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[摘要]  Bloch方程是NMR/MRI计算、模拟和实验的基础，但通常在不加特定的
绝热和非绝热条件的前提下获得Bloch流动方程的解析解是非常困难的。流动方
程的一般解析解可以为理解NMR/MRI的基本概念提供额外的信息，而又不需
要通常的指数方程。作者的目的是通过贝塞尔函数及其特性得到与时间无关的
NMR流动方程的解析解。在不需要主观添加弥散项的前提下利用贝塞尔函数及
其特性从NMR流动方程中获得了Stejskal-Tanner公式。这证实了弥散是Bloch流
动方程的内在属性并可以通过如贝塞尔函数的适当数学函数提取出来。从解析
解得到的非高斯行为的弥散信号在如脑白质的各项异性组织环境中是非常有意
义的。发现弥散系数是与 T1 和T2弛豫参数直接相关的，因此通过对大量已有的
贝塞尔函数进行合适利用可以在四个分离的缓存内采集MRI信号(实部和虚部，
相位和绝对值)。能够利用MRI监测药物对于不同组织尤其是脑部功能活动的 
效果。
[关键词] 弥散磁共振成像；Bloch磁共振方程；贝塞尔函数；曲折度和各向异
性的组织环境
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Abstract  Bloch NMR equations are fundamental to all NMR/MRI computations, 
simulations and experiments. It has been very difficult to solve the Bloch NMR 
flow equations analytically without imposing specific adiabatic and non adiabatic 
conditions. General analytical solutions of the flow equations can easily provide 
additional information to understand the basic concept of NMR/MRI without the usual 
exponential functions. The goal of this report is to present analytical solutions to the 
time independent NMR flow equation using the Bessel functions and properties. We 
derived the Stejskal-Tanner formula from the NMR flow equations using the Bessel 
functions and properties without the need to arbitrarily add the diffusion term. This 
confirms that diffusion is an intrinsic property embedded in the Bloch NMR flow 
equation and can be extracted by the use of appropriate mathematical functions such 
as Bessel functions and properties. The analytical solutions result in a non-Gaussian 
behavior of the diffusion signal which may be very useful when tissue environment is 
anisotropic such as in white matter of the brain. It is exciting to note that the diffusion 
coefficient is directly related to the T1 and T2 relaxation parameters. The abundantly 
available Bessel functions and properties can then be appropriately applied to acquire 
MRI signals in four separate buffers (real and imaginary parts as well as phase and 
absolute value). We may be able to monitor the effects of drugs on the functional 
activities of different tissues especially the brain by means of magnetic resonance 
Imaging.
Key words  Diffusion magnetic resonance imaging; Bloch NMR equations; Bessel 
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1  Introduction
The tortuosity parameter[1-8] describes geometrical 

hindrance of an environment relative to an obstacle-
free medium. If the obstacles exhibit some directional 
preference, the hindrance becomes anisotropic, that is, 
it depends on direction. For example, the molecules 
diffuse more readily along the white matter fibers than 
across them. In a macroscopically homogeneous and 
anisotropic environment, the tortuosity takes the shape 
of a symmetric tensor of the second order, which can 
be represented by a 3×3 matrix with six independent 
values. The tortuosity tensor combines with the scalar 
free diffusion coefficient into a tensor of apparent 
diffusion . However, despite all these complexities, 
the pulse field gradient method proposed by Stejskal 
and Tanner is still used to calculate signal attenuation 
due to diffusion along any single direction of the 
diffusion gradient. The only real difference from 
the homogeneous and isotropic case is that the 
experiment must be repeated using at least six non-
collinear directions of the diffusion gradient to obtain 
six independent components of the apparent diffusion 
tensor. It is therefore fair to conclude that the pulse 
field gradient method proposed by Stejskal and Tanner 
is at the heart of most modern diffusion and DTI 
experiments. 

DTI has become a very popular MR imaging 
modality and is developing into an important tool for 
non-invasive study and characterization of the brain 
white matter. It has been applied to the study of many 
neurological brain disorders such as schizophrenia, 
cocaine addiction, HIV infection, alcoholism, geriatric 
depression and Alzheimer's disease. An overview 
of theoretical issues surrounding the DTI technique 
can be found in literature[9-11]. A review of DTI 
applications in neuroscience is presented by Lim and 
Helpern[12].

It is our view that good understanding of the 
Stejskal-Tanner formulae is essential for logical design 
or interpretation of any MR diffusion experiment. 
Unfortunately, the derivation in a completely general 
case is nontrivial as it involves solving the Bloch-

Torrey partial differential equations[4-5]. We need to 
briefly review a simple connection between Gaussian 
diffusion and random walks. A comprehensive 
treatment can be found, for example, in works of 
Callagan, Haacke et al and Chandrasekhar[13-15]. 

If we begin with a qualitative description (within 
the rotating frame of reference) of diffusion on the 
NMR signal, an RF pulse turns all the equilibrium 
magnetization M0 into the transverse plane, perpen-
dicular to the main static magnetic field B0. The 
magnetization vector will rotate around it at angular 

frequency d
dt
φω =

 
given by the Larmor equation: 

0Bω γ=  .                                                                                   

Where γ is the gyromagnetic ratio (for a 
hydrogen proton). After the excitation, a short and 
strong gradient G is applied along the x-axis, changing 
the constant main field B0 to a spatially variable field

0 0 1( ) ( )                        (1a)B x B Gx B B x= + = +
Larmor frequencies therefore become different at 

different places along the x-axis. When the gradient is 
switched off again, some phase differences will have 
accumulated between the spins at different positions. 
At this point, we just wait for a period equal to the 
diffusion time t=nΔt. Then an opposite but otherwise 
identical gradient, -G, is applied. If the atoms did not 
change their positions during the diffusion time, all 
the phase differences would be perfectly reversed 
and the magnetization would be fully restored (apart 
from the neglected relaxation effects). However, if 
the spins move, the second gradient finds them at 
different locations than the first one and the phases 
will be reversed “incorrectly”. The result is phase 
dispersion in the measured sample and loss of signal 
when all the spins are eventually summed up to form 
the magnetization vector. Faster diffusion (larger D) 
means that the spins have bigger chance to travel 
farther and therefore experience larger magnetic field 
changes due to diffusion gradients. This causes larger 
spread in the phases and therefore results in a smaller 
signal. 

Bloch NMR flow equations, describing the 
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dynamics of the magnetization vector, have been 
solved analytically by imposing specific adiabatic and 
non adiabatic conditions[16- 22]:

2 2
1

1 2

1( )                            (1b)B x
T T

γ >>
     

                
2 2

1
1 2

1( )                           (1c)B x
T T

γ <<
                  

It may be very important to solve the flow 
equation for general cases without imposing these 
conditions. 

In this investigation, we solved the NMR flow 
equation for general cases using the Bessel properties 
and functions as mathematical tools to obtain the 
NMR transverse magnetization and the diffusion 
coefficient which depends on NMR relaxation 
parameters. The NMR system is considered in both 
real and complex domains which can easily provide 
additional information to understand the basic concept 
of NMR/MRI without the usual exponential functions. 

2  Mathematical formulation
Specifically, we consider the fluid particle (on the 

atomic scale) which either initially or in some average 
sense is in steady rotation. We apply a mathematical 
algorithm to describe in detail the dynamical 
state of the flowing fluid particle starting from the 
Bloch NMR flow equations[18-20]. We study the flow 
properties of the modified time independent Bloch 
NMR flow equations which describe the dynamics of 
fluid flow under the influence of RF magnetic field 
as derived in the earlier studies[16-22] when resonance 
condition exists at Larmor frequency:

0                    (1d)of Bγ ω= − =  
Then the x, y, z components (in the rotating 

frame) of the magnetization of a fluid bolus moving 
with variable velocity v(x) is given by the Bloch 
equations which may be written as follows:

2

( )             (1e)x x x
x

dM M Mv x gradM
dt t T

∂
= + = −

∂ 

1
2

( ) ( )   (1f)y y y
y z

dM M M
v x gradM M B x

dt t T
γ

∂
= + = −

∂                            
0

1
1

( )( ) ( ) (1g)zz z
z y

M MdM Mv x gradM M B x
dt t T

γ −∂
= + = − +

∂

Subject to the following conditions:
i. Mo ≠ Mz a situation which holds well in general 

and in particular when the RFB1(x) field is strong say of 
the order of 1.0G or more.

ii. Before entering signal detector coil, fluid 
particles has magnetization Mx = 0, My = 0.

iii. If B1(x) is large, B1(x) >> 1G or more so that 
My of the fluid bolus changes appreciably from Mo.  

iv. In anisotropic diffusion, the diffusion 

coefficient, D = D(x), 0( )v x u x=  and 0
1u
δ

=  where t is 
considered a constant. 

γ denotes the gyromagnetic ratio of fluid spins, 
ω/2π is the RF excitation frequency, f0/γ is the off- 
resonance field in the rot ating frame of reference.T1 
and T2 are the spin-lattice and spin-spin relaxation times 
respectively, the reciprocals of T1 and T2 are defined as 
relaxation rates. RF B1 is the spatially varying magnetic 
field and v is the fluid flow velocity.  Equations (1f 
and 1g) give a second order non – homogeneous 
differential equation which may be fundamental for the 
development of new magnetic resonance techniques. 
Hence, the Bloch NMR flow equation becomes: 

2
2 2 2 1

12
1 2 1 2 1

( )1 1 1( ) (2a)y y o
y

d M dM M B xv v B x M
dx T T dx T T T

γγ
   

+ + + + =   
   

Subject to the following definition:

(i) for steady flow, 0 (2b)yM
t

∂
=

∂
 

(ii)   ( )                            (3a)xv x
δ

=

Therefore, we may write:

1( )                               (3b)qB x xγ α=   
where q is an integer and

                                 (3c)Gα γ=
In a typical MRI procedure, G is the pulsed 

gradient applied for the length of time δ and q=1. 
However, for spin magnetization which is independent 
of the length of time t (constant time), we shall 
substitute for equations (1a) and (3) in equation (2) :

 2
2

2
1 2

2
2 2 1

1 2 1

1 11

( )( )

y y

o
y

d M dM
x x

dx T T dx

M B xG x M
T T T

δ

γδγδ

 
+ + + + 

 
 

+ = 
 

(4)
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When the radiofrequency field turns all the 
equilibrium magnetization M0 into the transverse 
plane, perpendicular to the main static magnetic field 
B0, maximum signal is expected for maximum RF 
B1(x) field and  M0 is minimum (say M0 ≈ 0). For a 
maximum value of My, we can write equation (4) as 
follows:

( )

2
2

2
1 2

2 2 2

1 11

0                                 

y y

y

d M dM
x x

dx T T dx

x M

δ

λ β

 
+ + + + 

 

+ =

(5)

Equation (5) is a general form of an equation 
transformable into Bessel’s equation of order β with 
parameter λ. A general solution of equation (5) is in 
the form:

0 01 2( )     (6)k
y m m

x xM x x c J c Y
η η

η η

λ λ
η η

−
    

= +    
     

where k, m0, η, β are all constants defined as:
2 2

0                           (7)m k β= −

                             (8)Gλ γδ=
2

2

1 2

                 (9)
T T
δβ =

(1 ) 1                      (10)
2

oTk δ + −
=

1 2
0

1 2 1 2

1 1 ( )T TT
T T T T
  +

= + = 
 

  and η=1

Equation (6) therefore becomes:

( ) ( )
0 01 2( )           (11)k

y m mM x x c J x c Y xλ λ−  = + 
Since the transverse magnetization needs to have 

a finite limit as x tends to zero, c2=0 and if we set the 

constant, c1=1, we have: 

( )
0

               (12)k
y mM x J xλ−=

3  Complex radio frequency magnetic field
In equation (3a), if the applied radio frequency 

field when k = 0 and q=1 is complex for a complex 
system, we may write:

1( )                            (13)B x i xγ α=

It should be noted that in the light of equations 

(6) and (7), we may write 
2

2 2 2
0

1 2

m m
T T
δβ= − = − = − . 

Therefore, we can write equations (11) as

( ) ( )1 2( ) (14)y m mM x c I x c K xλ λ= +  
In this case, β is not restricted. If β is not an 

integer, we have the alternative form 

( ) ( )1 2( )   (15)y m mM x c I x c I xλ λ−= +  
It may be useful especially in diffusion MRI to 

consider the applied radio frequency field in equation 
(3b) as complex function when k = 0 and q=1 given 
as follows: 

( )                     (16)B x i xγ α= −
We can write the NMR transverse magnetization 

as 

1

2

( ) ( )
(ker )
y m m

m m

M x c ber x ibei x
c x ikei x

λ λ

λ λ

= + +

+
(17)

In equation (17), for real values of x the equation
2 2( ) (18)m m mF x ber x ibei xλ λ= +

Is a complex number with characteristic length or 
modulus Fm(x) and a characteristic angle or amplitude 

1 ( )( ) tan (19)
( )

m
m

m

bei xA x
ber x

λ
λ

−=

Tab. 1  Values of the relaxation times[23] of human tissues at 1.5 T as they relate to the Bessel function parameters
Tissues T1(s) T2(s) t(s) T1T2(s

2) T0(s
-1) k β2 m0

Skeletal muscle 1.03 0.06 2.0 0.0618 17.63754 18.13754 64.72492 16.25563

Heart muscle 1.01 0.073 2.0 0.07373 14.68873 15.18873 54.252 13.28328

Liver 0.61 0.057 2.0 0.03477 19.1832 19.6832 115.0417 16.50415

Kidney 0.83 0.082 2.0 0.06806 13.39994 13.89994 58.77167 11.59468

Spleen 0.93 0.089 2.0 0.08277 12.31122 12.81122 48.32669 10.76108

Fatty tissue 0.33 0.12 2.0 0.0396 11.36364 11.86364 101.0101 6.303631

Gray brain matter 1.08 0.124 2.0 0.13392 8.990442 9.490442 29.86858 7.75886

White brain matter 0.92 0.114 2.0 0.10488 9.858886 10.35889 38.13883 8.316712
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It may be more useful to replace the expression 
berm(x)+ibeim(x) by the exponential expression 

( )( ) miA x
mF x e . Similarly, the equation  

2 2( ) ker ( ) ( ) (20)m m mH x x ikei xλ λ= +
has a characteristic length or modulus, Hm(x) and 

a characteristic angle of amplitude 

1 ( )( ) tan (21)
ker ( )

m
m

m

kei xB x
x

λ
λ

−=

The expression kermx+i keimx can also be replaced  
by the exponential expression ( )( ) miB x

mH x e .
We can finally write equation (17) as

( ) ( )
1 2( ) ( ) ( )   (22)m miA x iB x

y m mM x c F x e c H x e = + 

The Bessel functions and properties when k =0 
in equation (9) are readily available for the analysis 
of MRI signals as derived in equations (12, 14, 
15, 17,22) , These functions have been graphically 
displayed for certain important values of  relaxation 
parameter m when λ is a unit parameter either real of 
complex[24-27]. The measurement may be carried out by 
varying either the magnitude G, of the pulsed gradient 
or the length of time τ=δ, the time between pulses 
in the experiment. This sum is best tackled using the 
Euler theorem  exp iA(x)=cosA(x) + i sinA(x).

Abbreviating the expression, we have:
                A(x) = -γGΔxδ                                (23a)
 Therefore, we derive[13-15]  

                           S=M0cosn(A)=M0cosn(γGδΔx) 

The NMR signal undergoes various stages of 
amplification, filtering and other transformations. It 
is therefore not possible to measure M0 in absolute 
terms. We can remedy this unfortunate drawback 
of NMR by measuring the same sample twice: 
once without the diffusion gradients, to obtain un-
attenuated signal S0, and once with them, to obtain 
signal S. The M0 term in the signal will stay the same 
but the attenuation term will disappear from S0. We 
then calculate the ratio of the signals with and without 
the diffusion gradients:

0

0 0

cos ( ) cos ( )
n

nM G xS G x
S M

γ δ γ δ∆
= = ∆

The last step is to eliminate Δx and express the 

result in terms of experimentally accessible variables.

( )

( )

2
2 2 2 2 2 2 2

2 2 2

12
2

2
 (23b)

xG x G x G n t
n t

D bDG
n n

γ δ γ δ γ δ

γ δ τ

∆
∆ = ∆ = ∆              =

∆

=

where the so-called b –value is introduced[13-15], 
                         b=γ2G2δ2τ   (24)
S is the signal strength in a pulse sequence with 

a pair of balanced diffusion-sensitizing gradients of 
strength G, each of a duration δ and with a delay τ 
between them. S0 is the signal strength in an identical 
experiment but without the diffusion gradient pair. 
When it can be safely assumed that δ<< τ, the 
expression for b (usually called b-value) simplifies to 
equation (24). Equation (22) becomes

1 2
1 2( ) ( ) ( )          (25)m mbD bD

y m mM x c F x e c H x e− − = + 
where D1m and D2m may represent diffusion 

coefficients in different locations in the voxel of 
anisotropic tissue. These diffusion coefficients can be 
analyzed using the Bessel properties in equations (19, 
21) as：

(26a)[ ]

[ ]

1
1

2
2

01

2
2

0

( )1 tan
( )

sin(3 / 4 / 2)
( )

2 ! ( 1)1 tan
cos(3 / 4 / 2)

( )
2 ! ( 1)

m
m

m

m f
m f

f

m f
m f

f

bei xD
b ber x

m f
x

f m f
m fb x
f m f

λ
λ

π
λ

π
λ

−

∞
+

+
=−

∞
+

+
=

= − =

+ 
 Γ + + −  + 
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∑

∑
                                                                                                                        

1
2

( )1 tan (26b)
ker ( )

m
m

m

kei xD
b x

λ
λ

−= −

If we set m=1/2 in equation (26a), we have the 
following expressions:

1 1/2
1/2

1/2

3/4

1
3/4

( 2)1 tan
( 2)

2 sin( ) sin( )
1 8 8tan

2 cos( ) cos( )
8 8

x x

x x
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e x e x
x
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x

λ λ
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λ
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π πλ λ
πλ
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−
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−
−

−

= − =
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In equations (26a, 27a and 27b),Γ(m+f+1) is the 
gamma function.

4  Conclusion
We have solved the time independent NMR flow 

equation and obtained analytical solutions for the 
NMR transverse magnetizations in terms of Bessel 
properties and functions which can reveal wealth of 
MRI physics and make NMR theory, dynamics and 
applications more interesting, appealing, motivating 
and exciting. It is significant to note from equations (8, 
11) that the duration of time when the pulse is applied 

depends completely on the relaxation parameters of 
the sample. This makes the technique presented in 
this report uniquely applicable to anisotropic tissues.  
For illustration, from figures 1—3, the changes in the 
MRI experimental parameters λ=γGδ and the signal 
are spatially represented at the microscopic level. It is 
observed that MRI signal decreases with increase in 
either T1 or T2 relaxation parameters. This can be very 
useful in planning for appropriate MRI experiments.  
Figure 3, is based on equations(10,12) which is 
completely described by the Bessel functions and 
properties in terms of MRI experimental parameters.  

Tab. 2  Values of the relaxation times of human tissues at 1.5 T [23] as they relate to
the Bessel parameters in the solutions (14), (15) and (22)

Tissues T1(s) T2(s) δ(s) T1T2(s
2) T0(s

-1) β2 M

Skeletal muscle 1.03 0.06 1.0 0.0618 17.63754 16.18123 4.02259

Heart muscle 1.01 0.073 1.0 0.07373 14.68873 13.563 3.682798

Liver 0.61 0.057 1.0 0.03477 19.1832 28.76043 5.362875

Kidney 0.83 0.082 1.0 0.06806 13.39994 14.69292 3.833134

Spleen 0.93 0.089 1.0 0.08277 12.31122 12.08167 3.47587

Fatty tissue 0.33 0.12 1.0 0.0396 11.36364 25.25253 5.025189

Gray brain matter 1.08 0.124 1.0 0.13392 8.990442 7.467145 2.732608

White brain matter 0.92 0.114 1.0 0.10488 9.858886 9.534706 3.087832

Fig. 1  The plots of transverse magnetization against x and λ [using equation (12)] for a time of 2 s, using the relaxation-time values at 1.5 T[23] of (A) 
skeletal muscle (B) heart muscle (C) liver (D) kidney (E) spleen (F) fatty tissue (G) gray brain matter (H) white brain matter.  Fig. 2  The plots of transverse 
magnetization against x and λ [using equation (12)] for a time of 2 s and the relaxation-time values at 1.5 T[23] of fatty tissue within the ranges (A) x: 0—5 m, 
(B) x: 0—0.05 m, (C) x: 0—0.005 m, (D) x: 0—0.000005 m.

2A 2B 2C 2D

1A 1B 1C 1D

1E 1F 1G 1H
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The behaviour of the transverse magnetizations and 
the MRI parameters are completely controlled by 
Bessel functions. This can be extremely useful for 
MRI simulations of Biological and Physiological 
systems.

Based on equations (3b, 5, 24, 25), quantity 
b depends on the NMR hardware especially the 
radiofrequency coil in use  and the pulse program 
controlling it but does not depend on the diffusion 
constant. The computer program can be designed 
accordingly using the Bessel functions and properties. 
It is noteworthy that in the traditional NMR/MRI 
experiments, the expression for the b-value usually 
becomes more complicated if various NMR sequence 
intricacies are taken into account. Most importantly, it 
is assumed that the diffusion gradients are switched on 
for a negligible period of time in comparison with the 
diffusion time. However, Equation (24) does capture 
the most important features-square dependency on the 
gradient moment Gδ and linear dependency on the 

diffusion time t. 
The NMR signal from nuclei following the 

simple diffusion model is attenuated due to phase 
randomization as 

0

2cos                          (28)nS bD
S n

 
=  

 
This is a “discrete” form of the Stejskal-

Tanner equation; equation (28) offers the possibility 
to measure the diffusion constant. This can be done 
by acquiring signals with and without diffusion 
gradients and calculating D. Better still, one can 
obtain the signal many times with different b-values 
and obtain D by a fitting procedure from equation 
(28). However, equation (4) can generate functions as 
solutions to various differential equations applicable 
in MRI physics, typically describing wavelike 
oscillatory behavior or a combination of oscillation 
and exponential decay or growth. For example, if q=2 
in equation (3b) gives the phase of the spins as

Fig. 3  Plots of D1m against λ and x, for τ=1.0 s and the relaxation-time values at 1.5 T[23] of (A) skeletal muscle (B) heart muscle (C) liver (D) kidney (E) 
spleen (F) fatty tissue (G) gray brain matter (H) white brain matter.  Fig. 4  Plots of D1m against λ and τ, for x=3 µm and the relaxation-time values at 1.5 
T[23] of (A) skeletal muscle (B) heart muscle (C) liver (D) kidney (E) spleen (F) fatty tissue (G) gray brain matter (H) white brain matter.
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2bDG x x
n

φ γ δ λ= = = (29a)

where the b–value is,
                 b=γ2G2δ2τ =λ2τ   (29b)
For  the  NMR t ransverse  magnet iza t ion 

represented in figures 4—5, we can easily determine 
the value of D, G or τ based on equations (8, 9, 29) 
for anisotropic tissue environment where the value 
of T1 and T2 relxation parameters may vary acording 
to directional preference. In this way the diffusion 
coefficient is proportional to the characteristic angle 
of the transverse magnetization. Figure 6 shows that 
the field gradient G, depends completely on T1 and T2 
relaxation parameters. Figure 7 gives unique contrasts 
for different human tissues at 1.5 T, and the images 
show the possibility of using Equations (26a and 26b) 
for spatial diffusion mapping. This may prove to be 
very useful in the study of tissue diseases in which 
diffusion properties are progressively affected. 

It may be significant to note for example in 
edema with variable wall thickness, a solution for 
the rotation, moment and shear force  on the cylinder 
requires successive differentiation  of equation (17) 
starting from a knowledge of the deflection of the 
structure. The radial deflection of the cylinder can be 
shown to be:

1

2

( ) ( ( ) ( ))
(ker ( ) ( ))

y m m

m m

M x c ber x ibei x
c x ikei x

λ λ

λ λ

′ ′= + +

′ ′+
(30)

where ber’(λx), bei’(λx), ker’(λx) and kei’(λx) 
are the first derivatives of equation (17). The terms 
c1  and c2 are constants that are to bedetermined from 
the boundary conditions for the particular problem 
being investigated[24]. The derivative dMy/dx gives 
the rotation of the cylinder. The bending moment is 
obtained from μx=-DdMy

2/dx2 and the radial shear 
force Sx= dμx /dx[24]. These parameters, with some 
modifications, can be used to obtain solutions for 
a range of medical and biomedical problems. In 

Fig. 5  Plots of D2m against λ and x, for τ =1.0 s and  the relaxation-time values at 1.5 T[23] of (A) skeletal muscle (B) heart muscle (C) liver (D) kidney (E) 
spleen (F) fatty tissue (G) gray brain matter (H) white brain matter. Fig. 6  Plots of D2m against λ and τ, for x=3 µm and  the relaxation-time values at 1.5 
T[23] of (A) skeletal muscle (B) heart muscle (C) liver (D) kidney (E) spleen (F) fatty tissue (G) gray brain matter (H) white brain matter.
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our next investigation, a mathematical model and 
computational analysis of nano drugs based on Bloch 
NMR flow equation and Bessel functions will be 
in focus where the properties of equation (4) will 
be explored to monitor the effects of drugs on the 
functional activities of different tissues especially the 
brain. 
志谢 感谢中国科学院高能物理研究所单保慈教授翻译本文摘要
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Fig. 7  Density plots of (A) D1m 
against λ and x, τ=1.0 s for 
fatty tissue at 1.5 T[23] (B) D1m 

against λ and x, τ=1.0 s for 
gray brain matter at 1.5 T (C) 
D1m against λ and τ, x=3 µm 
for fatty tissue at 1.5 T (D) 
D1m against λ and τ, x=3 µm 
for gray brain matter at 1.5 T 
(E) D2m against λ and x, τ=1.0 s 
for fatty tissue at 1.5 T[23] (F) 
D2m against λ and x, τ=1.0 s for 
gray brain matter at 1.5 T (G) 
D2m against λ and τ, x=3 µm 
for fatty tissue at 1.5 T (H) D2m 
against λ and τ, x=3 µm for 
gray brain matter at 1.5 T.


