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Abstract Most cardiovascular emergencies are directly
caused by coronary artery disease. Coronary arteries can
become clogged or occluded, leading to damage to the heart
muscle supplied by the artery. Modem cardiovascular
medicine can certainly be improved by meticulous analysis
of geometrical factors closely associated with the degener-
ative disease that results in narrowing of the coronary
arteries. There are, however, inherent difficulties in devel-
oping this type of mathematical models to completely
describe the real or ideal geometries that are very critical in
plaque formation and thickening of the vessel wall. Neither
the mathematical models of the blood vessels with arthro-
sclerosis generated by the heart and blood flow or the
NMR/MRI data to construct them are available. In this
study, a mathematical formulation for the geometrical
factors that are very critical for the understanding of
coronary artery disease is presented. Based on the Bloch
NMR flow equations, we derive analytical expressions to
describe in detail the NMR transverse magnetizations and
signals as a function of some NMR flow and geometrical
parameters which are invaluable for the analysis of blood

flow in restricted blood vessels. The procedure would apply
to the situations in which the geometry of the fatty deposits,
(plague) on the interior walls of the coronary arteries is
spherical. The boundary conditions are introduced based on
Bessel, Boubaker and Legendre polynomials.
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Introduction

Atherosclerosis is a degenerative disease that results in
narrowing of the coronary arteries. This is caused by fatty
deposits, most notably cholesterol, on the interior walls of
the coronary arteries Fig. 1. When the walls become
narrowed or occluded, they reduce the blood flow to the
heart muscle. If the artery remains open to some degree, the
reduced blood flow is noticed when the heart is under stress
during periods of rapid heartbeat. The resulting pain is
called angina. When the artery is completely closed or
occluded, a section of the heart muscle can no longer get
oxygenated blood, and begins to die. This is called a heart
attack [1].

Coronary artery disease (CAD) causes changes in both
structure and function of the blood vessels. Atherosclerotic
processes cause an abnormal deposition of lipids in the
vessel wall, leukocyte infiltration and vascular inflamma-
tion, plaque formation and thickening of the vessel wall.
These changes lead to a narrowing of the lumen (i.e.,
stenosis), which restricts blood flow. There are also subtle,
yet functionally important changes that can occur before
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overt changes in structure are observed. Early in the disease
process, the endothelial cells that line the coronary arteries
become dysfunctional. Because the endothelium produces
important substances such as nitric oxide and prostacyclin
that are required for normal coronary function, endothelial
dysfunction can lead to coronary vasospasm, impaired
relaxation, and formation of blood clots that can partially
or completely occlude the vessel.

When coronary artery disease restricts blood flow to the
myocardium (ischemia) there is an imbalance between
oxygen supply and oxygen demand. When the oxygen
supply is insufficient to meet the oxygen demand (reduced
oxygen supply/demand ratio), the myocardium becomes
hypoxic. This is often associated with chest pain (angina)
and other clinical symptoms. Severe ischemia can lead to
anoxia and infarction of the tissue. Furthermore, acute or
chronic ischemia caused by CAD can impair cardiac
mechanical and electrical activities leading to heart failure
and arrhythmias. In the presence of coronary artery disease,
coronary blood flow may be reduced. This will increase
oxygen extraction from the coronary blood and decrease the

venous oxygen content. This leads to tissue hypoxia and
angina. As stated in our earlier study [2], tests to accurately
diagnose coronary artery disease [3–19] are currently the
focus of intense clinical research, their incremental value is
not yet proven. Accordingly, their use requires competent
mathematical tools for clinical assessment of potential risks
and benefits in individual patients.

This study is based on the previous efforts to solve the
Bloch NMR flow equations analytically [2, 20–27].
Calculations are based on the resolution of a mathematical
model in spherical polar coordinates representing the NMR
transverse magnetizations and signals. Boundary conditions
are involved in the resolution algorithm at different stages.
We consider a function My which describes the NMR
transverse magnetizations and signals at a given location
(x,y,z) in the blood vessel. This function changes depending
on the degenerative disease that results in narrowing of the
blood vessel. The boundary conditions are introduced based
on Bessel and Legendre polynomials. This model can allow
us to apply the detail mathematical tools presented to obtain
qualitative information about the development, the growth

Fig. 1 A typical blood vessel.
(a) shows a normal artery with
normal blood flow. (b) shows an
artery with plaque buildup [1]
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and the maturity of coronary artery disease (CAD) at any
point in terms of physical and geometrical factors affecting
the individual patient. Within a distributed model the MRI
Physics of blood flow in restricted blood vessels is treated
using a differential equation derived from the Bloch NMR
flow equations [20]. For this type of model casting the
governing equations in terms of physical parameters is
more straightforward.

We have introduced [2, 20] the transverse magnetization
My, as the stream function such that the flow in the region is
steady and f þ ϑ is consequently a function of My alone. But
at X=0 (as approached from the region x>0) we have [20]:

My ¼ V1y and f þ ϑ ¼ h1 fo þ byð Þ
h

¼
h1 fo þ a

V1
My

� �
h

ð1aÞ

This must be the relationship between f þ ϑ and My that
is valid over the whole of the region x>0. Hence in that
region we have [20]:

r2My ¼ �ϑ ¼ fo
h� h1

h

� �
þ by� r2My ð1bÞ

where:r2 ¼ b h1
V1h

Our choice of conditions has led to a linear equation for
My. A form of solution which contains the linearity in M y

has been presented [18] where

My ¼ y� að ÞyðxÞ þ fo h� h1ð Þ=hð Þ þ by½ �
r2

ð1cÞ

Here, a is a constant and =(x) satisfies Eq. 1a with

r2 ¼ g2B2
1

V 2
and x yþ að Þ ¼ 1 ð1dÞ

Equation 1b can be written in three dimensions as

r2My þ a
V
My ¼ 0 ð1eÞ

where V is the blood flow velocity and α is a constant to be
determined.

Mathematical formulation of the flow model

In spherical coordinate Eq. 1c is written as:

1

r2
@

@r
r2

@My

@r

� �
þ 1

sin f
@

@f
sin f

@My

@f

� �
þ 1

sin2f

@2My

@q2

� �

þ a2My ¼ 0

ð2Þ

@2My

@r2
þ 2

r

@My

@r
þ 1

r2
@2My

@f2
þ cot f

r2
@My

@f
þ 1

r2sin2f

@2My

@q2

þ a2My ¼ 0

ð3Þ

By separation of variables, we write:

My r; q; fð Þ ¼ F r; qð ÞΘ qð Þ
My r; q; fð Þ ¼ F r; qð ÞΘ qð Þ
@My

@r
¼ Θ

@F

@r
;
@My

@r2
¼ Θ

@2F

@r2
;
@My

@f
¼ Θ

@F

@f
;
@2My

@f2
¼ Θ

@2My

@f2
;
@2My

@q2
¼ F

d2Θ

@q2

8><
>:

ð3aÞ
Equation 3 becomes:

Θ
@2F

@r2
þ 2

r
Θ
@F

@r
¼ Θ

r2
@2F

@f2
þΘ

cot f
r2

@F

@f
þ F

r2sin2f

@2Θ

@q2

þ a2FΘ ¼ 0

ð3bÞ

Multiplying Eq. 3b by 1
FΘ gives:

1

F

@2F

@r2
þ 2

rF

@F

@r
¼ 1

r2F

@2F

@f2
þΘ

cot f
r2

1

F

@F

@f

þ F

r2sin2f

1

Θ

@2Θ

@q2
þ a2 ¼ 0

ð3cÞ

Multiplying Eq. 3c by r2sin2f, gives:

r2sin2f
F

@2F

@r2
þ 2r2sin2f

rF

@F

@r
¼ r2sin2f

r2F

@2F

@f2
þ r2sin2f cot f

r2
@F

@f

þ 1

Θ

d2Θ

dq2
þ a2r2sin2f ¼ 0

r2sin2f
F

@2F

@r2
þ 2r2sin2f

rF

@F

@r
þ r2sin2f

r2F

@2F

@f2

þ r2sin2f cot f
r2

@F

@f
þ a2r2sin2f ¼ � 1

Θ
d2Θ

dq2

ð4Þ
Both sides of Eq. 4 must be equal to a constant k2 such

that we have two distinct equations:

@2F

@r2
þ 2

r

@F

@r
¼ 1

r2
@2F

@f2
þ cot f

r2
@F

@f
þ a2F � k2F

r2sin2f
¼ 0

ð5Þ

� 1

Θ
d2Θ

dq2
¼ k2 ð6Þ

The solution to Eq. 6 is:

Θ fð Þ ¼ a3e
ikq þ a4e

�ikq or Θ fð Þ ¼ A3 cos kq þ A4 sin kq

ð7Þ
(where A3 ¼ a3 þ a4; a3 ¼ i a3 � a4ð Þ
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A solution to Eq. 5 is found by making the assumption
F r; fð Þ ¼ RðrÞΦðfÞ:

@F

@r
¼ Φ

dR

dr
;
@2F

@r2
¼ Φ

d2R

dr2
;
@F

@f
¼ R

dΦ
df

;
@2F

@f2
¼ R

d2Φ

df2

ð7aÞ
Equation 5 becomes:

Φ
d2R

dr2
þ 2Φ

r

dR

dr
þ R

r2
d2Φ

df2
þ R

cot f
r2

dΦ
df

þ a2RΦ� k2

r2sin2f
RΦ ¼ 0

ð7bÞ
If we multiply Eq. 7b by 1

RΦ, we have:

r2

R

d2R

dr2
þ 2r

R

dR

dr
þ 1

Φ

d2Φ

df2
þ cot f

r2
� 1
Φ

dΦ

df
þ a2r2 � k2

sin2f
¼ 0

ð7cÞ
Multiplying Eq. 7c by r2 gives:

r2

R

d2R

dr2
þ 2r

R

dR

dr
þ a2r2 ¼ � 1

Φ
d2Φ

df2
þ cot f

f
dΦ
df

þ k2

sin2f

ð8Þ
Both sides of Eq. 8 must be a constant (say l(l + 1)),

because they are independent of each other,

r2

R

d2R

dr2
þ 2r

R

dR

dr
þ a2r2 ¼ � 1

Φ
d2Φ

df2
þ cot f

f
dΦ
df

þ k2

sin2f
¼ l l þ 1ð Þ

ð8aÞ

Equation 8a gives the following equation:

r2
d2R

dr2
þ 2r

dR

dr
þ a2r2 � l l þ 1ð Þ� �

R ¼ 0 ð9Þ

and:

d2Φ

df2
þ cot f

dΦ
df

þ l l þ 1ð Þ � k2

sin2f

� �
Φ ¼ 0 ð10Þ

Equation 9 is the spherical Bessel differential equation.
We shall transform this equation into an ordinary Bessel
differential equation if we write;

x ¼
ffiffiffi
a

pffiffiffiffi
V

p r; ð10aÞ

r
dR

dr
¼ x

ffiffiffiffi
V

p ffiffiffi
a

p � dR

d
ffiffiffi
V

pffiffi
a

p � 0
� � ¼

ffiffiffiffi
V

p ffiffiffi
a

p �
ffiffiffi
a

pffiffiffiffi
V

p � x dR
dx

¼ x
dR

dx

ð10bÞ

r2
d2R

dr2
¼ x2 � V

a
� d

d
ffiffiffiffiffiffi
V
a x

q� � dR

d
ffiffiffiffiffiffi
V
a x

q� �
0
B@

1
CA

¼ x2 � V
a
� a
V

d2R

dx2
¼ x2

d2R

dx2

ð10cÞ

From Eq. 10a–10c we have:

x2
d2R

dx2
þ 2x

dR

dx
þ x2 � l l þ 1ð� �

R ¼ 0 ð11Þ

R ¼ SðxÞx�1
2 ð11aÞ

dR

dx
¼ x�1=2 dS

dx
� 1

2
x�3=2 dS

dx
� 1

2
x�3=2 dS

dx
þ 3

4
x�5=2S

ð11bÞ

¼ x�1=2 d
2S

dx2
� x�3=2 dS

dx
þ 3

4
x�5=2S ð11cÞ

Equation 11 gives

x3=2
d2S

dx2
þ x1=2

dS

dx
� 1

4
x�1=2S � l l þ 1ð Þx�1=2S þ x3=2S ¼ 0

ð11dÞ
Multiplying Eq 11d by x1=2gives:

x2
d2S

dx2
þ x

dS

dx
þ x2 � l l þ 1

2

� �2
( )

S ¼ 0 ð12Þ

Equation 12 is a Bessel differential equation of order
l þ 1

2

� �
with a general solution:

SðxÞ ¼ C3Jlþ1=2ðxÞ þ C4Ylþ1=2ðxÞ
From Eq. 11a, we can write

R ¼ x�1=2SðxÞ¼�1=2C3Jlþ1=2ðxÞ þ x�1=2C4Ylþ1=2ðxÞ ð13Þ

RðrÞ ¼ C3
a
V
r2

� ��1=4
Jlþ1=2

ffiffiffiffiffiffiffi
a
V
r

r� �

þ C4
a
V
r2

� ��1=4
Ylþ1=2

ffiffiffiffiffiffiffi
a
V
r

r� �
ð14Þ

where Jlþ1=2
a
V r
� �

and Ylþ1=2
a
V r
� �

are the Bessel polyno-
mials of the 1st and 2nd kind respectively with the order
l þ 1

2. Since Ylþ1=2

ffiffiffiffiffiffi
a
V r

p� �
is singular at r=0, then within

the region containing r=0 axis, we have C4=0. Hence it
follows that

RðrÞ ¼ C3
a
V
r2

� ��1=4
Jlþ1=2

ffiffiffiffiffiffiffi
a
V
r

r� �
ð15Þ
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Equation 10 can be written as:

sin f
d2Φ

df2
þ cos f

dΦ
df

þ sin f l l þ 1ð Þ � k2

sin2f

	 

Φ ¼ 0

ð16Þ
If we write μ=cos f, Eq. 16 becomes

dΦ
df

¼ dΦ
dm

� dm
df

¼ � sin f
dΦ
dm

ð17Þ

It follows that:

1� m2
� � d2Φ

dm2
� 2m

dΦ
dm

þ l l þ 1ð Þ � k2

sin2f

	 

Φ ¼ 0 ð18Þ

Equation 18 is the Legendre associated differential
equation. The solutions are called the associated Legendre
polynomials and are given as follows

Φ mð Þ ¼ D3Pl
k mð Þ þ D4Ql

k mð Þ ð19Þ
where:

Pl
k mð Þ ¼ 1� m2ð Þk=2 dk

dmk Pl mð Þ
Ql

k mð Þ ¼ 1� m2ð Þk=2 dk

dmk Ql mð Þ

8<
: ð20Þ

Pl (μ)and Ql (μ) are the Legendre polynomials of the 1st
and 2nd kind respectively. Since we require that the
solution be finite on the polar axis of the plague, we write
that D4=0. Therefore, we may write

Φ mð Þ ¼ D3Pl
k mð Þ ð21Þ

Φ fð Þ ¼ D3Pl
k cos fð Þ ð22Þ

Boundary conditions for the analysis of NMR
transverse magnetizations and signals

Based on Fig. 1, when the blood vessel becomes totally
blocked, we expect so much random motion and hence,
random orientation of the spins of the blood particles, even
in the presence of strong static magnetic field Bo.

Furthermore, if some particle tunnel through the plague
defined by the point (h, 2π, f), we have a very negligible
contribution to the NMR signal from most of the spins.
Therefore, we may write

My h; 2p; fð Þ � 0 ð23Þ
This means that at the point where the height of the plague

h1 equals the diameter h, of the blood vessel, and at θ=2π,
the transverse magnetization becomes very small so that:

RðhÞΘ 2pð ÞΦ fð Þ ¼ 0 ð24Þ

Equation 24 implies that R(h)=0 or Θ 2pð Þ ¼ 0
Since k is an integer, A3 in Eq. 7 must be equal to zero

for the expression Θ 2pð Þ ¼ 0 to hold. Then, Eq. 7
becomes:

Θ qð Þ ¼ A4 sin kq ð25Þ
For R(h)=0, we must have:

C3 b2
� ��1=4

Jlþ1=2 bð Þ ¼ 0 where : b¼
ffiffiffiffiffiffiffiffi
a
V
h

r
ð26Þ

Jlþ1=2 bð Þ ¼ 0 ð27Þ
so that:

b ¼ bl;n
��
n¼1;2;3

;

ffiffiffiffi
a
V

r
¼

ffiffiffiffiffiffiffi
bl;n
h

r
ð28Þ

By superposition or summing over all l, n and k, we
obtain

My r; q; fð Þ ¼
X1
l¼0

X1
n¼1

X1
k¼0

Ak;l;n
bl;n

2

h2
r

 !�1=2

Jlþ1=2
bl;n
h

r

� �
Pl

k cos f
� 

sin kff g

ð29Þ

where Ak,l,n=C3D3A4

However, at q ¼ p
2k, we have some signal Mb(r, f) so that:

My r;
p
2k

; f
� �

¼ Mb r; fð Þ ð30Þ

This implies that:

Mb r; fð Þ ¼
X1
l¼0

X1
n¼1

X1
k¼0

Ak;l;n
bl;n
h

r

� ��1=2

Jlþ1=2
bl;n
h

r

� �
Pl

k cos f
� 

ð31Þ

If we multiply all through by r�1=2, we have

Mb r; fð Þ ¼
X1
l¼0

X1
n¼1

X1
k¼0

Ak;l;n

ffiffiffi
h

pffiffiffiffiffiffiffi
bl;n

p Jlþ1=2
bl;n
h

r

� �
Pl

k cos ff g

ð32Þ
Since C3, D3, and A4 are arbitrary constant, the

expression of Ak,l,n has to match the intrinsic boundary
conditions regardless values of n, l and k. For this purpose,
this expression is set as:

Ak;l;n ¼ � 1

8
B4k ϖk

r

h

� �
� B4l ϖl

r

h

� �
� B4n ϖn

r

h

� �� �
ð33Þ

Whith B4q

��
q2 k;l;nf gthe 4q-Boubaker polynomial [28–35]

and ϖq

��
q2 k;l;nf gB4q first positive root [29–31].
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When involved in an expansion, the 4q-Boubaker
polynomial are the unique polynomial set [33] that verifies,
simultaneously and conjointly the conditions:

XN
q¼1

B4q
r

h
�ϖq

� ������
r¼0

¼ �2N 6¼ 0;

XN
q¼1

B4q
r

h
�ϖq

� ������
r¼1

¼ 0;

8>>>>><
>>>>>:

ð34Þ

XN
q¼1

dB4q
r
h �ϖq

� �
dr

�����
r¼0

¼ 0

XN
q¼1

dB4q
r
h �ϖq

�
dr

�����
r¼h

¼
XN
q¼1

Hq

8>>>>><
>>>>>:

ð35Þ

where:

Hq ¼ dB4qðxÞ
dx

����
x¼bq

¼
4bq 2� b2q

h i
�Pq

j¼1
B2
4j bq
� �

B4 qþ1ð Þ bq
� � þ 4b3q

0
BBB@

1
CCCA

XN
q¼1

d2B4q
r
h �ϖq

� �
dr2

�����
x¼0

¼ 8

3
N N 2 � 1
� �� �

XN
q¼1

d2B4q
r
h �ϖq

� �
dr2

�����
x¼1

¼
XN
q¼1

Gq

8>>>>><
>>>>>:

ð36Þ

with:

Gq ¼ d2B4qðxÞ
dx2

����
x¼bq

¼
3bq 4qb2q þ 12q� 2
� �

Hq � 8q 24q2b2q þ 8q2 � 3qþ 4
� �

b2q � 1
� �

12qb2q þ 4q� 2
� �

Therefore, the final NMR transverse magnetizations and
signal is given analytically as

My r; q; fð Þ ¼
X1
l¼0

X1
n¼1

X1
k¼0

Ak;l;n
bl;n
h

r

� ��1=2

Jlþ1=2
bl;n
h

r

� �
Pl

k cos ff g sin kfð Þ
ð37Þ

with Ak,l,n given by (Eq. 37)

Conclusion

We have presented a mathematical formulation for blood
flow problems involving an inner boundary within which
the formation of plague or stenosis acting as obstacles to
the blood flow is non uniform. The motion of the blood
particle is governed by a differential equation derived from
the Bloch NMR flow equations. We constructed a sphere in
which the plague can be quantitatively described whether
partial or absolute at any given point. Based on our earlier
studies [2, 20, 22] , we solved the blood flow problems in
spherical coordinate by method of separation of variables
using the Bessel and Legendre polynomial functions.
Equation 10a transforms the spherical Bessel equation into
ordinary Bessel equation from which the NMR transverse
magnetization and signals were properly derived as func-
tions of Bessel and Legendre polynomials based on the
boundary conditions imposed by the flow problems.
Dimensionally, it is exciting to note from Eqs. (10a, 11,
12, 26, 28) that, 1) the constant α defines the velocity on
the stenosis in a blood vessel when the diameter available
for blood flow reduces from h to β or βln. 2) the constants β
and βln characterize the diameter of the obstructed blood
vessel, β=βln=h–h1 where h1 is the height of stenosis. 3)
the velocity ratio α/V determines the severity of plague in
the blood vessel. This is a very significant parameter of the
flow analysis. For example, the value α/V=1 describes the
blood flow in normal artery as shown in Fig. 1a, where
β=βln=h and h1=0. On the other extreme situation when α/
V=0, the signal as recorded in Eq. 29 is completely lost and
the patient is either dead or in a very serious health
condition because h=h1, the blood vessel is totally blocked.
Based on the detailed analytical procedure presented in this
study (Fig. 2), the geometrical factors closely associated
with the degenerative disease can be well understood and
properly assessed if Eq. 29 is translated to magnetic
resonance image by means of an appropriate imaging

Fig. 2 Geometrical consideration blood vessel with atherosclerosis
disease
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sequence. Accurate knowledge of the velocity ratio α/V can
enhance our present understanding on how to restore
normal coronary perfusion, or if that is not possible, to
reduce the oxygen demand by the heart (i.e., normalize the
oxygen supply/demand ratio) so as to minimize myocardial
hypoxia. We would be able to accurately understand the
severe CAD in which one or more coronary arteries is very
stenotic, so that patient may undergo the right coronary
artery bypass grafts or be treated with the appropriate drugs
that reduce the myocardial oxygen demand by decreasing
heart rate, contractility, after load or preload.
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