑅𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝐺𝑖 𝑖𝑠 𝑎𝑛 𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟

 𝑤𝑖𝑡ℎ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉𝑖 𝑎𝑛𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐷 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑖 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒.
𝑇ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑅 𝑡ℎ𝑎𝑡
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑒𝑙𝑜𝑤 𝑎𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟𝑠:

𝐺𝑖 = {𝐺𝑖1, 𝐺𝑖2, … 𝐺𝑖𝑛 }
𝑇

𝑉 = [

𝑉11 𝑉12 ⋯ 𝑉1𝑛

⋮ … ⋮
𝑉𝑖1 ⋯ 𝑉𝑖𝑗

] (5)

𝑤ℎ𝑒𝑟𝑒 𝑉𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑

 𝑉𝑚𝑎𝑥 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐷

= [

𝐷11 𝐷12 ⋯ 𝐷1𝑛

⋮ … ⋮
𝐷𝑖1 ⋯ 𝐷𝑖𝑗

] 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑖 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∈ 𝐺 𝑠𝑎𝑦 𝑋 𝑎𝑛𝑑 𝑌𝑎𝑛𝑑 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦

 𝑘 = 𝑑(𝑋, 𝑌). (6)

𝑁𝑜𝑤 𝑖𝑓 𝑋, 𝑌 ∈ 𝐺 𝑎𝑛𝑑 𝑋 ≠
𝑌, 𝑘 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑌, 𝑋1 , 𝑋2, 𝑋3 … 𝑋𝑘 is

given as

𝑃𝑘(𝑌) (7)

The sorting of equation (7) in descending order yield a set of

typicality scores for every instances. The least integer

numbers n that are not lie within the neighbourhood of

instances i is called Atypical factors otherwise known as

Outliers while the topmost integers for other instances are the

candidate detectors otherwise called class prototypes [1].

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑅 = 𝑟𝑖𝑗

𝑤ℎ𝑒𝑟𝑒 𝑟𝑖𝑗 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 (−1, 1)

Note: The neighbourhood of k is denoted by 𝑇𝑘(𝑌𝑖) , if

𝑁 ∈ 𝑇𝑘(𝑌𝑖) > k then 𝐹, 𝑓𝑖𝑟𝑠𝑡 𝑛𝑜𝑑𝑒 ∈ 𝑇𝑘(𝑌𝑖) = 0 else

𝑇𝑘(𝑌𝑖) = 𝑇𝑘(𝑋𝑗) = 0

 𝑤ℎ𝑒𝑟𝑒 𝑇𝑘(𝑋𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑇𝑘(𝑌𝑖) 𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡 𝑘𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟.

The algorithm is described by figure 4.

Input: G // Random Particle Population

 i // 𝑖 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝐺

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐴𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖
1 Start

2 Initialize Random Particle i

3 Initialize distance k, 𝑃𝑘(𝑌𝑖) = ∞, 𝑇𝑘(𝑌𝑖) = ∅
// 𝑠𝑒𝑡 𝑜𝑓 𝑌𝑖 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

4 Node 𝑁𝑖 = Set of elements in the first Node F

5 If 𝑁𝑖 = 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒 𝑡ℎ𝑒𝑛 6 𝐸𝑙𝑠𝑒 10

6 𝑄 = d (𝑌𝑖 , 𝑌𝑗)

7 If d (𝑌𝑖 , 𝑌𝑗) < k then 𝑇𝑘(𝑌𝑖) = 𝑌𝑖

8 If |𝑌𝑖| > 𝑘, 𝑡ℎ𝑒𝑛 𝐹 ∈ 𝑇𝑘(𝑌𝑖) = 0 𝐸𝑙𝑠𝑒
9 If |𝑇𝑘(𝑌𝑖) = 𝑘| 𝑡ℎ𝑒𝑛 𝑃𝑘(𝑌𝑖) = 𝑄

10 If 𝑄 ≤ min(𝑃𝑘), 𝑟𝑒𝑡𝑢𝑟𝑛 𝑃𝑘(𝑌𝑖) 𝐸𝑙𝑠𝑒 7

 End If

11 Sort sub-node in descending order

12 Initialize 𝐴 = ∅ & min(𝑃𝑘) = 0
// 𝐴𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑠𝑒𝑠

13 Construct L-Tree for each 𝑌𝑖 Goto 1

14 If 𝑇𝑘(𝑌𝑖) > min(𝑃𝑘) 𝑡ℎ𝑒𝑛 𝐴 = 𝑌𝑖 // (𝑌𝑖 ∈ 𝐴)

15 If |A| > m then minimal (𝑃𝑘) = min(𝑃𝑘)

𝐺𝑜𝑡𝑜 7 𝐸𝑙𝑠𝑒 Return A

End If

16 End

Figure 4. Algorithm for Outliers

IV. Empirical Study, Results and Conclusion

This research acquired malware and clean programs from
contagiominidump [26] and Googleplay [25] respectively to
carry out empirical study. Stratified sampling technique was
used to create training and test dataset for better representation
for Apriori Algorithm and Apriori-PSO model. The dataset
was partitioned into 70% training and 30% test data. Both
training and test set were set of .apk files collected as
described above. The training data was used to train the model
while the test set was used to test the performance of the
model. The entire empirical process was discussed in the
following subsection.

A. Dataset Analysis

The steps in the empirical process include data collection,
program analysis and disassembling, parsing, features
extraction, feature selection, independent test on the dataset,
and classification model building. Set of Android .apk files
were collected for both clean and malicious programs. The
programs were made up of 1000 malware from
contagiominidump and 500 clean programs from official
android market googleplay represents 66.7% and 33.3%
respectively. In order to analyze the dataset, static analysis in
[22], [23] was adopted using combination of tools. After this
initial experiment, we were able to access the source code of
the program and useful features were collected.

File analysis was carried out using stratified sampling
technique on the entire programs to balance the number of
extracted features from malware and clean programs. After the
partitioning of the data, each file is parsed and a vector
equivalent to each file was extracted as feature. In order to
extract best features from the disassembled parsed files,
frequent instruction sequences were search globally in the
entire data collection using the combined Apriori and PSO
algorithm.

Adebayo and Aziz

158

Due to the large number of features extracted, which might
become redundant to the system, unnecessary features were
removed leaving us with moderate features. Statistical test
was carried out on the features to examine the existence of
relationship or otherwise on the feature and final class value.
Those features that were not shown any significant
relationship with the target variable were removed from the
dataset. The final dataset was represented using a vector space
model where each program was a vector in N dimensional
point with n number of selected features. A binary variable
was defined to represent a malicious application, good
application and target variable (malware or benign
application).

The combined model extracted rules from set features for a
subsequent supervised learning. The mining was done using a
5% support on the partitions which yields separate rules for
malware and clean dataset of 650 rules and 350 rules
respectively. The combined rules generated from both
malware and clean programs are 335 rules. In order to select
the best rules from the entire set of rules, a rule found only in
a single class was defined and removed in order free the
detector of isolated rule. Two percent threshold (2%) was set
to identify common rules by calculating the distance in the
support level of each class. After the removal of the signature
rule and rules common to both classes, the remaining final
rules were 325, which denote the frequent features in the
collected programs. These rules were presented to the
classifiers for supervised learning on which the models were
built to classify programs into malware or benign.

B. Criteria for performance evaluation

The criteria for measuring the performance of the proposed
method were based on two basic research questions and were
done through the use of statistical quality measures usually
used in machine learning.

I). Research Questions

The two research questions on which the proposed model was
evaluated are:

a) Can we improve the detection rate by train the
supervised learners with unsupervised learners rather than
using only supervised learners for classification?

b) Is the detection rate of model depends on the quality
and quantity of extracted features, feature extraction and
selection techniques?

II). Statistical Test:

The statistical tests used to evaluate the performance of
Apriori association rules and Apriori-PSO in the detection of
malware includes Accuracy (ACC), Correlation Coefficient,
True positive rate (which measure sensitivity), False positive
rate (specificity measure) and Average mean value.

The Accuracy measure
In order to measure the accuracy, we formulate a

confusion matrix table represented by figure upon which the
accuracy definition was based.

 True False
 Accept (P) Reject (N)

True (T) TP TN

False (F) FP FN

Figure 2. Truth table for Application classification

We defined TP (True positive) as the malware that was

actually classified as malware i.e. TPR is the proportion of
positive instances classified correctly.

TN: Benign program that was classified as Benign i.e. TNR is
the proportion of negative instances classified correctly.

FP: Non-malware that was classified as malware i.e. FPR is
the proportion of negative instances classified wrongly as
positive (malware).

FN: Malware that was classified as Benign i.e. FNR is the
proportion of positive instances wrongly classified as negative
(non-malware).

Therefore:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (6)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (7)

𝐹𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (8)

The accuracy actually measures the proportion of correctly

classified instances (features)

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9)

Correlation Coefficient (CC) measures the quality of two

or more classification techniques in machine learning.

𝐶𝐶 =
(𝑇𝑃)(𝑇𝑁)−(𝐹𝑃)(𝐹𝑁)

(𝑇𝑃+𝐹𝑁) (𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (10)

V. EXPERIMENTAL SETTINGS AND IMPLEMENTATION

The basis of our experiment was based on research questions
defined in section four upon which statistical tests were
carried out. First, we aim to compare the effectiveness of
combination of supervised with unsupervised learners with
using individual classifier for detection. Second is to examine
whether the detection rate of model depends on the quality of
extracted features, feature extraction and selection techniques.
To this end, features were extracted and selected using PSO
and Apriori-PSO extraction and selection techniques, three

Static Code Analysis of Permission-based Features for Android Malware Classification

159

classifiers adopted for classification are CMAR
(classification-based Multiple Association Rule), NN (Neural
Network), and Bayes classifiers (BC).

Since the accuracy (ACC), false positive rate (FPR), and
true positive rate depend on the quality of features and
classifier and measure the effectiveness of classifiers, the
results display in table 2 and figure 5 and figure 6 obtained as
a result of combination of three classifiers with selectors AA,
PSO, and AA-PSO over a number of iterations as given below:

a) AA with the three classifiers (NN, CMAR, BC)

b) PSO with the three classifiers (NN, CMAR, BC)

c) AA-PSO with the three classifiers (NN, CMAR, BC)

Table 2. Combination of Classifiers with Feature Selectors
with three different iterations.

Classifier
/Selector

Iterations Mean
FPR

 Mean
Acc

 100 200 400

 FPR ACC

AA-
CMAR

0.446 0.219 0.099 0.255 0.55 0.776 0.893 0.740

AA- NN 0.321 0.159 0.072 0.188 0.676 0.838 0.923 0.812

AA-BC 0.163 0.076 0.039 0.092 0.795 0.898 0.945 0.881

PSO-
CMAR

0.382 0.189 0.094 0.222 0.614 0.807 0.890 0.775

PSO-NN 0.222 0.113 0.057 0.131 0.786 0.893 0.947 0.875

PSO-BC 0.097 0.046 0.022 0.055 0.857 0.929 0.964 0.917

AA-PSO-
CMAR

0.320 0.159 0.079 0.186 0.676 0.838 0.919 0.811

AA-PSO-
NN 0.216 0.117 0.061

0.132 0.845 0.921 0.960 0.909

AA-PSO-
BC

0.030 0.015 0.007 0.017 0.952 0.976 0.988 0.972

Classifiers with selectors

Figure 5. Accuracy and FPR of Selectors with Classifiers

Classifiers with selectors

Figure 6. Accuracy and FPR of Selectors with Classifiers

Figure 5 and 6 shows FPR and Accuracy of combination of
Detectors AA, PSO, AA-PSO and classifiers NN, CMAR, BC

Table 3. FPR, TPR, CC, and Accuracy for each combination

of Highest Ranked Features and Feature Selectors.

Metrics Feature
Quantity

Selection Methods

 Apriori
(AA)

PSO AA-
PSO

FPR 100 0.3636 0.1765 0.0790

200 0.1600 0.0790 0.0375

400 0.0828 0.0375 0.0183

700 0.0443 0.0210 0.0104

1000 0.0302 0.0146 0.0072

TPR

100 0.5882 0.7200 0.8478

200 0.7742 0.8478 0.9205

400 0.8814 0.8526 0.9593

700 0.9293 0.9216 0.9765

1000 0.9504 0.9540 0.9835

Accuracy

100 0.6071 0.7619 0.8810

200 0.8036 0.8810 0.8830

400 0.8975 0.9405 0.9410

700 0.9419 0.9660 0.9828

1000 0.9598 0.9762 0.9881

CC

100 0.2395 0.5314 0.7630

200 0.6106 0.7629 0.8811

400 0.7274 0.8811 0.9405

700 0.8243 0.9320 0.9660

1000 0.8761 0.9524 0.9762

Average Accuracy

0

0.2

0.4

0.6

0.8

1

Detectors FPR

Detectors Accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Detector FPR

Detector Accuracy

Adebayo and Aziz

160

Number of selected features

Figure 7. The accuracy of Feature selectors with varying
number of features.

VI. Experimental Results and Discussion

In order to compare the effectiveness of an improved AA-PSO,
Mean Accuracy and False positive rate of the obtained results
were computed to examine the distribution of the populations
of the experimented algorithms. It was discovered, at the end
of 1000 iteration with threshold values of between 0.1 and 1
that the combination of Apriori and Particle Swarm
Optimization (AA-PSO) performance is better than that of AA
and PSO. Mean Accuracy, Error rate, and Mean Absolute
Error value were also calculated to determine best
combination of classifiers and selectors.

Table 4 presents the distribution of AA, PSO, and AA-
PSO and shows that there is correlation between means of the
three algorithms. Table 4 also shows that the accuracy of AA-
PSO is 93.5% compare to that of AA and PSO which stand at
84.2% and 90.5% respectively at 0.2 threshold. The true
positive rate and false positive rate of an improved model AA-
PSO are 93.8% and 3.1% compare to that of AA and PSO
which were 82.5%, 13.6% and 85.9%, 6.6% respectively. The
accuracy of AA, PSO, and AA-PSO was further illustrated by
the figure 7 which shows that the average accuracy of AA-
PSO is better than that of AA and PSO.

Table 5 is used to present the results of the combination of
classifiers with selectors. The table shows the best mean
accuracy of 97.2% for new model AA-PSO with Bayes
classifier over PSO-BC and AA-PSO-NN with 91.7% and
90.9% which follow respectively.

Table 4. Average Values of Model Results for AA, PSO, and
AA-PSO.

Model ACC CC FPR TPR TP FP TN FN

AA 0.8420 0.6556 0.1362 0.8247 0.8792 0.1139 0.7679 0.1993

PSO 0.9051 0.8120 0.0657 0.8592 0.9431 0.0569 0.8671 0.1329

AA-
PSO

0.9352 0.9053 0.0305 0.9375 0.9715 0.0285 0.9336 0.0664

Table 5. Mean Accuracy, Error Rate, Mean Absolute Error,
and Mean Square Error of Three Iterations, 100, 200, and 400.

Model Mean Acc Error MAE

AA-CMAR 0.740 0.260 0.260

AA-NN 0.812 0.188 0.188

AA-BC 0.881 0.119 0.119

PSO-CMAR 0.775 0.225 0.225

PSO-NN 0.875 0.125 0.125

PSO-BC 0.917 0.083 0.083

AA-PSO-CMAR 0.811 0.189 0.189

AA-PSO-NN 0.909 0.092 0.092

AA-PSO-BC 0.972 0.028 0.028

VII. Conclusion

The improvement of the Apriori Algorithm for the extraction
and selection of candidate detector for the training of
classifiers was explored in this research. The Apriori
Algorithm was improved using Particle Swarm Optimization
to increase the effectiveness in the generation of candidate
detectors for supervised learning. The Atypical variable which
represents the instance that does not relate nor has similarity
with other instances in the data are used as values to derive
fitness function.

In order to test an improved algorithm, permission-based
features were extracted from Android application .apk files.
The features were used for the classification process of
Android applications into malware or benign application. The
results of the experimentation, using 1500 malicious and good
application from contagiomobile and google play show that an
improved model AA-PSO with Bayesian classifier has the
best accuracy of 97.2%. The results of FPR and TPR from the
experiment also justify the performance of the models through
correlation coefficient.

This research combines the supervised and unsupervised
learning strategies in order to ensure maximum result in the
classification efficiency. The research shows that the static
features of a mobile application can be used together with
machine learning classifiers through the combination of
supervised and unsupervised strategies to classify malicious
and good applications. The improved AA-PSO was used as
unsupervised strategy to generate candidates that were used to
train three different supervised classifiers namely Neural
Network, Classification-based Multiple Association Rule
(CMAR) and Bayesian classifier (BC). The results supervised
classifiers show that the combination of AA-PSO with Bayes
Classifier outperforms other two combinations while Neural
Network combination with selectors is better than CMAR
combination as shown by their mean accuracies and error rates
in table 5.

0

0.2

0.4

0.6

0.8

1

100 200 400 700 1000

AA

PSO

AA-PSO

Static Code Analysis of Permission-based Features for Android Malware Classification

161

Future Research

The researchers intend to implement this result on an Android
smartphone in order to examine the real life efficiency and
effectiveness of the improved system.

Acknowledgement

The authors wish to acknowledge the support of International
Islamic University Malaysia under the grant research number
EDW B14-123-1008.

References

[1] R. J. Roiger and M. W. Geatz, “Data Mining: A Tutorial-
Based Primer,” Pearson Education Inc. ISBN: 0-201-
74128-8, 2003.

[2] R. Agrawal, & R. Srikant, “Fast algorithms for mining
association rules,” In Proc. 20th int. conf. very large data
bases, VLDB, Vol. 1215, pp. 487-499, September 1994.

[3] J. Gu, B. Wang, F. Zhang, W. Wang, and M. Gao, “An
Improved Apriori Algorithm,” In Applied Informatics and
Communication, Springer Berlin Heidelberg, pp. 127-133,
2011.

[4] O. S Adebayo, M. A. Mabayoje, A. Mishra, and O. Osho,
“Malware Detection, Supportive Software Agents and Its
Classification Schemes,” International Journal of
Network Security & Its Applications (IJNSA), Vol.4 (6),
pp. 33 – 49, 2012.

[5] M. A. Siddiqui, “Data Mining Methods for Malware
Detection,” A dissertation submitted in partial fulfilment
of the requirements for the degree of Doctor of
Philosophy in Modeling and Simulation in the College of
Sciences at the University of Central Florida, Orlando,
Florida, 2008.

[6] B. Abhijit, H. Xin, G. S. Kang and P. Taejoon,
“Behavioral detection of Malware on Mobile Handsets,”
June 17–20, 2008, Breckenridge, Colorado, USA. ACM
978-1- 60558-139-2/08/06, 2008.

[7] I. Idris, A. Selamat, “Improved email spam detection
model with negative selection algorithm and particle
swarm optimization,” Elsevier: Applied Soft Computing,
volume 22, pp.11 – 24, 2014.

[8] W. Wang, P. Zhang, Y. Tan, and X. He. "An immune
local concentration based virus detection
approach," Journal of Zhejiang University Science, pp.
443-454, 2011.

[9] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An
intelligent PE-malware Detection System Based on
Association Mining,” Journal in computer virology, 4(4),
pp. 323-334, 2008.

[10] H. Wang, X. Z. Gao, X. Huang, and Z. Song, "PSO-
optimized negative selection algorithm for anomaly
detection," Applications of Soft Computing. Springer
Berlin Heidelberg, pp.13-21, 2009.

[11] M. Ohrui, H. Kikuchi, M. Terada, and N. R. Rosyid,
"Apriori-PrefixSpan Hybrid Approach for Automated
Detection of Botnet Coordinated Attacks, Network-Based
Information Systems (NBiS)”, 2011 14th International
Conference on. IEEE, 2011.

[12] S. S. Garasia, D. P. Rana, and R. G. Mehta, "HTTP
Botnet Detection using Frequent Patternset
Mining," Proceedings of [Ijesat] International Journal of
Engineering Science & Advanced Technology 2: pp. 619-
624, 2012.

[13] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen,
“Feature selection based on rough sets and particle swarm

optimization,” Pattern Recognition Letters, 28(4), pp.
459-471, 2007.

[14] Y. Tan, “Particle Swarm Optimization Algorithms
Inspired by Immunity-Clonal Mechanism and Their
Applications to Spam Detection,” International Journal of
Swarm Intelligence Research (IJSIR), 1(1), pp. 64-86,
2010.

[15] S. W. Lin, K. C. Ying, S. C. Chen, and Z. J. Lee, “Particle
Swarm Optimization for Parameter Determination and
Feature Selection of Support Vector Machines,” Expert
Systems with Applications, 35(4), pp. 1817-1824, 2008.

[16] C. Bae, W. C. Yeh, Y. Y. Chung, and S. L. Liu, “Feature
Selection with Intelligent Dynamic Swarm and Rough
Set,” Expert Systems with Applications, 37(10), pp.
7026-7032, 2010.

[17] Z. Yi, and Z. Li-Jun, “A rule generation model using s-
pso for misuse intrusion detection. In Computer
Application and System Modeling (ICCASM),” 2010
International Conference on (Vol. 3, pp. V3-418). IEEE,
October 2010.

[18] M. Sheikhan, and M. S. Rad, “Gravitational Search
Algorithm–Optimized Neural Misuse Detector with
Selected Features by Fuzzy Grids–based Association
Rules Mining,” Neural Computing and
Applications, 23(7-8), pp. 2451-2463, 2013.

[19] Y. Li, and Y. A. Wang, “A Misuse Intrusion Detection
Model Based on Hybrid Classifier
Algorithm,” International Journal of Digital Content
Technology and its Applications, Advanced Institute of
Convergence Information Technology, 6(5), pp. 25-33,
2012.

[20] S. L. Rosa, S. M. Shamsuddin, and E. Evizal, “An
Immune Based Patient Anomaly Detection using RFID
Technology,” Computer Engineering and Applications
Journal, 2(1), pp. 121-142, 2013.

[21] H. Wang, X. Z. Gao, X. Huang, and Z. Song, “PSO-
optimized Negative Selection Algorithm for Anomaly
Detection,” In Applications of Soft Computing, Springer
Berlin Heidelberg, pp. 13-21, 2009.

[22] O. S. Adebayo and N. Abdul Aziz, “Techniques for the
Analysis of Android Malware,” International Conference
on Information and Communication Technology For The
Muslims World (ICT4M) 2014, Kuching, Sarawak,
Malaysia, November, 2014.

[23] V. J. Varghese and S. Walker, “Dissecting Andro
Malware,” SAN Institute, School of Computer and
Electronic Engineering, University of Essex, Colchester
CO4 3SQ, UK, 2011

[24] M. Kantardzic, “Data Mining: Concepts, Models,
Methods, and Algorithms,” IEEE Press, ISBN:
QA76.9.D343K36 2011, 006.3’12D-dc22, USA, 2011.

[25] Google play. Available at https://play.google.com/store,
2013.

[26] Contagio Mobile. Available at
 http://www.contagiominidump.com

[27] A. Shabtai, Y. Fledel, & Y. Elovici, "Automated Static
Code Analysis for Classifying Android Applications
using Machine Learning," International Conference on
Computational Intelligence and Security (CIS), 2010.

[28] R. A. Maronna and R. H. Zamar, “Robust Estimates of
Location and Dispersion for High-Dimensional Datasets,”
Technometrics, Vol. 44, No. 4, pp. 307-317, November,
2002. Available at http://www.jstor.org/stable/1271538.

[29] P. Yang and B. Huang, “An Efficient Outlier Mining
Algorithm for Large Dataset,” 2008 International
Conference on Information Management, Innovation
Management and Industrial Engineering, pp. 199 – 202,
2008.

[30] M. Schultz, E. Eskin, E. Zadok, S. Stolfo, "Data mining
methods for detection of new malicious executables. Proc.
IEEE Symposium on Security and Privacy, 2001.

Adebayo and Aziz

162

[31] T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan, "N-
gram Based Detection of New Malicious Code," Proc.
Annual International Computer Software and
Applications Conference, 2004.

[32] J.Z. Kolter, M.A. Maloof, "Learning to detect malicious
executables in the wild," Proc. ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2006, pp. 470–478.

[33] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, Y.
Elovici, "Unknown Malcode Detection via Text
Categorization and the Imbalance Problem," Proc. IEEE
Intelligence and Security Informatics, Taiwan, 2008.

[34] R. C. Eberhart, and J. Kennedy, “A new optimizer using
particle swarm theory,” In Proceedings of the sixth
international symposium on micro machine and human
science, Vol. 1, pp. 39-43, October 1995.

[35] P. Yang and B. Huang, “An Efficient Outlier Mining
Algorithm for Large Dataset,” 2008 International
Conference on Information Management, Innovation
Management and Industrial Engineering, pp. 199 – 202,
2008.

[36] O. S. Adebayo and N. Abdul Aziz “Android Malware
Classification Using Static Code Analysis and Apriori
Algorithm Improved with Particle Swarm Optimization”
4th World Congress on Information and Communication
Technologies Malacca, Malaysia December 08–10, 2014.

[37] J. J. Drake, P. O. Fora, Z. Lanier, C. Mulliner, S. A.
Ridley, & G. Wicherski (2014). Android Hacker’s
Handbook, United State of America, Indianapolis,
Indiana: John Willey & Sons, Incorporation.

[38] Y. Shi, and R. C. Eberhart, “Fuzzy adaptive particle
swarm optimization”. In Evolutionary Computation,”
Proceedings of the 2001 Congress of IEEE, Vol. 1, pp.
101-106, 2001.

[39] M. S. Abadeh, J. Habibi, S. and Aliari, “Using a Particle
Swarm Optimization Approach for Evolutionary Fuzzy
Rule Learning: A Case Study of Intrusion Detection,”
In Information Processing and Management of
Uncertainty in Knowledge Based Systems (IPMU), pp. 2-
7, July 2006.

[40] X. Hu, and R. Eberhart, “Multi-objective Optimization
Using Dynamic Neighborhood Particle Swarm
Optimization. In Computational Intelligence,”
Proceedings of the World on Congress on IEEE, vol. 2,
pp. 1677-1681, May 2002.

[41] R. Siddiqui, and S. Khatibi, “Visual Tracking using
Particle Swarm Optimization,” arXiv preprint
arXiv:1401.4648, 2014.

[42] M. Clerc, and J. Kennedy, “The Particle Swarm-
explosion, Stability, and Convergence in a
Multidimensional Complex space. Evolutionary
Computation,” IEEE Transactions, 6(1), 58-73, 2002.

[43] Y. Tan, and Z. M. Xiao, “Clonal Particle Swarm
Optimization and its Applications,” In Evolutionary
Computation, 2007. CEC 2007. IEEE Congress, pp.
2303-2309, September 2007.

[44] Y. Shi, and R. Eberhart, “A Modified Particle Swarm
Optimizer,” In Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational
Intelligence, the 1998 IEEE International Conference,
pp.69-73, May 19.

[45] Aafer, Yousra, Wenliang Du, and Heng Yin.
"DroidAPIMiner: Mining API-level features for robust
malware detection in android." Security and Privacy in
Communication Networks. Springer International
Publishing, 2013. 86-103.

[46] Christina Warrender, Forrest, S. & Barak, A. “Pearlmutter
Detecting intrusions using system calls: Alternative data
models”, In IEEE Symposium on Security and Privacy,
pages 133–145, 1999.

[47] Christodorescu, M., Jha, S., Seshia, S.A., Song, D. and
R.E.Bryant. “Semantics-aware malware detection”, In

Proceedings of the IEEE Symposium on Security and
Privacy, 2005.

[48] Lee, T. and Mody, J.J. (2006) Behavioral Classification.
Proceedings of the European Institute for Computer
Antivirus Research Conference (EICAR’06).

[49] Thomas Eder, Michael Rodler, Dieter Vymazal, Markus
Zeilinger “A Framework For Analyzing Android
Applications”. Workshop on Emerging Cyberthreats and
Countermeasures ECTCM 2013.

[50] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan
Glezer, Yael Weiss “Andromaly”: a behavioral malware
detection framework for android devices”. Journal of
Intelligent Information Systems 38(1) (January 2011)
161{190}, 2011.

[51] Iker Burguera, Urko Zurutuza, Simin Nadjm-Tehrani
“Crowdroid: Behavior-Based Malware Detection System
for Android”. In Proceedings of the 1st ACM workshop
on Security and Privacy in Smartphones and mobile
devices (October 2011), Pp.15-26, 2011.

[52] Gianluca Dini, Fabio Martinelli, Andrea Saracino, and
Daniele Sgandurra “MADAM: a Multi-Level Anomaly
Detector for Android Malware” MMM-ACNS’12 In
proceedings of 6th international conference on
Mathematical Methods, Models and Architectures for
Computer Network Security: computer security pp. 240-
253, 2012.

[53] Abela, Kevin Joshua L., Angeles, Don Kristopher E.,
Delas Alas, Jan Raynier P., Tolentino, Robert Joseph,
Gomez, Miguel Alberto N. “An Automated Malware
Detection System for Android using Behavior-based
Analysis, AMDA” International Journal of Cyber-
Security and Digital Forensics (IJCSDF), 2(2), 2013: The
Society of Digital Information and Wireless
Communications, ISSN: 2305-0012.

[54] Thomas Blasing, Leonid Batyuk, Aubrey-Derrick
Schmidt, Seyit Ahmet Camtepe, and Sahin Albayrak
(University of Berlin), Malware “An Android Application
Sandbox system for suspicious software detection”, 2010.

[55] Suhas Holla, and Mahima M Katti “Android based
Mobile Application and Its Security”. International
Journal of Computer Trends and Technology, 3 (3) Pp.
486 – 490, 2013. ISSN 2231 – 2801.

[56] Andrew Walenstein, Luke Deshotels, and Arun Lakhotia
“Program Structure-Based Feature Selection for Android
Malware Analysis” MOBISEC 2012, LNICST 107, pp.
51–52, 2012. Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering

Author Biographies

 Olawale Surajudeen Adebayo was born in Oyo

State of Nigeria in 1974. Presently a Lecturer in

the Department of Cyber Security Science, Federal

University of Technology Minna, Niger State,

Nigeria and a PhD research student in the

Department of Computer Security Science,

International Islamic University Malaysia. He

bagged Bachelor of Technology in Mathematics

and Computer science from Federal University of

Technology, Minna, Nigeria in 2004 and the MSc. in Computer science from

University of Ilorin, Kwara State, Nigeria in 2009. His current research

interests include: Malware Detection, Information Security, Cryptology, and

Data Mining Security. He has published many academic papers in the above-

mentioned research areas. He is a member of Computer Professional

Registration Council of Nigeria (CPN), Nigeria Computer Society (NCS),

IEEE, Global Development Network, International Association of Engineers

Static Code Analysis of Permission-based Features for Android Malware Classification

163

(IAENG) and many others. He is a reviewer to many local and international

journals. See more at http://www.osadebayo.com.

Normaziah A. Aziz, obtained her Bachelor in Computer Science from the

University of South Carolina, USA, Masters in Computer Science from

Universiti Kebangsaan Malaysia , and later her PhD from the Dept. of

Artificial Intelligence, University of Edinburgh, Scotland, UK. She was a

Senior Research Fellow and Head for the Knowledge Representation and

Reasoning, in the AI lab at MIMOS, an R&D organization in Malaysia.

Presently she is an Associate Professor in the Dept. of Computer Science,

International Islamic University Malaysia. Her research work and interest are

in the areas of Cognitive Modeling, Natural Language Processing, Digital

Evidence Forensics and Malware analysis.

Adebayo and Aziz

164

