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1.  INTRODUCTION

Coronary artery disease, also called coronary heart
disease, or simply, heart disease, is the primary cause of
death in many parts of the world. Coronary artery disease
(CAD) is a chronic disease in which blood flow is
obstructed through the coronary arteries that supply the
heart with oxygen-rich blood. This obstruction is caused
by a disease known as atherosclerosis, which is sometimes
called “hardening of the arteries”. Also referred to as
coronary heart disease, CAD is the most common form
of cardiovascular diseases.

While tests to accurately diagnose coronary artery
disease [1–15] are currently the focus of intense clinical
research, their incremental value is not yet proven.
Accordingly, their use requires a careful clinical
assessment of potential risks and benefits in individual
patients. A new MRI processing technique called “black-
blood” MRI (so called because it produces an image of
an artery in which the blood appears black, and the wall
of the artery appears white) seems to be able to
distinguish effectively between normal and atherosclerotic

*Corresponding author. E-mail address: mmbb11112000@yahoo.fr

A mathematical analysis of  stenosis geometry, NMR magnetizations and signals
based on the Bloch NMR flow equations, Bessel and Boubaker polynomials
expansions
M. Dada,1 O.B. Awojoyogbe,1  Olufemi Folorunsho Moses2, O.S. Ojambati,1 D.K. De3 and K. Boubaker4,*

1  Department of Physics, Federal University of Technology, Minna,Niger-State, Nigeria
2  P.M.B. 1090, Surulere, Lagos State, Nigeria
3 Department of Physics, Federal University of Technology, Yola, Adamawa-State, Nigeria
4  Department of Physics, ESSTT/63 Rue Sidi Jabeur 5100, Mahdia, Tunisia

Magnetic Resonance Imaging (MRI) has great potential in modern medical imaging, as it is
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plaque and myocardial viability. The aim of this paper is to model the variation of NMR
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NMR flow equations. A cylindrical coordinate is constructed such that its maximum radius
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coronary arteries. While further refinements are
necessary, such techniques are bringing us very close to
the day in which MRI will be able to replace cardiac
catheterization for diagnosing coronary artery disease [16].

However, MRI has the potential of detecting
changes in the tiny blood vessels of the heart—the
microvascular circulation—that are completely missed by
cardiac catheterization. Detecting such changes seem to
be useful in predicting the outcome of patients after a
heart attack, and may prove to be useful in assessing
patients with cardiac syndrome X, diabetes, and certain
other conditions.

In this study, we consider the blood particle which
either initially or in some average sense is in steady
rotation. We apply a mathematical algorithm to describe
in detail the dynamical state of the flowing blood particles
starting from the NMR flow equations. We study the flow
properties of the modified time independent Bloch NMR
flow equations which describes the dynamics of fluid
flow under the influence of a radio-frequency B1(x)
magnetic field as given in previous studies [17–23] where
it is convenient to use as dependent variable the departure
of the stream function from its classical form [18, 22 ]
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subject to the following two conditions: eλx ≠ 0 and fo =
γB – ω = 0.

Eqn (1a) completely describes the wave properties
of the Bloch NMR equations in terms of the mechanical
wave function ψ(x), the velocity V, radio-frequency ω1=
γB1(x), T1 and T2 relaxation parameters. The uniqueness
of eqn (1a) is apparent from the B1 field which can be a
constant or spatially vary. The relaxation parameters

are intrinsic properties of the NMR system and are
constants. The wave function ψ(x), expresses the
mathematical form of particle wave properties
associated with the fluid particles of the flow system.

2.  SOLUTION OF THE TIME INDEPENDENT BLOCH NMR
FLOW EQUATIONS BY THE METHOD OF SEPARATION OF
VARIABLES

The flow of blood in straight blood vessels, like the flow
of liquids in narrow rigid tubes, is normally laminar
(streamline). Within the blood vessels, an infinitely thin
layer of blood in contact with the wall of the vessel does
not move. The next layer within the vessel has a low
velocity, the next a higher velocity, and forth, velocity
being greatest in the centre of the stream. Laminar flow
occurs at velocities up to a certain critical velocity. At or
above this velocity, flow is turbulent. The probability of
turbulence is also related to the diameter of the vessel
and the viscosity of the blood. In humans, the critical
velocity is sometimes exceeded in the ascending aorta at
the peak of systolic ejection, but usually exceeded only
when an artery is constricted. Turbulence occurs more
frequently in anaemia because the viscosity of blood is
lower. This may be the explanation of the systolic
murmurs that are common in anaemia.

In this study, we shall suppose the horizontal extent
of the flow is small enough for the flow to be regarded as
taking place in a plane layer with the coriolis parameter f
uniform and equal to fo say. The direction of the stenosis
in the blood vessel is immaterial, and we choose it for
convenience to be in the y-direction (Fig. 1). The stream
approaching the stenosis will be assumed to have zero
relative vorticity and uniform velocity with components
(V, V1), with the coriolis force being balanced by a
uniform pressure gradient. At a point over the stenosis
where the layer thickness is h1, the relative vorticity ϑ is

given by: 

Figure 1. Effect of constriction on the velocity profile in a
blood vessel:  (ab) Laminar flow velocity V, (bc) High velocity
V1, (de) Turbulent and (eg) Laminar flow. The diameter of the
blood vessel is h.

We would introduce the transverse magnetization
My, as the stream function such that the flow in the region
is steady and f + ϑ is consequently a function of My alone
[16]. Hence we have:
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This must be the relationship between f + ϑ and My that
is valid over the whole of the region x > 0. Hence in that
region we have [18]
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Our choice of conditions has led to a linear equation
for My. A form of solution which contains the linearity in
My has been presented [18] where:
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here, a is a constant and ψ(x) satisfies eqn (1a) with
2 2
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Eqn (1b) can be written in 3D as:

                                  2 0y yM Mα
ν

∇ + =                           (2a)

where ν is the speed of fluid, α is a constant to be
determined and the relative vorticity ϑ, is:

                                                                               (2b)

3.  THE CYLINDRICAL MODEL

We consider a plaque which takes the shape of a cylinder
as shown in Figure 1. A cylindrical coordinate (Fig. 2) is
constructed such that its maximum radius indicates a
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Figure 2. Stenosis with cylindrical geometry.

totally blocked blood vessel. For a blood molecule which
tunnels through the plaque and could be located at the
centre of the plaque or any other point within the plaque
eqn (2) becomes,

     
2 2 2

2 2 2 2
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Eqn (3) will be solved by the method of separation of
variables

                             ( , , ) ( , ( ( )))yM r z F r Z zθ θ=                    (4)
satisfying the following three independent eqns in terms
of R(r), Θ(θ) and Z(z) respectively:
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The solution of eqn (7) is

              (8)
where
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v
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The solution of eqn (6) is given as

   1 2 1 2( ) cos sinim imC e C e C m C mθ θθ θ θ−Θ = + = +    (10)
Eqn (5) is the Bessel differential equation of order m

and the general solution is given by:
           1 2( ) ( ) ( )m mR r D J kr D Y kr= +    (11)

From eqns (9–11), we can write
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It should be noted in eqn (11) that within the region
containing r = 0, it is required that D2 = 0, due to the Ym(r)
behaviour at the origin (r = 0).

4.  NMR TRANSVERSE MAGNETIZATION AT ZERO
RELATIVE VORTICITY

Since the stream approaching the stenosis is assumed to
have zero relative vorticity (ϑ = 0) and uniform velocity
with components (V, V1), and the coriolis force being
balanced by a uniform pressure gradient, it is required that
at the point Z = –l, we have:

 ( , , ) ( )( ( ) ( ) 0 and ( ) 0yM r l R r Z l Z lθ θ− = Θ − = − = (13a)
and
                       B1 cos(–λl) + B2 sin(–λl) = 0                       (13b)
provided that the length of the cylindrical plaque is 2l.
From eqn (13b), if we choose B1

 = 0; B2
 ≠ 0, we can

write:
                             Z = (–l) = –B2 sin λl = 0.                         (14)
Eqns (9) and (14) give:

                                                              (15a)
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l
π

= = −              (15b)

and

                                                             (16)

5.  NMR TRANSVERSE MAGNETIZATION AT THE
ABSOLUTE RADIUS OF THE CYLINDER

It is important to consider the NMR magnetization at r =
ro, (ro is the absolute radius of the cylinder). At this point
the blood vessel is totally blocked which implies that
much collision of blood particles of the incoming stream
(the spins) within the region is expected. There would be
a considerable level of incoherence and the magnetic
moments of blood cell spins will mostly cancel each other
out. Hence we do not expect any NMR blood flow signal
to be detected or at most, the flow signal should be
minimum and very close to zero. Classically, it is not
expected that many blood particles would tunnel through
the plaque because most of them remain and circle
around the plaque at the point Z(–l). We can write;
                          (17a)
and
                  (17b)
were kmpro is defined as the positive roots of Jm(kmpro)
and p = 1, 2, 3, ……..
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Summing over both m and p gives:

(18)
where
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6. NMR TRANSVERSE MAGNETIZATION DETECTABLE
AT Z = l/2m

It is interesting to consider the NMR signal detectable at
the point z = l/2m, (m ≠ 0) when the following boundary
condition is imposed:
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where mB4 are the 4m-order Boubaker polynomials
[26–34], mpξ  is the mB4  polynomial pth order positive
root, 0N  is a prefixed integer, prefixed integer,

0..1 Npmp =
μ and 

0..1 Npmp =
′μ  are unknown real coefficients

calculated using the properties of the Boubaker
polynomial expansion scheme (BPES) [27–30]:
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Hence the required solution for the NMR transverse
magnetization at z = l/2m is:
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7.  CONCLUSION

The variation of NMR magnetizations and signals over a
stenosis with a neat cylindrical geometry as presented in
this study illustrates how the mathematical procedure can
be useful in exciting ways for the general blood flow
analysis especially in evaluation of coronary heart
diseases. Eqns (16) and (19) define three dynamical
properties which may be clinically significant:

(i) if we define the value of constant k or k.mp within
the interval 0 < k < 1 or 0 < kmp < 1, the parameter αμ is
directly proportional to the dynamic viscocity (in g/cm s)
of blood flow under consideration where μ is the mass of
a blood particle. The viscosity of a fluid is an important
property in the analysis of liquid behaviour and fluid
motion near vessel boundaries.

(ii) since the stream approaching the stenosis is
assumed to have zero relative vorticity (ϑ = 0) with
uniform velocity, equations (2b), (16) or (19) imply that
constant k is inversely proportional to the length of the
stenosis and χmp measures the ratio of stenosis diameter
and length.

(iii) the values of m and k allow the evaluation of the
NMR transverse magnetization and signal in terms of
Bessel and Boubaker polynomials and trigonometrical
functions depending on the diameter of the stenosis.

With the details provided in this study, we may begin
to learn of blood flow behaviour in small blood vessels.
Not only could this lead to new insights into fundamental
problems, but it could point the way towards developing
new strategies for understanding and treating coronary
heart disease by MRI.

MRI is a sensitive method visualizing structural and
functional changes in biological tissues. For example as
blood particles (cells) develop, die, or regenerate, the local
environment of the tissue and fluid changes and thus the
NMR signal-changes. Such changes are reflected in MRI
through local variations in the amount of water, its physical
state (e.g. freely diffusing or protein bound), and its nuclear
magnetic resonance (NMR) relaxation times (T1 and T2).
The dynamics of these changes in the fluid are captured in
MRI by the Bloch NMR flow equations [17–25]. The
parameters that are derived in this presentation play a
prominent role in the solution of the Bloch equations.
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One key component of an MRI-sequence that is
often used in the context of cardiovascular imaging,
namely black blood imaging as mentioned above helps to
distinguish blood from plaques in arteries. Apparently the
transverse magnetization behaves in such a way that flow
or other features can be detected. At present phase
contrast imaging is the method of choice for measuring
velocity in arteries. The method presented in this study,
can have applications similar to phase contrast imaging
but with more accurate information [17, 18]. How the
NMR parameters derived in the present model are linked
to a practical measurement in terms of an MRI sequence
will be developed separately.
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