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Accurate received signal level (Rxlevel) values are useful for mobile telecommunication network plan-
ning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate
knowledge of the prevailing atmospheric conditions in an environment is essential for proper network
planning. However most of the existing GSM received signal determination model are function of dis-
tance between point of signal reception and transmitting site thus necessitating the development of a
model that involve the use of atmospheric parameters in the determination of received GSM signal level.
In this paper, a three stage approach was used in the development of the model using some atmospheric
parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily
measurable atmospheric parameters were used as input parameters in developing two new models for
computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing
serves as the first stage and formulation of ANN design and the development of parametric model for
the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage
involves the use of ANN weight and bias values, and network architecture in the development of the
model equation. In evaluating the performance of the proposed models, network parameters were varied
and the results obtained using mean squared error (MSE) as performance measure showed the developed
model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output
layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an
acceptable accuracy value as demonstrated from comparison of results with actual measured values.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Empirical models are used in the planning of mobile communi-
cation networks. Due to the differences in environmental struc-
tures, local terrain profiles and weather conditions, the signal
strength and path loss prediction model for a given environment,
with reference to existing empirical models, often differ from the
optimal model. Accurate signal strength values are necessary for
network planning. Mobile telecommunications depend on the
propagation of radio waves within the troposphere, the region of
the atmosphere extending from the Earth’s surface up to an alti-
tude of about 16 km at the equator or 8 km at the poles [1]. Prop-
agation of radio waves through space is governed to a great degree
by the dynamics and physical properties of the atmosphere and
objects in the propagation path. Environmental, atmospheric and
climatic conditions impair Global System for Mobile Communica-
tion (GSM) signal propagation and may result in reduction of the
strength of received signal and deformation of signal quality over
time. The environmental and weather effects on signal strength
need to be properly understood in given environments to enhance
optimal planning of such networks.

The Earth’s weather system is confined to the troposphere and
the fluctuations in weather parameters like temperature, pressure
and humidity within the atmospheric layer cause the refractive
index of the air in this layer to vary from one location to another
and from time to time. The variation in the refractive index of
the atmosphere results in various degrees of refraction of mobile
signals. Under abnormal conditions such as ducting, the signal
strength can also be enhanced and this enables the signals to reach
unintended locations where they may constitute interference to
meters,
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other co-channel networks. The refractive properties of the tropo-
sphere is expressed by the radio refractivity, N, given by

N ¼ ðn� 1Þ � 106 ð1Þ
where n = refractive index of air. N depends on meteorological fac-
tors of air pressure, P (hPa), air temperature, t (�C) and water vapour
pressure, e (hPa), which are related to N as [2]:

N ¼ 77:6
P
T

� �
þ 3:732� 105 e

T2

� �
ð2Þ

where T(K) = t + 273, and

e ¼ Hes
100

ð3Þ

where e is water vapour pressure, H is relative humidity, and es the
saturated water vapour pressure given as:

es ¼ 6:11exp
17:502t

T

� �
ð4Þ

Surface refractivity, Ns, is known to have high correlation with
radio field strength values [3,4] and seasonal variations in Ns have
been found to agree in general with the observations of the varia-
tion of radio field strength at VHF and UHF in Nigeria [5,6]. Thus,
surface radio refractivity is a function of atmospheric parameters
of temperature, pressure and relative humidity near the surface.

Temperature and relative humidity have been found to have
some correlation with GSM Rxlevel [7,8,9]. Zilinskas et al. [10]
showed that there is no obvious correlation between atmospheric
pressure and received signal strength. Some relationships exist
between atmospheric temperature, relative humidity and dew
point. Atmospheric temperature is the degree of hotness or cold-
ness of the atmosphere. Humidity is a measure of the quantity of
water vapour or the gaseous state of water, in the atmosphere,
and is usually invisible. The maximum amount of water vapour
in the atmosphere depends on the atmospheric temperature [9].
Relative humidity (RH) defines the amount of water vapour in
the atmosphere relative to the maximum amount of water vapour
the air can take at the same atmospheric temperature and pres-
sure. Relative humidity of the saturated atmosphere is 100% and
as atmospheric water vapour increases towards saturation point,
atmospheric temperature decreases. In other words, relative
humidity is inversely proportional to atmospheric temperature.
Dew point is the temperature to which the atmosphere must be
cooled to enable water vapour condense into liquid water or ice
(RH = 100%). Relative humidity and dew point are both reflection
of the amount of water vapour in the atmosphere. Each of them
is also a function of temperature. Thus, relative humidity, temper-
ature and dew point are interrelated and their relationship with
radio field strength makes them reliable as inputs in received sig-
nal level computation model. Artificial Neural Network has been
found to be very effective in prediction problems and useful in
the development of models [11].

Artificial Neural Network (ANN) is one of the artificial intelli-
gence techniques. It is based on understanding the structure and
function of the physical biological neurons of the human brain
and the ability of the human brain to learn through example
[12]. ANN has proven to be flexible and with capability to learn
the underlying relationships between the inputs and outputs of a
process, without needing the explicit knowledge of how these vari-
ables are related [13]. ANN can learn, adapt, predict and classify. In
this study, the atmospheric parameters such as temperature, rela-
tive humidity and dew point that have been found to have rela-
tionship with the temporal variation of GSM Rxlevel were used
to develop a model that computes GSM Rxlevel. This is useful for
determining coverage areas of base stations, frequency assign-
Please cite this article in press as: J.O. Eichie et al., Artificial Neural Network m
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ments, interference analysis, handover optimisation, optimal
transmitting antenna height and power level adjustment.

There is need for the determination of propagation characteris-
tics of given environments, especially in tropical regions of Africa,
as requested by ITU-R. Acquisition of empirical signal field strength
data could be difficult, due to paucity of relevant equipment. But
acquisition of atmospheric data is relatively cheaper and the data
are more available.

The rest of this paper is organized as follows: Section 2 presents
literature review while Section 3 presents model design and devel-
opment. Results and discussion is presented in Section 4 while
conclusion is in Section 5.
2. Literature review

This section is divided into two sub-sections. In subsection 2.1,
review of recently published related work from literature have
been undertaken while in subsection 2.2 an overview into ANN
which is used in Section 3 in the developing of the appropriate
model has been provided.
2.1. Related field Measurements and ANN Applications

Adewumi et al. [8] studied the influence of atmospheric
parameters on UHF Radio Propagation in South Western Nigeria.
Received signal level was observed to increase with increase in
temperature while relative humidity increased with signal path
loss. The study revealed that air temperature and relative humid-
ity have significant influence on UHF signal propagation within
the tropospheric region of southwest Nigeria. Zilinskas et al.
[10] investigated the influence of atmospheric radio refractivity
on WiMax signal level. The study revealed that atmospheric radio
refractivity, as a combination of temperature and relative humid-
ity, has impact on the variation of received signal level. Increase
in refractivity values had a corresponding decrease in received
signal level.

Famorji et al. [14] revealed an inverse relationship between
atmospheric radio refractivity and UHF received signal level with
correlation coefficient value of �0.97. The study also revealed a
direct relationship between atmospheric radio refractivity and rel-
ative humidity and an inverse relationship between atmospheric
radio refractivity and temperature. Sheowu and Akinyemi [15]
investigated the effect of climatic change on GSM signal propaga-
tion by sampling the three ITU regions in Nigeria at different cli-
matic seasons of rain (May–June) and harmattan (November–
March). The result obtained revealed that climate affects signal
propagation.

Afrand et al. [16] developed an optimal Artificial Neural Net-
work to predict the thermal conductivity ratio of the magnetic
nanofluid and Afrand et al. [17] predicted dynamic viscosity of a
hybrid nano-lubricant using an optimal Artificial Neural Network.
Comparison of the experimental data, empirical correlation and
the optimal ANN outputs showed that the optimal Artificial Neural
Network model is more accurate. Philippopoulos and Deligiorgi
[18] assessed the spatial predictive ability of ANNs to estimate
mean hourly wind speed values in Chania City, Greece. The pre-
dicted values were compared with five traditional spatial interpo-
lation schemes and ANNs were observed to efficiently predict the
mean wind speed spatial variability in Chania City.

Esfe et al. [19] applied feedforward multilayer perceptron Arti-
ficial Neural Networks and empirical correlation, for the prediction
of thermal conductivity of Mg(OH)2–EG using experimental data.
The results of the developed models revealed that, in the absence
of costly and time-consuming tests, the impact of temperature
and volume fraction on Mg(OH)2–EG nanofluids’ thermal
odel for the determination of GSM Rxlevel from atmospheric parameters,
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conductivity can be analyzed with ANN models. Litta et al. [20]
evaluated the utility of multilayer perceptron network (MLPN)
ANN model for the prediction of hourly surface temperature and
relative humidity in Kolkata, India. The study showed that ANN
models were capable of predicting hourly temperature and relative
humidity adequately and the developed ANN models were applied
in the prediction of thunderstorm in Kolkata.
2.2. Overview of ANN

ANN is an information processing system constituted by an
assembly of a large number of simple processing elements that
are interconnected to perform a parallel distributed processing in
order to solve specific task, such as pattern classification, function
approximation, clustering (or categorisation), prediction (forecast-
ing or estimation), optimisation and control [13]. The Process Ele-
ments (PEs) attempt to simulate the structure and function of the
physical biological neurons of the human brain. The fundamental
principle of ANN is based on finding coefficients between the
inputs and outputs of a problem, making connections between
input and output layers and performing operations on a learning
system [21]. The fundamental element of ANN is the neuron. Each
neuron handles:

i. the multiplication of the network inputs, x1, x2, x3, . . .xn
(from original data, or from the output of other neurons in
a neural network) by the associated input weights,

ii. the summation of the weight and input product to the bias
value associated with the neuron, and

iii. the passage of the summation result, u, through a linear or
nonlinear transformation called the activation function, u.
The neuron’s output, y, is the result of the action of the acti-
vation function.
Please
Eng. S
u ¼ f ðuÞ ð5Þ

 !
y ¼ u
Xn
i¼1

xiwi þ b ð6Þ
� �

y ¼ u wTxþ b ð7Þ
where b is the bias value (or external threshold), wi, is the
weight of the respective inputs xi, u is the argument of the
activation function and wT is a transpose of the weight vector.
Fig. 1. Artificia
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The weight and bias are adjustable parameters of the neuron
that causes the network to exhibit some desired or interesting
behaviours. Fig. 1 shows an illustration of an artificial neuron.

ANN architecture can be classified into two main topologies:
feed-forward multilayer networks and feedback recurrent net-
works. In the former network, feedback connections are not
allowed while loops and iteration for a potentially long time before
producing a response exist in the latter. The most commonly used
type of feed-forward network is the multilayer perceptron [22]. A
multilayer perceptron (MLP) network consists of a set of input
nodes, one or more hidden layers and a set of output nodes in
the output layer. MLP network has the ability to model simple
and as well as complicated functional relationships.

3. Model design and development

In this section, the design and development of the ANNmodel for
determination of Rxlevel is presented. The proposed approach
involves a three stage approach namely, data collection and pre-
processing, network design andmodel development. Detailed infor-
mation about each of the aforementioned stages is provided
herewith.

3.1. Data collection and pre-processing

Twelve months (June 2014 to May 2015) atmospheric data were
acquired from the Nigeria Environmental and Climate Observation
Programme (NECOP) weather station at the Bosso Campus of the
Federal University of Technology, Minna, Nigeria. Concurrently,
the GSM Rxlevel of Mobile Telecommunications Network (MTN)
with the frequency band 1835–1850 MHz was measured using a
spectrum analyser (SPECTRAN HF 6065) connected to a laptop
loaded with Aarisona data logging software. Figs. 2 and 3 show
the NECOP weather station and the GSM Rxlevel measurement
setup used in this study.

The atmospheric data and GSM Rxlevel were measured at 5 min
and 500 ms intervals respectively, GSM Rxlevel data were averaged
to 5 min intervals for each day of the 12 months. The missing data
in the input data (atmospheric temperature, relative humidity and
dew point data) and the output data (GSM Rxlevel data) were
replaced by the average of neighbouring values. The terrain of
the propagation environment is relatively flat and unpaved. There
are farm lands, vegetation cover, few trees and bungalow buildings
between the transmitting and the measurement sites. The physical
profile of the fixed wireless link consisting of the MTN base station
and the measurement site is shown in Fig. 4.
l Neuron.

odel for the determination of GSM Rxlevel from atmospheric parameters,
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(a)  A view of the Weather Station (b) Downloading of Atmospheric Data to a laptop

Fig. 2. The NECOP Weather Station.
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Fig. 3. Spectran HF 6065 and a Laptop for Data Logging.
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Fig. 4. Physical Profile of the Fixed Wireless Link (Google Earth).
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3.2. Design of ANN based Rxlevel determination model

The proposed MLP network consists of 3 nodes at the input
layer, one hidden layer and 1 node at the output layer. In the pro-
posed model, 3 most frequently used activation functions have
been considered [23]. These are:

i. Logistic sigmoid activation function also known as logsig.

f ðuÞ ¼ 1
1þ e�u

ð8Þ

ii. Hyperbolic tangent sigmoid activation function also known
as tansig.

f ðuÞ ¼ 2
1þ e�2u � 1 ð9Þ

iii. Linear activation function also known as purelin.

f ðuÞ ¼ u ð10Þ
A schematic of the proposed MLP network with variable neurons in
the hidden layer is shown in Fig. 5.where xi (where 1 6 iP 3) are
the set of inputs; wij and wjk are adjustable weight values: wij con-
nects the ith input to the jth neuron in the hidden layer, wjk con-
nects the jth output in the hidden layer to the kth node in the
output layer; yk (where k = l) is the output. Each neuron and output
node has associated adjustable bias values: bj (where j = number of
neurons) is associated with the jth neuron in network layer 1, bk
(where k = 1) is associated with the node in the network layer 2.
Within each network layer are: the weights, w, the multiplication
and summing operations, the bias, b, and the activation function,
u [23,24]. Mathematically, Fig. 5 can be represented as:

yl ¼ u2

Xm
j¼1

wj1u1

X3
i¼1

wijxi þ bj

 !
þ b1

 !
ð11Þ

where m is the total number of neurons in the hidden layer. The
operations within an N layered MLP network can be mathematically
represented by;
Fig. 5. A 2 layered

Please cite this article in press as: J.O. Eichie et al., Artificial Neural Network m
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ð12Þ
where l is the number for the lth neuron in layer N, p is the maxi-
mum number of neurons in layer N and N is the total number of net-
work layers.

For linear activation function in both hidden and output layers
and the use of m number of neurons in the hidden layer, Eq. (11) is
transformed into:

y ¼ LW ½IW � X þ b1� þ b2 ð13Þ

y ¼ ½LW � IW � � X þ ½LW � b1� þ b2 ð14Þ
where

Layer weights, LW = [1,m] matrix
Input weights, IW = [m,3] matrix
Layer 1 bias, b1 = [m,1] matrix
Layer 2 bias, b2 = c
Input vector, X = [3,1] matrix

Thus,

½LW � IW� ¼ ½abc� ð15Þ

½LW � IW � � X ¼ ½abc�
T
R
D

2
64

3
75 ð16Þ

The proposed model equation is:

y ¼ aT þ bRþ cDþ c ð17Þ

Similarly, adopting the same approach for tansig activation
function, another proposed model equation for the determination
MLP network.

odel for the determination of GSM Rxlevel from atmospheric parameters,
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Fig. 6. Flow Diagram of the ANN Script.
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of GSM Rxlevel, using atmospheric temperature, relative humidity
and dew point as independent variables can be expressed as:

y ¼ 2

1þ exp �2 a 2
1þexpð�2ðbxþbÞÞ � 1
� �

þ c
� �� �� 1 ð18Þ

where x is the input vector of atmospheric temperature, relative
humidity and dew point, a, b, b and c are constant values.
Please cite this article in press as: J.O. Eichie et al., Artificial Neural Network m
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3.3. Model development

MATLAB was used to write the script files for the developed
Rxlevel determination model and performance analysis to deter-
mine the weight and bias values, number of neurons and activation
function type to be used in the optimal model equation. The script
files were written to compare the relative effect of number of hid-
den layer neurons and activation function type on the performance
odel for the determination of GSM Rxlevel from atmospheric parameters,
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of a designed network. A feedforward network topology and the
default Matlab Neural Network Toolbox learning algorithm, Leven-
berg–Marquardt, were used. The number of neurons in the hidden
layer was varied from 5 to 33 in incremental steps of 2. Logsig,
purelin and tansig type of activation functions were used to create
9 different pairs of activation functions. Thus, each of the 15 differ-
ent numbers of neurons was used with 9 different pairs of activa-
tion functions. Each run of the script file generates 135 networks.

For networks in which activation function pairs with logsig or
tansig functions were used in the output layer, the input and target
output data were pre-processed into 0–1 or �1 to +1 range using
Eqs. (19) and (20) respectively.

Xnorm 0 1 ¼ X � Xmin

Xmax � Xmin
ð19Þ

Xnorm �1 1 ¼ 2� X � Xmin

Xmax � Xmin
� 1 ð20Þ

The network outputs from the simulation process were then
post processed to the original range. To compare the relative effect
of number of runs on network performance, the script file was run
20 times and 20 runs generated 2700 trained networks for perfor-
mance evaluation. The flow diagram of the ANN script file is shown
in Fig. 6.

Out of the 12 months data (3465 samples), 864 samples were
used while training the network. During the training process, the
input and target output data were applied to the network and
the network computed its output. The initial weight and bias val-
ues and their subsequent adjustments were done by the Matlab
Neural Network Toolbox software. For each set of output in the
output data, the error, e, (the difference between the target output,
Table 1
Best Performance in 20 Runs for 9 Pairs of Activation Function.

Hidden Layer Output Layer No. of Runs

Purelin Purelin 6
Purelin Tansig 16
Purelin Logsig 5
Logsig Purelin 5
Logsig Tansig 14
Logsig Logsig 20
Tansig Tansig 14
Tansig Logsig 7
Tansig Purelin 9

Table 2
Worst Performance in 20 Runs for 9 Pairs of Activation Function.

Hidden Layer Output Layer No. of Runs

Purelin Purelin 3
8

Purelin Tansig 18
Purelin Logsig 6

8
7

Logsig purelin 2
Logsig Tansig 18

19
8

Logsig Logsig 1
10

Tansig Purelin 4
Tansig Tansig 7

12
17

Tansig Logsig 10
13
8

The number of runs, number of neurons in the hidden layer and the MSE values of the
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t, and the network’s output, y,) was computed. The computed
errors were used by the network performance function to optimize
the network and the default network performance function for
feedforward networks is mean squared error, MSE (the mean of
the sum of the squared errors) which is given by:

MSE ¼ 1=N
XN
i¼1

ðeiÞ2
 !

ð21Þ
MSE ¼ 1=N
XN
i¼1

ðti � yiÞ2
 !

ð22Þ

where N is the number of sets in the output data. The weight and
bias values are adjusted so as to minimize the mean squared error
and thus increase the network performance. After the adjustments,
the network undergoes a retraining process, the mean square error
is recomputed and the weight and bias values are readjusted. The
retraining continues until the training data achieves the desired
mapping to obtain minimum mean square error value.
4. Results and discussion

The performances of the developed ANN based Rxlevel models
were evaluated using MSE. For each of the activation function pair,
the best and worst performed networks in the 20 run of the script
file were determined with the least and highest MSE value. Tables
1 and 2 show the performance comparison of the best and worst
networks for each of the 9 pairs of activation function.

As can be seen from Tables 1 and 2, the number of run of the
script file has no obvious effect on the performance of the trained
No. of Neurons in hidden layer MSE

5 0.5084
15 0.5118
15 0.5118
31 0.1270
33 0.0602
33 0.0615
33 0.0566
33 0.0651
31 0.0995

No. of Neurons in hidden layer MSE

17 0.5084
11 0.5084
15 0.5118
19 2.5329
21 2.5329
27 2.5329
9 0.5211
11 2.5329
17 2.5329
21 2.5329
11 2.5329
15 2.5329
5 0.7165
9 2.5329
13 2.5329
17 2.5329
9 2.5329
19 2.5329
21 2.5329

worst performed networks are shown in bold font.

odel for the determination of GSM Rxlevel from atmospheric parameters,

http://dx.doi.org/10.1016/j.jestch.2016.11.002


Fig. 7. Comparison of Measured Rxlevel and Model Predicted Rxlevel.
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Fig. 8. Histogram of Margin of Deviation for Model Predicted Rxlevel.
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network. Increasing the number of neurons in the hidden layer for
networks with logsig or tansig activation function in the hidden
layer, decreases the MSE value and thus increases the network per-
formance. But for networks with purelin activation function in the
hidden layer, increasing the number of neurons has no obvious
effect on the network performance. In Table 1, the best performed
network had least MSE value of 0.0566 at the 14th run of the script
file with the use of 33 neurones in the hidden layer. 14 networks
had the worst performance with highest MSE value of 2.5329. Acti-
vation function pairs of tansig/tansig, tansig/logsig, logsig/tansig
and logsig/logsig performed worst with low number of neurons
in the hidden layer.
Fig. 9. Testing of Model on 2592 samples (Sep

Please cite this article in press as: J.O. Eichie et al., Artificial Neural Network m
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Using the weight and bias values, the architecture of the net-
work, for linear activation function in the hidden and output layers
[25], the proposed model Eq. (17) for the computation of GSM
Rxlevel, using atmospheric temperature, relative humidity and
dew point is transformed into the model equation:

y ¼ 0:2467T þ 0:0167Rþ 0:0657Dþ 105:303 ð23Þ

where T = temperature, R = relative humidity and D = dew point.
Similarly, for tansig activation function, Eq. (19) is transformed into
the model equation:

y ¼ 2

1þ exp �2 a 2
1þexpð�2ðbxþbÞÞ � 1
� �

� 2:9156
� �� �� 1 ð24Þ

where x is the input vector of atmospheric temperature, relative
humidity and dew point, a, b, and b are constant values.

The network architecture of 3-33-1, with tansig/tansig pair of
activation functions performed best with least MSE value of
0.0566. Using the weight and bias values, and the architecture of
the network with the best performance, the optimal model equa-
tion developed for the computation of GSM Rxlevel using atmo-
spheric parameters such as atmospheric temperature, relative
humidity and dew point is Eq. (25).

The deviations between the measured Rxlevels and the model
predicted Rxlevels were computed using Eq. (26) and were used
in deviation analysis of the developed optimal model to evaluate
its accuracy.
tember to May data) of Atmospheric Data.
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Margin of deviation ¼ ym � yp

ym

� 	
� 100 ð25Þ

where ym = measured Rxlevel and yp = model predicted Rxlevel. The
model was used on 2592 samples (September to May data). Com-
parison was made between the measured Rxlevels and the model
predicted Rxlevels.

Fig. 7 shows plots of measured Rxlevels and model predicted
Rxlevels, and histogram of the margin of deviation for the model
predicted Rxlevel is shown in Fig. 8.

The measured Rxlevel and model determined Rxlevel had corre-
lation value of 0.706 when computed with Pearson correlation
coefficient formula:

r ¼ nðP xyÞ � ðP xÞðP yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nP x2 � ðP xÞ2�½nP y2 � ðP yÞ2�

q ð26Þ

where
r = Pearson correlation coefficient
x = values in first set of data
y = values in second set of data
n = total number of values

Fig. 8 shows that the deviation distribution is concentrated
around 0 and this conotes acceptable accuracy of the model [17].
Result obtained from the use of the model on 2592 samples
(September to May data) is shown in Fig. 9 and the computed cor-
relation coefficient value was 0.906. The histogram of margin of
deviation shown in Fig. 10, shows that the developed model has
an acceptable accuracy.
5. Conclusion

In this study atmospheric temperature, relative humidity and
dew point, were used as inputs in the development of ANN based
Rxlevel determination parametric model for the determination of
received GSM signal level. Network parameters such as number
of neurons in the hidden layer and activation function were varied
during the performance evaluation process. The use of Levenberg-
Marquard algorithm, network architecture of 3-33-1, tansig activa-
tion function in both the hidden layer and output layer was the
optimal combination that gave the best performance with least
MSE value of 0.056. The weight and bias values and the architec-
ture of the MLP network were used in the development of a model
equation. Comparisons of the measured and model output, showed
that the developed model can efficiently determine the GSM Rxle-
vel using atmospheric temperature, relative humidity and dew
point as input parameters.
Please cite this article in press as: J.O. Eichie et al., Artificial Neural Network m
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