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Abstract Magnetic resonance imaging (MRI) uses a power-
ful magnetic field along with radio waves and a computer to
produce highly detailed “slice-by-slice” pictures of virtually
all internal structures of matter. The results enable physicians
to examine parts of the body in minute detail and identify
diseases in ways that are not possible with other techniques.
For example, MRI is one of the few imaging tools that can see
through bones, making it an excellent tool for examining the
brain and other soft tissues. Pulsed-field gradient experiments
provide a straightforward means of obtaining information on
the translational motion of nuclear spins. However, the inter-
pretation of the data is complicated by the effects of restricting
geometries as in the case of most cancerous tissues and the
mathematical concept required to account for this becomes
very difficult. Most diffusion magnetic resonance techniques
are based on the Stejskal-Tanner formulation usually derived
from the Bloch-Torrey partial differential equation by includ-
ing additional terms to accommodate the diffusion effect.
Despite the early success of this technique, it has been shown
that it has important limitations, the most of which occurs
when there is orientation heterogeneity of the fibers in the
voxel of interest (VOI). Overcoming this difficulty requires

the specification of diffusion coefficients as function of spatial
coordinate(s) and such a phenomenon is an indication of non-
uniform compartmental conditions which can be analyzed ac-
curately by solving the time-dependent Bloch NMR flow
equation analytically. In this study, a mathematical formula-
tion of magnetic resonance flow sequence in restricted geom-
etry is developed based on a general second order partial dif-
ferential equation derived directly from the fundamental
Bloch NMR flow equations. The NMR signal is obtained
completely in terms of NMR experimental parameters. The
process is described based on Bessel functions and properties
that can make it possible to distinguish cancerous cells from
normal cells. A typical example of liver distinguished from
gray matter, white matter and kidney is demonstrated. Bessel
functions and properties are specifically needed to show the
direct effect of the instantaneous velocity on the NMR signal
originating from normal and abnormal tissues.
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advection-diffusion equation . Brain tumor . Graymatter .
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Introduction

Magnetic Resonance Angiography (MRA) is a group of tech-
niques based on Magnetic Resonance Imaging (MRI) to im-
age blood vessels [1]. MRA is used to generate images of the
arteries in order to evaluate them for stenosis (abnormal
narrowing of blood vessels), occlusion or aneurysms. MRA
has been successful in studying many arteries in the body,
including cerebral and other vessels in the head and neck,
the aorta and its major branches in the thorax and abdomen,
the renal arteries, and the arteries in the lower limbs. For the
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coronary arteries, however, MRA has been less successful
than CT angiography or invasive catheter angiography. Most
often, the underlying disease is atherosclerosis, but medical
conditions like aneurysms or abnormal vascular anatomy can
also be diagnosed.

An advantage of MRA compared to invasive catheter an-
giography is the non-invasive character of the examination.
Another advantage, compared to CTangiography and catheter
angiography, is that the patient is not exposed to any ionizing
radiation. Also, contrast media used for MRI tend to be less
toxic than those used for CT angiography and catheter angi-
ography. The greatest drawbacks of the method are its com-
paratively high cost and its somewhat limited spatial

resolution [1].In order to address this problem, multi-modal
imaging techniques are employed. The use of diffusion imag-
ing with MRA has been quite successful in this multi-modal
method.

Traditionally diffusion weighted MRI involves two gradi-
ent pulses [1–13]. The first gradient pulse will impart a
spatially-dependent phase to each excited spin. For stationary
spins, the second gradient phase will reverse the phase intro-
duced by the first gradient pulse and hence the bipolar gradient
will have no net effect. There will be a phase offset propor-
tional to the distance travelled, for spins that are displaced
between the applications of the two gradient pulses. This
phase dispersion, in turn, attenuates the signal exponentially

Table 1 Diffusion and NMR relaxation parameters of different tissues

Tissues ADC (m2/s) T2 (s) T1 (s) T0 (s
−1) Tg (s

−2) ζ β2 p n

White brain matter 7.00E-10 0.070 0.66 15.80087 21.64502 –21.8189 0.061181 –0.77837 0.738024

Gray brain matter 8.90E-10 0.088 0.76 12.67943 14.95215 –27.7412 0.173114 –0.92803 0.829534

Liver 1.83E-09 0.029 0.39 37.04686 88.41733 –57.0409 0.491559 –1.27035 1.059354

Kidney 2.19E-09 0.034 0.47 31.53942 62.57822 –68.2621 1.027738 –1.54985 1.172301

Fig. 1 Contourmaps ofMy

A as a funcion of relaxation rate T0 and ADC (D0) for (a) x = 0.005m (b) x = 0.0005m (c) x = 0.00005m (d) x = 0.000005m. The
marked regions on the map correspond to different tissues: O- white matter, □ - gray matter, ∇- liver, Δ- kidney
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according to the b-factor and the diffusion coefficient (D; a
measure of the strength (velocity) of diffusion in tissue).

For unrestricted flow the generalized magnetic resonance
mathematical framework [2, 13] relating the signal attenua-
tion, S

S0
; the conditional displacement distribution, the pulse

duration, δ; the pulse strength, g; the gyromagnetic ratio, γ;
results in a Gaussian distribution of the form

A ¼ S

S0
¼ e−bD ð1Þ

where S0 is the signal intensity without diffusion weighting. S

is the diffusion weighted signal. The b-value identifies the
measurement’s sensitivity to diffusion and determines the
strength and duration of the diffusion gradients and is mea-
sured in s/mm2 (1–10).

b ¼ γ2g2δ2 Δ−δ
�
3

� �
ð2Þ

where g is the amplitude of the two diffusion gradient pulses,
and Δ is the time between two pulses.

DW-MRI is useful in the diagnosis and monitoring of a
number of neurological diseases such as cancer, multiple

Fig. 2 Plots of My

A against t (= δ) for different tissues at (a) x = 0.005m (b) x = 0.0005m (c) x = 0.00005m (d) x = 5μm (e) x = 5nm (f) x = 5pm
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sclerosis and Alzheimer. The most profound clinical impact of
diffusion contrast has been in the diagnosis of acute stroke.
Diffusion imaging is extremely sensitive to motion artifacts;
hence, motion correction is a vital component of any in vivo
multi-shot DWI pulse sequence [1–4].

The simple expression in equation (2) highlights how
variations in the spatial scale parameter, b, and the dif-
fusion time, Δ, independently affect the signal attenua-
tion. In a medium in which water does not move freely
but confined within internal compartments (restricted) or

Fig. 3 Plots of NMR parameters ξ and n against t (= δ) for different tissues

Fig. 4 Density plots of S0A against v and D0 for u0 = 44138m
−1 (g = 33mTm−1, δ= 20ms), p = -1, n = 0. Different ranges of velocities are considered
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experiences higher diffusivity in some directions and
lower in others (anisotropic) the simple relationship in
equation (2) no longer holds [3–9, 13].

In this investigation, we shall apply the one dimensional
NMR equation where we derived analytical expressions for
the NMR transverse magnetization [10–26] which can be de-
tected by the recovery unit in the MRI scanner based on the
Bloch NMR flow equations with the assumption that reso-
nance condition exists at Larmor frequency [23–25]:

f o ¼ γB−ω ¼ 0

The x, y, z components (in the rotating frame) of the mag-
netization of a particle may be given by the Bloch NMR flow
equations which may be written as follows [25]:

dMx

dt
¼ ∂Mx

∂t
þ v⋅∇Mx ¼ −

Mx

T2
ð3aÞ

dMy

dt
¼ ∂My

∂t
þ v⋅∇My ¼ γMzB1 xð Þ−My

T2
ð3bÞ

dMz

dt
¼ ∂Mz

∂t
þ v⋅∇Mz ¼ γMzB1 xð Þ−Mo−Mz

T1
ð3cÞ

From equations (3b and 3c), we obtained the following
second order time dependent differential equation which can
be solved analytically in Cartesian, Cylindrical and Spherical
geometries [11–26].

v2
∂2My

∂x2
þ 2v

∂2My

∂x∂t
þ ∂2My

∂t2
þ 1

T 1
þ 1

T 2

� �
v
∂My

∂x
þ 1

T 1
þ 1

T2

� �
∂My

∂t

þ γ2B1
2 tð Þ þ 1

T 1T 2

� �
My ¼ MoγB1 x; tð Þ

T 1

ð4Þ

where γ is the gyromagnetic ratio of the fluid particle.
The solution presented here is subject to the following
two reasonable initial boundary conditions which may
conform to the real-time experimental arrangements:

1. Mo ≠ Mz, a situation which hold good in general and in
particular when the RF B1(t) field is strong.

2. Before entering signal detector coil, the soft particle has
Mx=0, My=0.

Fig. 5 Density plots of S0A against v and u0 for D0 = 2.19 × 10−10m2s−1, p= -1, n= 0. Different ranges of velocities are considered
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We solve equation (4) by assuming that the solution
is separable in the form

My x; tð Þ ¼ Cψ xð Þeζt ð5Þ

where t is the time between pulses. We apply the
separation of variables technique to obtain an ordi-
nary differential equation for the time- independent
function ψ(x). Substituting equation (5) into equation
(4) yields:

v2
d2ψ xð Þ
dx2

þ v 2ζ þ Toð Þ dψ xð Þ
dx

þ ζ2 þ Toζ þ γ2B2
1 xð Þ þ 1

T1T 2

� �
ψ xð Þ

¼ MoγB1 xð Þ
T 1

e−ζt

ð6Þ

eζt≠
MoγB1 xð Þ

v2T1
ð7Þ

where ζ is any constant. RF B1(x) is the spatially varying
magnetic field and v is the fluid flow velocity and

t ¼ Δ−δ
�
3

� �
. We apply a fundamental transformation pro-

cedure given as follows:

v ¼ x

δ
ð8Þ

γB1 xð Þ ¼ γgx ð9Þ

The assumptions are made that δ is infinitesimally short
and negligible displacements occur those taking place during
the pulse period compared with during the diffusion time, that
is, δ<< t. In a typical MRI procedure, g is the pulsed gradient
applied for the length of time t.

Substituting equations (9) into equation (6) gives

x2
d2ψ xð Þ
dx2

þ δ 2ζ þ Toð Þx dψ xð Þ
dx

þ γ2g2δ2x2 þ δ2 ζ2 þ Toζ þ 1

T1T2

� �� �
ψ xð Þ

¼ Moδ
2γB1 xð Þe−ζt
T1

ð10Þ

Fig. 6 Density plots of S0A against v and u0 for D0 = 2.19× 10
−10m2s−1, p = -1, n= 0; (a) v = 0.5ms−1 (b) v = 0.05ms−1 (c) v = 0.005ms−1 (d) v = 5μms−1
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If the NMR is sampled at maximum magnitude (due to the
application of maximum RF B1(x) field ), Mo ≈ 0. In this case,
equation (10) becomes:

x2
d2ψ xð Þ
dx2

þ δ 2ζ þ Toð Þx dψ xð Þ
dx

þ γ2g2δ2x2 þ δ2 ζ2 þ Toζ þ 1

T1T2

� �� �
ψ xð Þ ¼ 0

ð11Þ

Equation (11) is transformable into Bessel’s equation of
order β and parameter γδg with general solution in the form:

ψ xð Þ ¼ x−p AJn u0xð Þ þ A1Yn u0xð Þ½ � ð12Þ

where uo,η,β are all constants defined as:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p2−β2

q
ð13Þ

uo ¼ γδg ð14Þ

β2 ¼ δ2 ζ2 þ Toζ þ 1

T 1T2

� �
ð15Þ

p ¼ δ 2ζ þ Toð Þ−1
2

ð16Þ

T0 ¼ 1

T1
þ 1

T 2

� �
¼ T1 þ T2ð Þ

T1T2
ð17Þ

General behaviour of transverse magnetization

Since we always require that the transverse magnetization be
finite as x tends to infinity, A1=0. Therefore, the Stejskal and
tanner formulation in equation (1) for diffusion NMR/MRI
system in terms of Bessel function of the first kind where
ζ=−u02D0 is given by:

My x; tð Þ ¼ Ax−p J n u0xð Þe−u20D0t ð18Þ

My x; tð Þ
A

¼ x−p J n u0xð Þe−u20D0t ¼ x−p J n u0xð Þeζt ð19Þ

where D0 is the apparent diffusion coefficient (ADC) of the
tissue. Using the relaxation times of some human tissues with
carefully selected values of x and t, the curves crucial param-
eters of the solution in equation (19) are plotted; t = 20ms,
δ=20ms, g=0.033Tm-1, γ=2.675×108s-1T-1 [2, 27, 28] as
shown in Table 1 and Fig. 1:We have varied time for the
tissues in Table 1 and calculated the corresponding transverse
magnetizations to make the plots in Figs. 2 and 3.

Fig. 7 Density plots of S1A against v and D0 for u0 = 44138m
−1 (g = 33mTm−1, δ= 20ms), p = -1, n = 1. Different ranges of velocities are considered
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Direct NMR signal analysis

From equation (19), the expression of the NMR signal may be
given as follows:

My x; tð Þ
A

¼ Jn u0xð Þe−u20D0t ð20Þ

where

p ¼ t 2ζ þ Toð Þ−1
2

¼ 0 ð21Þ

and

My x; tð Þ
A

¼ xJn u0xð Þe−u20D0t ð22Þ

where

p ¼ t 2ζ þ Toð Þ−1
2

¼ −1 ð23Þ

The signal based of equations (8, 18, 20) can be written as

S

A
¼

Z∞
0

vt J 0 u0vtð Þe−u20D0tdt ¼ u0v2

u40D
2
0 þ u20v

4

 �3=2 ð24Þ

For n=0 and p= -1, and

S

A
¼

Z∞
0

vt J 1 u0vtð Þe−u20D0tdt ¼ u20D0

u40D
2
0 þ u20v

4

 �3=2 ð25Þ

For n=1 and p= - 1.
The three dimensional plots of equations (24, 25) are

shown in Figs. 4, 5, 6, 7, 8 and 9) with possible interesting
applications under different NMR conditions based on the
Bessel function of first kind with orders 0 and 1.
Specifically, Figs. 5, 6, 8 and 9 show the significant influence
of the parameter uo on the NMR signal S (or the modified
quantity S/A) and Figs. 7, 8, 9 indicate the important implica-
tions of changing the order of the Bessel function. Based on

Fig. 8 Density plots of S1A against v and u0 for D0 = 2.19× 10
−10m2s−1, p= -1, n= 1. Different ranges of velocities are considered
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equations (24, 25) and these figures, higher orders of Bessel
function of the first kind can be very useful for the qualitative
and quantitative analysis of complex flow. It is very interest-
ing to note that the parameter n is very important in imaging
different physiological flow processes. For n=0, this model is
very suitable to processes in which the velocities are in the
millimeter range while at n=1, best contrasts with high signal
levels are obtained when the velocities are in the micrometer
range. This may be very important in deciding on the method
that is best for imaging the processes in the development and
progression of human molecular diseases. However, we ob-
served that at processes with nano-velocities, only the signal
levels change slowly while the pattern and behaviour did not
show any noticeable changes.

The detection system should be designed based on
the Bessel function Jn(u0x) which desribes the sensitiv-
ity of the receiver coil at different points in space there-
fore obeys equation (5). This is possible, because the
basic objective of receiver coil design is to prescribe
wire placements so that equation (12) has the largest
possible transverse component [26]. Therefore, the time
differentials of equations (24) and (25) are the values of
the NMR signal for any given experimental constant n.
This signal is the output voltage due to the induction of
the nuclear magnetization My(x, t). Thus, the sensitivity

of the receiver coil is given by equation (12). If we take
a point of reference as the longitudinal axis, it follows
that A2 = 0 since Yn(u0x) is unbounded as x approaches
zero. Hence, for our design pirority, the sensitivity must
be expressed as follows:

ψ xð Þ ¼ AJn u0xð Þ ð31Þ

We shall assume that the receiver coil modifies the trans-
verse magnetizationMy(x, t) such that the arbitrary constant C1

is taken as the receiver gain h, depending on the design of the
receiver. Also, a phase shift φ, exists such that equation (31)
takes the form:

ψ ϕð Þ ¼ h

π

Zπ
0

cos nϕ−ϕsinϕð Þdϕ ð32Þ

where n=0, 1, 2, …..
In most biomedical applications, the voxel is very small

and so is the value of x. Therefore, for x << 1, we write

ψ ϕð Þjn≈
1

Γ nþ 1ð Þ
ϕ
2

� �n

ð33Þ

Fig. 9 Density plots of S1A against v and u0 for D0 = 2.19× 10
−10m2s−1, p= -1, n= 1; (a) v = 0.5ms−1 (b) v = 0.05ms−1 (c) v = 0.005ms−1 (d) v = 5μms-1
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where ϕ=u0x so that each property of Bessel function corre-
sponds to a particular way of designing receiver coils for MRI
experiments.

Computational analysis of diffusion coefficient

In this section we present data computed from equations (21)
for some tissues experimental values of T1, T2, the magnetic
gradient pulse g and the gyro-magnetic ratio of hydrogen γ.
Figure 10 shows the natural behavior of diffusion with time in
some selected biological tissues. This computational method
can be applicable in numerous applications where diffusion
analyses are involved.

For illustration, the diffusion of water molecules along a
field gradient reduces the MR signal, the signal loss is less
intense in areas of lower diffusion, and hence a brighter dis-
play is seen from this area as shown in Fig. 4. Diffusion
weighting enables one to distinguish between rapid diffusion
of protons (unrestricted diffusion) and slow diffusion of pro-
tons (restricted diffusion). The use of bipolar gradients pulses
with any suitable pulse sequence permits the acquisition of
diffusion weighted images. In a gradient echo (GE) Imaging
Pulse Sequence, the bipolar gradient pulses as shown in

Fig. 11a can be used directly. In the case of a spin echo pulse
sequence, the diffusion weighting gradient pulses are posi-
tioned on either side of the 180 refocusing pulse and thus
the gradient pulses will both be applied in the same direction
based on the Bessel functions and properties as seen in
Fig. 11b.

It may be informative to note that the MRI signals in equa-
tions (24) and (25) are velocity dependent. Since the fluid
velocity is in the numerator of equation (24), extremely small
values (such as those normally observed in molecular motion)
leads to reduced values of the NMR signal while the absence
of the velocity in the numerator of equation (25) leads to
increased values of the signal for molecular flow velocity.
However, for higher values of the fluid velocity (such as those
observed in blood vessels), the signal calculated from equa-
tion (24) is considerably larger than that of equation (25).
Hence, n= 0 is more suited for imaging physiological
flows with large values of velocity while n= 1 is more
suited for physiological flows in which the velocity is
very small [29]. Based on equation (24–25) we have
developed a computer program for physiological flows
in ascending aorta, descending aorta, large arteries, cap-
illaries, interstitial flow in tumour environment and
membrane lipids [29–31] in Fig. 12.

Fig. 10 Graph of computational diffusion coefficient against time for (a) white brain matter (b) gray brain matter (c) fatty tissue (d) spleen (e) kidney (f)
heart muscle (g) skeletal muscle
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The physical interpretation of parameter n is apparent from
equations (13), (15) and (16), where n is in term of NMR
relaxation in the presence of diffusion. Parameter n is related
to the pulse angle [32]; in the presence of flow and diffusion,
we shall define a parameter called relaxation angle as given in
equation (34) and Table 2.

cos αdNMRð Þ ¼ exp −nð Þ ¼ exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζδ þ δTo−1ð Þ2

4
−δ2 ζ2 þ Toζ þ 1

T 1T2

� �s0
@

1
A

ð34Þ
where αdNMR is the relaxation angle in the presence of flow
and diffusion. Based on table 3, the choice of pulse angle is
critical for determining both signal intensity as well as image
contrast. It also depends on the particular pulse sequence
utilized.

Conclusion

Restricted flow was studied theoretically based on the
time dependent Bloch flow equation [26]. A new ana-
lytical algorithm was developed for the NMR signal as
a function of Bessel functions. This algorithm is shown
to be very sensitive to highly complex or restricted flow
at higher orders of Bessel functions. Based on our the-
oretical formulation, it is exciting to note that equations
(22, 23) can be useful in characterizing restricted diffu-
sion. The quantity ζ has been used extensively to ex-
plain the concept of restricted diffusion in the PFG
NMR diffusion measurements [10]. In the case of freely
diffusing particles, the diffusion coefficient determined
by equation (1), will be independent of t. For short
values of t in a restricted flow (such that the diffusing
particle has not diffused far enough to feel the effect of
the boundary), the measured diffusion coefficient will be
the same as that observed, for the freely diffusing spe-
cies. At very long t the maximum distance that the
confined particle can travel is limited by the boundaries,
and thus the measured mean-squared displacement and
diffusion coefficient becomes independent of t. Thus,
for short values of t, the measured displacement of a
particle in a restricting flow observed via the signal
attenuation in the PFG experiment is sensitive to the
diffusion of the particle. At long t, the signal attenua-
tion becomes sensitive to the shape and dimensions of
the restricting flow [2]. Since nutrients are provided by
direct diffusion from the circulatory system as a tumor
grows the measured displacement of a cancerous cell in
a restricting flow observed via the signal attenuation in
the PFG experiment which is sensitive to diffusion can
give pertinent information about the age, type, size and
genesis of cancerous tissues. The advantage here is that
ζ is obtained directly from the fundamental Bloch NMR
flow equation without the need for the addition of arbi-
trary diffusion term.

Figures 1, 2 and 3 show how the NMR signal and
flow velocity can be used to distinguish different tis-
sues. This may offer new methods of distinguishing
normal cells from cancerous cells based on Bessel prop-
erties and functions. More importantly, equation (18)
defines the Bessel parameter uo as a function of ζ used
extensively in the earlier studies [2] to characterize dif-
fusion in restricted geometries. The NMR/MRI detection
system can always be desiged based on the Bessel func-
tions with the appropriate choice of n and uo. For illus-
tration, most physiological processes are molecular in
nature and the associated velocities are in micrometer
range; showing that Figs. 7, 8 and 9) indicate that the
human diseases can be detected at an early stage when
n> 0.

Fig. 11 A pulse sequence diagram of diffusion-weighted (a) gradient
echo (GE) imaging pulse sequence (b) spin echo pulse sequence based
on Bessel functions and properties
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Figures 4, 5, 6, 7, 8 and 9) show the NMR/MRI signal
based on Bessel functions and properties for the values of
n=0, 1 and p= -1 when the spin velocity assumes molecular
values.

Equations (1, 2, 5, 24, and 25) reveal that the MRI
signal So (in the absence of diffusion) obeys the Bessel
functions and it is actually a function of diffusion coef-
ficient as derived in this study. By varying the value of

parameter uo in the Bessel equation consequently chang-
es the value of the pulse gradient as shown in Fig. 11.
The MRI signal for any sample can be obtained unique-
ly based on the relaxation times as reflected in the val-
ue of n in equation (13).

What makes this algorithm unique and promising is
that the NMR signal is based on the analytical solution
of Bloch NMR flow equation using the well known

Fig. 12 Plots of the parameter S/A against u0 and D0 for (a) ascending aorta (0.63 m/s) (b) descending aorta (0.27 m/s) (c) large arteries (0.20 m/s) (d)
capillaries (0.0005 m/s), (g) interstitial flow in tumour environment (5μm/s) and membrane lipids (1μm/s)
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Bessel functions. The advantage is that Bessel functions
can be used for Diffusion weighted MRI by computa-
tional methods adapted for a particular experimental set-
ting and medical need without acquiring sophisticated
imaging facilities

Indeed, Bessel functions occur in many practical
problems and very easy to be built into computer pro-
grams. In principle they are always to be expected when
partial differential equations are used in the study of
configurations involving circular geometries. On the oth-
er hand, they also arise in numerous applications where
neither circular symmetry nor partial differential equa-
tions are involved. This makes the algorithm presented
here to be versatile and applicable in a variety of

problems. Specifically, the sensitivity of the NMR/MRI
system can be explicitly controlled by the order n of the
Bessel function with parameter uo. This can be simple
and easy to manipulate as situation requires and can be
very useful in most NMR/MRI experimental settings.
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