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Abstract Harmonic Phase-Magnetic Resonance Imaging
(HARP-MRI) is a tagged image analysis method that can
measure myocardial motion and strain in near real-time and
is considered a potential candidate to make magnetic reso-
nance tagging clinically viable. However, analytical expres-
sions of radially tagged transverse magnetization in polar co-
ordinates (which is required to appropriately describe the
shape of the heart) have not been explored because the physics
required to directly connect myocardial deformation of tagged
Nuclear Magnetic Resonance (NMR) transverse magnetiza-
tion in polar geometry and the appropriate harmonic phase
parameters are not yet available. The analytical solution of
Bloch NMR diffusion equation in spherical geometry with
appropriate spherical wave tagging function is important for
proper analysis and monitoring of heart systolic and diastolic
deformation with relevant boundary conditions. In this study,
we applied Harmonic Phase MRI method to compute the dif-
ference between tagged and untagged NMR transverse mag-
netization based on the Bloch NMR diffusion equation and
obtained radial wave tagging function for analysis of myocar-
dial motion. The analytical solution of the Bloch NMR

equations and the computational simulation of myocardial
motion as developed in this study are intended to significantly
improve healthcare for accurate diagnosis, prognosis and
treatment of cardiovascular related deceases at the lowest cost
becauseMRI scan is still one of the most expensive anywhere.
The analysis is fundamental and significant because all
Magnetic Resonance Imaging techniques are based on the
Bloch NMR flow equations.

Keywords Bloch NMR diffusion equation .Myocardial
motion . HARP-MRI .Magnetic resonance tagging .
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Introduction

The description and understanding of cardiac anatomy and
function are challenging tasks due to the complexity of the
heart and the cardiovascular system. Accurate knowledge of
the heart functionality is of great importance for improving
medical diagnosis and treatment of cardiovascular diseases.
Alterations in the myocardial motion pattern are often early
and sensitive indicators for cardiac disease such as reduced
myocardial perfusion due to coronary artery stenosis or acute
allograft rejection after heart transplantation [1].

Moreover, assessment of left ventricular dyssynchrony can
be an important factor for determining long term prognosis
and optimal treatment after myocardial infarction and can give
valuable insights with regard to cardiac re-synchronization.

Many cardiac diseases can affect the systolic function of
the heart. A patient may have significant regional dysfunction
while maintaining an ejection fraction within normal limits.
Assessment and quantification of cardiac function is thus im-
portant for diagnosis and treatment of heart disease.
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The three-dimensional motion of the curved heart
wall through the fixed imaging plane can affect the
apparent local motion in the two-dimensional image.
In addition, the lack of identifiable landmarks within
the heart wall makes assessment of motion very limited,
once we have imaged the heart during the cardiac cycle
we want to calculate the relative deformation of the
myocardium between two different time frames. The
primary problem is that the myocardium is uniform,
providing few readily identifiable features in the images,
and this brings about the use of non-invasive method of
identification called tagging.

Magnetic resonance signals are results of the dynamics of
atomic and the surrounding magnetic field it experiences [2].
Hence, other determinants of magnetic response of atoms in-
clude blood flow, chemistry, chemical exchange, diffusion
and other physiological phenomena. These molecular
signatures are very important for molecular imaging.
An image containing information about these molecular
parameters would definitely prove to be very important
in detail understanding of how tissues and organs func-
tion, both normally and in disease conditions. Molecular
MRI has been at the centre of different MRI techniques
which have been developed and rapidly advancing with
the aim of elucidating changes in these phenomena with
emphasis on different physiological states or differential
diagnosis of disease [2].

Magnetic resonance tagging (MR) tagging has evolved as a
gold standard in diagnosis and characterization of CAD [3].
However, in comparison to echocardiography, the use of
tagging has been very limited in the clinical setting. One
of the outstanding issues has been long imaging times and
even longer post-processing times. Long imaging times are
often accompanied with patient discomfort and can yield
motion corrupted images. The discovery of Harmonic
phase (HARP) MRI has changed this situation. HARP-
MRI is a tagged image analysis method that can measure
myocardial motion and strain in near real-time and is seen
as a potential candidate to make MR tagging clinically
viable [1].

Tagged MRI is a non-invasive technique that has the po-
tential to significantly improve the evaluation of cardiac func-
tion, including the ability to provide novel information about
regional function. Indeed, MR Tagging can be used to track
specific myocardial points throughout the cardiac cycles with-
out the use of invasive landmarks such as radiopaque markers
or sonomicrometers.

With the introduction of Harmonic Phase (HARP) process-
ing [1], fast and reliable tracking of arbitrary landmark points
has become possible and user interaction could be drastically
reduced compared to other techniques.

During the cardiac cycle, the heart performs a complex
three-dimensional motion pattern caused by the particular

arrangement of myocardial fibres. The overall uniform
circumferential contraction of the healthy left ventricle
with more endo- and less epicardial deformation is ac-
companied by longitudinal shortening and a wringing
motion between base and apex during systole. In the
diseased state, this contraction pattern often presents
with significantly altered properties [4]. In order to as-
sess the motion of the entire left ventricle and to cap-
ture possible regional motion defects, multiple tagged
slices need to be acquired in different orientations.
This combination of two-dimensional techniques often
leads to slice mis-registration problems and long acqui-
sition times. Alternatively, tagging preparation can be
applied in three dimensions and a volume of the whole
heart can directly be acquired. This technique successfully
addresses slice registration issues but overall scan times are
too long for application in patients and in larger clinical stud-
ies, this brings about HARP as a remedy. With the introduc-
tion of Harmonic Phase (HARP) processing, fast and reliable
tracking of arbitrary landmark points has become possible and
user interaction could be reduced significantly compared to
other techniques [1].

Further development of tagging acquisition and post-
processing methods along with their applications in clinical
studies is of great interest in clinical cardiology. The require-
ment to fit the entire tagging examination within a few short
breath-holds is of particular importance as many of the pa-
tients are unable to sustain breath-holds over extended
periods.

The NMR transverse magnetization carries lots of informa-
tion on the properties, structures of materials and material
medium. This has been demonstrated by many experiments
on porous media [5–7], but analytical expressions of radially
tagged transverse magnetization in polar coordinates has not
been explored to show the direct relationship between
myocardial deformation of tagged magnetization in po-
lar geometry and the Harmonic Phase parameters. The
analytical solution of NMR Bloch diffusion equation in
spherical geometry and analysis of appropriate spherical
wave tagging function is important for the accurate anal-
ysis/monitoring of heart systolic and diastolic deformation with
related conditions.

In this study, based on the analytical solution of the
fundamental Bloch NMR flow equation, new approach
to analyze cardiac tagged MRI using the concept of
harmonic phase (HARP) images would be developed
with radial/spherical wave tagging function for myocar-
dial motion. The Harmonic Phase MRI tagging function
will be used to compute (i) the difference between
tagged and untagged magnetization, (ii) magnetic resonance
harmonic phase velocity and (iii) myocardial radial strain
functions. These will be useful for the design and evaluation
of new therapies for impaired cardiac function.
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Bloch NMR diffusion model

AllMRI concepts, dynamics and experiments are governed by
the Bloch NMR equations. These equations relate the macro-
scopic model of magnetization to the applied radiofrequency,
gradient and static magnetic fields. The dynamics of the
changes in bodies containing NMR - sensitive nuclei, its phys-
ical changes (for example, freely diffusing or bound within a
cavity) are carefully captured by the Bloch NMR equation: a
phenomenological equation describing the physics of magnet-
ic moments – such as the moment of water proton as a pre-
cessional gyroscopic motion in the presence of exponential
damping (T1 and T2), perturbing magnetic fields (the fixed
Bo, and the time -varying radiofrequency B1).

The Bloch NMR diffusion model is obtained from a gen-
eral second order differential equation derived from NMR
Bloch equations that can be applied to myocardial motion
under the appropriate boundary conditions [8–14].

Magnetic Resonance (MR) tagged image can be explained
as a combination of anatomy component and the tagging com-
ponent that is overlaid on the anatomy. The anatomy compo-
nent is derivable from the Bloch NMR diffusion model ob-
tained from the Bloch NMR flow equation:
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Equation (1a) can be written as:
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, Tg ¼ 1

T1T2
and F0 ¼ M0

T1
.

Equation (1b) is a general second order partial differential
equation (Awojoyogbe-Bloch NMR flow equation) derived
fromNMRBloch equation that can be applied to any fluid flow
problem [8–11]. γ is the gyromagnetic Ratio, v is the fluid
velocity, T1 and T2 are spin lattice and spin spin relaxation
times respectively, My is the Nuclear magnetic Resonance
(NMR) transverse magnetization. At any given time t, we can
obtain information about the system, if appropriate boundary
conditions are applied [12–14]. The term F0γB1(x, t) is the
forcing function. If this function is zero, a freely vibrating sys-
tem results; else, the system is undergoing a forced vibration.

Equation (1b) is applicable under the following conditions:

(i) The selected slice must be homogeneous with one com-
partment (either of tissue or of fluid compartment).

(ii) Rate of fluid influx and efflux should be very small and
equal (such as in some slow blood flow junctions) or
static fluid (e.g. edema).

(iii) The size of the chemical substance to be investigated
must be significantly very small compared to the tissue
compartment in which they are found.

(iv) The geometry of the compartment should be defined
and could be approximated to common geometrical
system.

Assuming that the excitation coil is large enough to cover
the slice under investigation, the amount of radiofrequency
(RF) power received by any of the fluid particles should be
the same irrespective of the position of the particle spin. The
NMR diffusion model was derived from Eq. (1b) as follows
[11–14]:

∂My

∂t
¼ D∇2My þ F0

T0
γB1 r!; t
� �

ð2aÞ

provided that

D ¼ −v2

T0
ð2bÞ

where F0 ¼ M0
T1
, T0 ¼ 1

T1
þ 1

T1
,M0 is equilibrium magnetiza-

tion, T1 is spin-lattice relaxation time while T2 is spin-spin
relaxation time.

In Eq. (2b), D represents the diffusion coefficient and
Eq. (2a) becomes the diffusion equation for magnetiza-
tion as the nuclear spins are in motion. ∇2 is the Laplacian
operator in the specified coordinate, t is the diffusion time
while x is the diffusion distance [11–13]. The coordinate
of this equation in common geometries are given as
follows:

Cartesian Geometry :
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Cylindrical Geometry :
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Spherical Geometry :
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Anatomy component of MRI in spherical geometry

The NMR diffusion equation within a spherical cavity is
solved for the anatomy component of MR tagged image as
in the case of myocardial geometry given in Eq. (2). Since
Eq. (2) is a linear second order differential equation, it can be
written as a linear summation given by [14, 15]:

My ¼ Myy r!; t
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þΩ r!
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ð6Þ
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dr2
ð8Þ

If the RF field varies with spatial coordinates and remains
constant with time, we write

∂My

∂t
¼ D∇2My þ γB1 r!

� �
ð9Þ

From Eqs. (7), (8) and (9), we obtain:
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where
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Performing the integration in Eq. (11b) gives

dΩ ¼ −
F0

T0
∫
γB1 r!
� �
D

rdr

If the RF gradient is applied in radial direction, the pulse
becomes r-dependent as follows [16]:

B1 r!
� �

¼ B1 rð Þ ¼ grr

where gr represents the RF gradient magnitude.
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D∇2Myy ¼ ∂Myy
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Expanding Eq. (11a) in spherical coordinates leads to:
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Equation (13) can be solved using separation of variable by
assuming

Myy r; θ;ϕ; tð Þ ¼ G rð ÞΘ θð ÞΦ ϕð ÞT tð Þ ð14Þ

Making use of Eq. (14) in Eq. (13) gives:
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Let Eq. (15) be equal to a dimensionless constant −λ2 [17]

1

T
dT ¼ −λ2Ddt

The solution of which is given as:

T tð Þ ¼ ae−λ
2Dt ð16Þ

Equating the left hand side of Eq. (15) to the same
constant,−λ2, we have

1
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Rearranging Eq. (16) gives

−
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If Eq. (17) is equal to a constant n(n + 1),

r2
d2G

dr2
þ 2r

dG
dr

þ λ2r2−n nþ 1ð Þ� �
G ¼ 0 ð18Þ

Eq. (18) is the Spherical Bessel equation and can be trans-
formed into Bessel differential equation as follows:

Φr ¼ λr; r
dG
dr
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dG
dϕr

and r2
d2G
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¼ Φr

d2G

dr2
ð19Þ

where Φ is the phase function. Putting Eq. (19) into Eq. (18)
[17], we obtain:
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To solve this differential equation, we seek a solution of the
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Introducing Eqs. (20) and (21) into Eq. (18) leads to
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Multiply Eq. (22a) by Φr

−1
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Summing up similar terms in Eq. (22b) yields
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Eq. (22c) is an ordinary Bessel differential equation of half-
integral order [18]. The solutions to Eq. (22c) are the ordinary
Bessel functions of half-integral order: Jnþ1

2
and Nnþ1

2
. The

solution to Eq. (22c) is:

Y Φrð Þ ¼ An Jnþ1
2
Φrð Þ þ BnNnþ1

2
Φrð Þ ð22dÞ

Jnþ1
2
Φrð Þ andNnþ1

2
Φrð Þ are related to the spherical Bessel and

Neuman functions (i.e. original solution of Eq. (18)) jn(Φr)
and nn(Φr) where
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π
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Putting Eqs. (23) and (24) into Eq. (22d), we obtain

Y Φrð Þ ¼ An
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2

π
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Φr

p
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π
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p
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The Bessel functions jn(Φr) are finite at the origin, but the
Neuman’s function has infinite values at the origin.
Therefore, in order to always maintain a measurable NMR
signal, we must set Bn = 0 and hence, the normalized solutions
of Eq. (18) are:

G rð Þ ¼ Y Φrð ÞΦ−1
2

r ¼ An

ffiffiffiffi
2

π

r
jn Φrð Þ ð24bÞ

From Eq. (17), we may write:

−
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Φ
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Θ
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−
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Θ
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Θ
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þ sin2Θ

cotΘ
Θ

dΘ
dθ

þ n nþ 1ð Þ ¼ −
1

Φ
d2Φ

dϕ2 ð26Þ

Eq. (26) must be equal to a constant −m2 and hence,

d2Φ

dϕ2 ¼ −m2Φ

The solution of which is:

Φ ϕð Þ ¼ B1cosmϕþ B2sinmϕ ð27Þ
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From Eq. (26), we write:

d2Θ
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þ cotΘ
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sin2Θ
Θ ¼ 0

1

sinθ
d
dθ

sinθ
dΘ
dθ

� �
þ n nþ 1ð Þ− m2

sin2θ

� �
Θ ¼ 0 ð28Þ

Setting ε = cos θ [15, 16],

dΘ
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¼ dΘ
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dz
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¼ −sinθ
dΘ
dε

;
dε
dθ

¼ −sinθ ;
d
dε

¼ −
d

sinθdθ

sin2θ ¼ 1−ε2

The polar component in Eq. (14) becomes:

d
dε

1−ε2
� � dΘ

dε

� �
þ n nþ 1ð Þ− m2

1−ε2

� �
Θ ¼ 0

1−ε2
� � d2Θ

dε2
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dΘ
dε

þ n nþ 1ð Þ− m2

1−ε2

� �
Θ ¼ 0 ð29Þ

Eq. (29) is known as Associated Legendre equation and the
solution is given as:

Θ θð Þ ¼ C1Pm
n cosθð Þ þ C2Qm

n cosθð Þ ð30aÞ

where Pm
n and Qm

n are associated Legendre functions of first
and second kind respectively. Since it is required that the so-
lution be finite on the polar axis of the myocardium, we write
that C2 = 0. Therefore, Eq. (30a) becomes

Θ θð Þ ¼ C1Pm
n cosθð Þ ð30bÞ

The general solution to Eq. (11a) is then the product of Eqs.
(16), (24), (27) and (30b):

Myy r; θ;ϕ; tð Þ ¼ An

ffiffiffiffi
2

π

r
jn Φrð Þ

 !
C1Pm

n cosθð Þ� �

B1cosmϕþ B2sinmϕð Þ ae−λ
2Dt

� �
ð31Þ

Finally, the general solution to Eq. (6) is given as:

My r; θ;ϕ; tð Þ ¼ An

ffiffiffiffi
2

π

r
jn Φrð Þ

 !
C1Pm

n cosθð Þ� �

B1cosmϕþ B2sinmϕð Þ ae−λ
2Dt

� �
−
F0γgrr

3

2DT0

ð32Þ

Boundary conditions for myocardial motion

Eq. (32) is a general analytical solution to the Bloch NMR
diffusion equation. If the NMR transverse magnetization due
to the tagging pulse applied at the point (R, θ, 2π) is nearly
constant before the application of the imaging gradient pulse,
we can write:

My R; θ; 2π; 0ð Þ ¼ −
F0γgr
2DT0

R3 ð33Þ

In Eq. (33a), the radius R indicates a point along the myocar-
dial radial axis (the average radius of the endocardial compart-
ment). Eq. (33) implies

Myy R; θ; 2π; 0ð Þ ¼ 0 or G Rð ÞΘ θð ÞΦ 2πð ÞT 0ð Þ ¼ 0 ð34Þ

It would be observed in Eq. (34) that in order to obtain an
expression for Myy,

T 0ð Þ≠0 and Θ θð Þ≠0 ð35Þ

G Rð Þ or Φ 2πð Þ ¼ 0 ð36Þ

For the condition Φ(2π) = 0,

Φ ϕð Þ ¼ B2sinmϕ ð37Þ

Meanwhile, for the condition G(R) = 0,

An Jnþ1
2
λRð Þ ¼ 0 ð38Þ

Since An ≠ 0, we write:

Jnþ1
2
φð Þ ¼ 0 ð39Þ

where φ = λR. The roots of the Bessel function are given as:

φ ¼ φnm;m ¼ 0; 1; 2; 3; :…… ð40Þ

Setting

λ ¼ ϕnm

R
ð41Þ

If we now perform superposition of the solutions by summing
over n and m [11], we have

Myy r; θ;ϕ; tð Þ ¼ ∑
∞

n¼0
∑
∞

m¼0
Anm Jnþ1

2

φnm

R
r

� �

Pm
n cosθð Þ	 


sinmϕ½ �e−
φ2nm
R2

Dt

ð42Þ
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where Anm = AnC1B2a. If we assume that at other points apart
from ϕ = 2π, we have the conditions

My r; θ;
π
2m

; 0
� �

¼ Mp r; θð Þ− F0γgr
2DT0

r3 ð43Þ

Myy r; θ;
π
2m

; 0
� �

¼ Mp r; θð Þ ð44Þ

Eq. (31) gives:
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∞

n¼0
∑
∞

m¼0
Anm Jnþ1

2

φnmr
R

� �
Pm
n cosθð Þ	 


sin
π
2

¼ ∑
∞

n¼0
∑
∞

m¼0
Anm Jnþ1

2

φnmr
R

� �
Pm
n cosθð Þ	 


Mp r; θð Þ ¼ ∑
∞

n¼0
A

0
nm Jnþ1

2

φnmr
R

� �
ð45Þ

where

A
0
nm ¼ ∑

∞

m¼0
Anm Pm

n cosθð Þ	 
 ð46Þ

Applying the results of Fourier series expansion of Bessel
functions give [11, 17, 18]:

A
0
nm ¼ 2

R2 J 2nþ3
2
φnmð Þ ∫

R

0
rMp r; θð ÞJnþ1

2

φnmr
R

� �
ð47Þ

Fig. 1 Profiles of the tagging function applied to the left ventricle of the human heart for (a) female at diastole (b) male at diastole (c) female at systole
(d) male at systole

Table 1 Estimated
(radial) values of
ventricular dilatation at
diastole and systole [22]

Female Male

Left ventricle

Diastolic 0.026 m 0.0304 m

Systolic 0.01875 m 0.0201 m

Right ventricle

Diastolic 0.01915 m 0.02445 m

Systolic 0.01495 m 0.01845 m
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Similarly, from Fourier series expansion of the associated
Legendre polynomials, we derive from Eq. (47) as follows
[17, 18]:

Anm ¼ 2nþ 1

2

nþ mð Þ!
nþ mð Þ! ∫

π

0
A

0
nmP

m
n cosθð Þsinθdθ ð48Þ

The final solution of the diffusion NMR equation is therefore
given as:

My r; θ;ϕ; tð Þ ¼ ∑
∞

n¼0
∑
∞

m¼0
Anm Jnþ1

2

φnmr
R

� �

Pm
n cosθð Þ	 


sinmφ½ �e−
φ2nm
R2

Dt−
F0γgr
2DT0

r3

ð49Þ

For tagging MRI, we may write [19]:

r ¼ mπ
2γgτ

ð50Þ

where γ is the gyromagnetic ratio, g is the gradient pulse
magnitude and τ is the gradient pulse duration. Since m = 0 ,

1 , 2 , 3 , ……, we see that the expression of Eq. (49) is sum-
ming up all magnetization vectors for different values of m. If
we make the following definition [20, 21]:

λ ¼ γgτ ð51Þ

n ¼ lT1

T2
ð52Þ

where l is a dimensionless relaxation weighting parameter.
Hence, if we set the parameter ϕnm as the phase at a fixed
point r0, we write:

φnm ¼ mπ
2

¼ nγgτr0 ð53Þ

The NMR transverse magnetization becomes:

My r; θ;ϕ; tð Þ ¼ ∑
∞

n
∑
∞

m
Anm Jnþ1

2
nγgτ

r0
R
r

� �

Pm
n cosθð Þ� �

sinmϕð Þe− nγgτr0Rð Þ2Dt− F0γgr
2DT0

r3

ð54aÞ

Fig. 2 Profiles of the tagging function applied to the right ventricle of the human heart for (a) female at diastole (b) male at diastole (c) female at systole
(d) male at systole
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From Eq. (54a), the conventional diffusion b-factor [20, 21] is
given as:

b ¼ n
γgτr0
R

� �2
t ð54bÞ

Radial tagging function

Due to the geometrical structure of the heart, the spherical
wave equation from a point source could be used to describe
the motion or vibration of the myocardium and concurrently
carries the necessary information for tracking the diffusive
spin within the heart’s compartments. Since wave equation

Fig. 3 Myocardial tagged images for (a) mid-diastole (breath hold) (b) mid-diastole (free breathing) (c) end-systole (breath hold) (d) myocardial iron overload

Table 2 Myocardial diffusion
coefficient and NMR relaxation
times at 3.0 T taken from normal
patients and patients with iron
overload [24–26]

Mid-diastole
(Breath hold)

Mid-diastole
(Free breathing)

End-systole
(Breath hold)

Myocardial
iron overload

T1(s) 1.1565 1.1791 1.1426 1.1967

T2(s) 0.0433 0.0447 0.0429 0.0470

D (m2 s−1) 11.2 × 10−10 11.2 × 10−10 10.4 × 10−10 9.8 × 10−10
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is not invariant under rotation of the spatial coordinates, we
could seek for a solution with zero orbital angular momentum
for this problem. It is assumed that the tagging gradients are
applied in the radial direction. Therefore, the Laplacian operator

∇2 ¼ 1

r2
∂
∂r

r2
∂
∂r

� �
þ 1

sin2θ

∂2

∂ϕ2 þ
1

sin θ
∂
∂θ

sin θ
∂
∂θ

� �� �
ð55Þ

reduces to a rotationally invariant form such that

∇2 ¼ 1
r2

∂
∂r r2 ∂

∂r

� �� � ¼ ∂2
∂r2 þ 2

r
∂
∂r.

It is possible to seek for solutions that depend only on the
radial distance r, but not angular variables, from a given point.
Such solutions then satisfy

∂2Ty

∂t2
−v2h

∂2Ty

∂r2
þ 2

r
∂Ty

∂r

� �
¼ 0 ð56Þ

where vh represents the speed of vibration of the myocardium.
Eq. (56) may then be written as:

∂2 rTy
� �
∂t2

−v2h
∂2 rTy
� �
∂r2

¼ 0 ð57Þ

The quantity rTy(r, t) in Eq. (57) satisfies the one-dimensional
wave equation with no forcing function (i.e. freely vibrating
myocardial motion). If we again restrict our solution to spher-
ical waves that oscillate in time with well-defined angular
frequencyω (Larmor frequency), then the transformed tagging
function rTy(r, t) has simple plane wave solutions

Ty r; tð Þ ¼ A
r
ei ωt�λrð Þ ð58Þ

Fig. 4 Myocardial untagged images for (a) mid-diastole (breath hold) (b) mid-diastole (free breathing) (c) end-systole (breath hold) (d)
myocardial iron overload
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At a reference time t = 0, Eq. (58) becomes

Ty rð Þ ¼ A
r
ei �λrð Þ ð59Þ

Eq. (59) is a complex tagging function in polar coordinate for
gradient applied in the radial direction. The ± signs indicate
the tagging gradient directions (both directions), λr represent
the tagging phase. The constant λ is known as the spatial tag-
ging frequency which defines how many revolutions in a unit
length scale. This is similar to the angular frequency ω func-
tion in time domain that defines how many revolutions in a
unit time:

λ ¼ ω
v
¼ γgτ ð60Þ

where γ is the gyromagnetic ratio, g is the magnitude of the
tagging gradient pulse and τ is the pulse duration. These pa-
rameters are linked through the propagation velocity v, which
can be determined from the physical properties of the media
through which the wave travels. The complex tagging func-
tion can be broken into real and imaginary part as shown in
Eq. (61)

Ty rð Þ ¼ A
r

cos �γgτð Þr þ isin �γgτð Þrð Þ ð61Þ

The real component of the tagging function which quantifies
the magnitude of the harmonic image is

TyR rð Þ ¼ A
r
cos �γgτð Þr ð62Þ

The imaginary part of Eq. (60) describes the harmonic phase
magnetization as

TyI rð Þ ¼ A
r
isin �γgτð Þr ð63Þ

Tagged magnetization for cardiac imaging

Since the tagged magnetic resonance function MyT r!; t
� �

is
stated analytically as the combination of anatomy function
and tagging function, we can write:

MyT r!; t
� �

¼ My r!; t
� �

Ty rð Þ ð64Þ

This is given by Eq. (54) and any of Eqs. (59), (62), (63)
depending on what is being achieved as:

MyT r; θ;ϕ; tð Þ ¼ A
r
ei �λrð Þ

� �

∑
∞

n
∑
∞

m
Anm Jnþ1

2
nγgτ

r0
R
r

� �
Pm
n cosθð Þ� �

sinmϕð Þe− nγgτr0Rð Þ2Dt− F0γgr
2DT0

r3
� �

ð65Þ

Fig. 5 Myocardial tagged images
superimposed on cardiac MRI
slice for (a) mid-diastole (breath
hold) (b) mid-diastole (free
breathing) (c) end-systole (breath
hold) (d) myocardial iron
overload
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Eq. (65) describes the time series distribution of mag-
netic resonance transverse magnetization over radial dis-
tance, and can be used to track material point along the
myocardium radius. For the purpose of computer code
development, it is important to state the parameters
available for the program. These are: tissue relaxation

time ratio n ¼ lT1
T2
, harmonic image constant m≥ lT1

T2
, dif-

fusion coefficient D, relaxation rate T0 ¼ T1þT2
T1T2

, refer-

ence approximate myocardial radius R, pulse duration
τ and gradient pulse magnitude g.

Analysis of results

The tagging function visualization and it implication is
very important according to Eq. (61). A Wolfram
Mathematica computer has been developed to simulate
the behaviour of this function for cardiac imaging. In
order to demonstrate the use of the computer program,
we have made use of normal cardiac radial measure-
ments of the human heart [22]. These measurements
are gender based and are presented in Table 1.

Using the information in Table 1, profiles of the tagging
function from the graphic user interface (GUI) are given in
Figs. 1 and 2 (the parameters used are A = 1, g = 0.02 T/m and
τ = 2 ms):

In Figs. 1 and 2, the profiles showed that the real compo-
nent of the tagging function varies uniquely with myocardium
radial distance during the systole and diastole. In addition to
this, the tagging wave magnitude and attenuation are gender
dependent. These profiles showed that Eq. (62) is quite useful
in visualizing the real tagging component function for differ-
ent regions of the heart as long as their radial extents are
quantifiable. However, we have introduced a radial adjust-
ment parameter in the computer program for flexibility such
that users could adapt the program for any heart region and
types of measurements such that new codes are not required
for any changes.

Initially, the tags remain visible over short distances before
decaying. This attenuation is known as Btag fading^, a phe-
nomenon that occurs during myocardial tissue displacement
[19, 23]. The amplitude factor A in Eq. (62) may be chosen in
such a way that the tag fading is minimized as the procedure of
cardiac imaging requires. In addition to this, NMR relaxation
could be introduced into the tagging function so that the tag

Table 3 Computed
displacements and radial strains
as a function of time and
deformed radius during mid-
diastole (Breath hold)
[T1 = 1.1565s, T2 = 0.0433 s]

Time, t(s) Radius, r(m) Reference radius, R0(m) Displacement, u Radial strain, εr

0 0.0063 −0.01124 0.017544 −1.56032
0.0335 0.0067 −0.00487 0.011566 −2.37681
0.067 0.0069 −0.00344 0.010338 −3.00725
0.1005 0.0071 −0.00195 0.009051 −4.63879
0.134 0.0075 0.00734 0.00016 0.021866

0.1675 0.0079 0.011777 −0.00388 −0.32922
0.201 0.0081 0.011773 −0.00367 −0.31200
0.2345 0.0082 0.011655 −0.00345 −0.29642
0.268 0.0087 0.006032 0.002668 0.442391

0.3015 0.0091 −0.0035 0.012597 −3.60224
0.335 0.0092 −0.0009 0.010101 −11.2151
0.3685 0.0095 −0.00627 0.015766 −2.51601
0.402 0.0097 −0.00751 0.017205 −2.29247
0.4355 0.0103 −0.00929 0.019594 −2.10825
0.469 0.0105 −0.00828 0.018777 −2.26852
0.5025 0.0107 −0.00712 0.017822 −2.50236
0.536 0.0113 0.009224 0.002076 0.225092

0.5695 0.0115 0.010097 0.001403 0.138969

0.603 0.0117 0.010801 0.000899 0.083247

0.6365 0.012 0.011772 0.000228 0.019373

0.67 0.0121 0.011658 0.000442 0.037948

0.701 0.0123 0.011798 0.000502 0.042526

0.725 0.0125 0.011235 0.001265 0.11258

0.773 0.0128 0.010098 0.002702 0.267553

0.8 0.013 0.008343 0.004657 0.558127
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fading reflects information on disease state of myocardium
cells since the protons associated with such cells are capable
of absorbing RF pulses used to tag the heart.

The behaviour of the cardiac magnetic resonance signal for
both untagged and tagged anatomy components of the NMR
transverse magnetization are given by Eqs. (54a) and (65)
respectively. Wolfram Mathematica computer programs have
been developed based on these expressions and the resulting
myocardial images have been obtained with the use of exper-
imental data. The experimental data are the mean diffusivity
(at systole and diastole) [24], T1 and T2 relaxation times [25,
26] measured at 3.0 T (for mid-diastole during breath hold,
mid-diastole during free breathing, end-systole during breath
hold and patients with iron overload [26]). The mean diffusion
coefficients (taken to represent D in this study) used for im-
aging were those taken from the apex of the myocardium [24].
These data are presented in Table 2.

The execution of the computer program and the values in
Table 2, we have the images in Figs. 3, 4, and 5.

Data flexibility has been incorporated in the development
of the computer programs. Appropriate and diverse parame-
ters can easily be inserted in the input fields in order to obtain
interesting myocardial images and this has facilitated the

images in Figs. 3 and 4. The beauty of these programs is in
their compatibility with any type or combination of imaging/
relaxation data. In addition to this, reference and fixed values
of the endocardium radial measurements can easily be
changed as the clinical situation requires.

As demonstrated in Figs. 3 and 4, this model is not only
useful for imaging different phases of the cardiac cycle but also
able to detect disease conditions of the heart. Myocardial iron
overload, ensuing dilatation and heart failure are the main
causes of death in patients with primary and secondary forms
of hemochromatosis [26] and we have demonstrated that this
medical problem showed the least MR signal (for both tagged
and untagged images) as compared to normal systolic and di-
astolic cardiacmotions. This is shown in Figs. 3d and 4d, where
it would be observed that the myocardial iron overload has a
unique MR signal distribution, which is most pronounced
around the points r = 7 mm and 9 mm. Also, at low values of
the radial point orientation θ (around 0.075 rad), the MR signal
is complex and this may be due to the presence of bifurcations
or myocardial regions fromwhich blood has just been emptied.
The reason for the latter possibility is the absence of significant
amount of blood protons available for the production of mea-
surable level of transverse magnetization My.

Table 4 Computed
displacements and radial strains
as a function of time and
deformed radius during mid-
diastole (Free breathing)
[T1 = 1.1791s, T2 = 0.0447 s]

Time, t(s) Radius, r(m) Reference radius, R0(m) Displacement, u Radial strain, εr

0 0.0063 −0.00868 0.014981 −1.72569
0.0335 0.0067 0.000666 0.006034 9.060936

0.067 0.0069 0.002551 0.004349 1.704893

0.1005 0.0071 0.00437 0.00273 0.624868

0.134 0.0075 0.011244 −0.00374 −0.33296
0.1675 0.0079 0.009903 −0.002 −0.20226
0.201 0.0081 0.008743 −0.00064 −0.07353
0.2345 0.0082 0.01014 −0.00194 −0.19129
0.268 0.0087 −0.00246 0.011162 −4.53387
0.3015 0.0091 −0.01048 0.019581 −1.86828
0.335 0.0092 −0.0092 0.018399 −2.00016
0.3685 0.0095 −0.01166 0.021159 −1.8148
0.402 0.0097 −0.0118 0.0215 −1.82205
0.4355 0.0103 0.000484 0.009816 20.28442

0.469 0.0105 0.002373 0.008127 3.425326

0.5025 0.0107 0.0042 0.0065 1.547747

0.536 0.0113 0.010878 0.000422 0.03884

0.5695 0.0115 0.010001 0.001499 0.149895

0.603 0.0117 0.008864 0.002836 0.31991

0.6365 0.012 0.003797 0.008203 2.160686

0.67 0.0121 0.005935 0.006165 1.038785

0.701 0.0123 0.003754 0.008546 2.276449

0.725 0.0125 4.06E-05 0.012459 307.2472

0.773 0.0128 −0.00322 0.01602 −4.97568
0.8 0.013 −0.00613 0.019132 −3.11986
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Meanwhile, in order to simulate the algorithm for clinical
images, we have superimposed the tagged images in Fig. 2
over a selected cardiac MRI slice and presented the results in
Fig. 5. As demonstrated in these images, the methods devel-
oped in this study is not only good for anatomical imaging
(Fig. 5a–c) but also in the diagnosis of cardiac disease condi-
tions (Fig. 5(a,b,c) vs (d)). In addition to these, the colour-
coded images could prove to be an upgrade on the normal
gray scale images because of their ability to delineate tissue
information that are suppressed in the contemporary image
sequences.

Tagging and encoding cardiac tissue motion

Magnetic resonance tagging makes use of a unique pulse se-
quence to spatially modulate the longitudinal magnetization of
cardiac tissues before the acquisition of image data [27, 28].
From here, a lot of image data can be acquired in order to
perform image reconstruction and this is achieved over many
heartbeats within a single breath hold. The reconstructed im-
ages are reflective of MR tag pattern deformations due to the
underlying motion of the heart [28]. Despite the significant

improvements made in MR tagged image acquisition
methods, these methods still suffer from lack of fast quantita-
tive analysis and visualization techniques. This challenge is
hindering the wide application of MR tagging in clinical
settings.

The existing methods of MR tagging analysis have down-
sides, which involve the use of manual intervention in feature
detections [29, 30]. There are currently attempts in automating
feature detection but it is still proving very difficult [31].
Furthermore, since image features have to be distinct, dense
motion estimation would always require interpolation. Lastly,
since epicardial and endocardial boundaries of the left ventri-
cle are generally used for feature interpolation process, mod-
ifications involving motion estimation in the right ventricle
may require new cardiac modelling and software for visuali-
zation [27]. Hence, the current methods are cumbersome and
time consuming because the requirements of manual interven-
tion and numerous interpolations; these problems are signifi-
cant hindrance to their use for real-time diagnosis.

Most techniques for motion analysis in MR tagging rely
largely on image-processing approaches that are able to detect
tag features, which are then combined into a detailed motion
map (displacement and/or strain) using interpolation [27].

Table 5 Computed
displacements and radial strains
as a function of time and
deformed radius during end-
systole (Breath hold)
[T1 = 1.1426s, T2 = 0.0429 s]

Time, t(s) Radius, r(m) Reference radius, R0(m) Displacement, u Radial strain, εr

0 0.0063 −0.01179 0.01809 −1.53433
0.0335 0.0067 −0.00774 0.014441 −1.86553
0.067 0.0069 −0.00666 0.013562 −2.0357
0.1005 0.0071 −0.00549 0.012594 −2.29221
0.134 0.0075 0.003831 0.003669 0.957771

0.1675 0.0079 0.010749 −0.00285 −0.26508
0.201 0.0081 0.011239 −0.00314 −0.2793
0.2345 0.0082 0.010098 −0.0019 −0.18799
0.268 0.0087 0.009597 −0.0009 −0.09346
0.3015 0.0091 0.001586 0.007514 4.73821

0.335 0.0092 0.004255 0.004945 1.162042

0.3685 0.0095 −0.00114 0.010635 −9.36765
0.402 0.0097 −0.00248 0.012182 −4.9077
0.4355 0.0103 −0.01166 0.021958 −1.88355
0.469 0.0105 −0.01137 0.021869 −1.92357
0.5025 0.0107 −0.01093 0.021629 −1.97908
0.536 0.0113 0.003827 0.007473 1.952423

0.5695 0.0115 0.005089 0.006411 1.259732

0.603 0.0117 0.006283 0.005417 0.862191

0.6365 0.012 0.010097 0.001903 0.188528

0.67 0.0121 0.008404 0.003696 0.439752

0.701 0.0123 0.009611 0.002689 0.279821

0.725 0.0125 0.011133 0.001367 0.12279

0.773 0.0128 0.011708 0.001092 0.093311

0.8 0.013 0.011737 0.001263 0.107635
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Consequently, our computational approach to address the
problems highlighted above is based on displacement-strain
analyses. From current methods, the displacement field in the
cardiac tissues is given as [19, 23, 27]:

u r!; t
� �

¼ r!−p r!; t
� �

ð66Þ

where r! represents the current tissue position and p r!; t
� �

is
the reference pos i t ion . Consider ing only radia l
displacements,wecould now modify Eq. (66) as follows:

u r; tð Þ ¼ r−Rcos n
T2

δ
r0
R
γgτ

� �
r− n

τ
T1

γgR
� �

t
� �

ð67Þ

where nγgr0
R r is the tagging angular frequency as extracted

from Eq. (54a), τ is the tagged pulse duration, g is the tagging

gradient field, n ¼ lT1
T2

and l is as defined in earlier sections.

Equation (67) then becomes:

u r; tð Þ ¼ r−Rcos l
r0
R
γgT1

� �
r− l

τ
T2

γgR
� �

t
� �

ð68Þ

The choice of the function in Eq. (67) is based on a straight-
forward association of reference points with magnetic reso-
nance relaxations and cardiac cycle so that displacements at
any point within the cardiac cycle could be mapped to differ-
ent cardiac disease conditions. This could provide a new di-
mension to current research efforts [32, 33] employing strain
analysis in tissue diagnosis. The reference position is therefore
no longer constant but given as:

p r; tð Þ ¼ Rcos l
r0
R
γgT1

� �
r− l

τ
T 2

γgR
� �

t
� �

ð68Þ

We now define the relaxation-dependent reference position as

R0 ¼ Rcos l
r0
R
γgT1

� �
r− l

τ
T2

γgR
� �

t
� �

ð69Þ

Meanwhile, at time t = 0 (end-diastole), the myocardial point
r ¼ π

2 gives:

p ¼ R; u ¼ π
2
−R

Table 6 Computed
displacements and radial strains
as a function of time and
deformed radius during
myocardial iron overload
[T1 = 1.1967s, T2 = 0.0470 s]

Time, t(s) Radius, r(m) Reference radius, R0(m) Displacement, u Radial strain, εr

0 0.0063 −0.00553 0.011826 −2.14009
0.0335 0.0067 0.005077 0.001623 0.319626

0.067 0.0069 0.007089 −0.00019 −0.02662
0.1005 0.0071 0.008819 −0.00172 −0.19488
0.134 0.0075 0.011552 −0.00405 −0.35076
0.1675 0.0079 0.004954 0.002946 0.594757

0.201 0.0081 0.002732 0.005368 1.965364

0.2345 0.0082 0.004598 0.003602 0.783484

0.268 0.0087 −0.00923 0.01793 −1.94259
0.3015 0.0091 −0.0114 0.020505 −1.79791
0.335 0.0092 −0.01175 0.020949 −1.78304
0.3685 0.0095 −0.00933 0.018831 −2.01815
0.402 0.0097 −0.00771 0.017413 −2.25764
0.4355 0.0103 0.009614 0.000686 0.071342

0.469 0.0105 0.01078 −0.00028 −0.02597
0.5025 0.0107 0.011518 −0.00082 −0.07098
0.536 0.0113 0.001475 0.009825 6.659803

0.5695 0.0115 −0.00088 0.012376 −14.1323
0.603 0.0117 −0.00319 0.014892 −4.66557
0.6365 0.012 −0.00879 0.020785 −2.36593
0.67 0.0121 −0.00736 0.019457 −2.64472
0.701 0.0123 −0.00933 0.021635 −2.31767
0.725 0.0125 −0.01125 0.023747 −2.11145
0.773 0.0128 −0.0118 0.024595 −2.08516
0.8 0.013 −0.01116 0.02416 −2.16484
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In order to estimate the mechanical deformation of cardiac
tissues, we define the endocardial radial strain (εr) as follows
[19, 34, 35]:

εr ¼ R−R0

R0
ð70Þ

In order to adequately diagnose and manage ischemic heart
diseases, echocardiographic assessment of regional myocardi-
al function is required. However, this method depends on
visual detection of motion of myocardium as well as the as-
sessment of left ventricular ejection fraction [35], a technique
which is plagued with numerous challenges. Newer indices
involving myocardial strain and strain rate analysis are now
being used in order to overcome these challenges.
Displacements and strains have been able to quantify myocar-
dial deformations (taking place at systole and diastole).
Deformation abnormalities are often noticed in early onsets

of many patho-physiological conditions such as ischemia.
Consequently, these deformations provide means of delineat-
ing regional myocardial dysfunction. Although displacement
and strain estimation have been applied widely to cardiac
mapping and diagnosis, the unique relaxation (T1 and T2)
parameters, which are excellent indicators of tissue diseases,
have not been fully explored for better diagnosis of heart dis-
eases, monitoring of disease progression and treatment out-
comes. Fortunately, the definitions provided in Eqs. (67) to
(70) could provide a completely new dimension to cardiac
tissue displacement and strain analysis.

In order to demonstrate the importance of the methods , we
shall make use of the data in Table 2 to make computations of
the displacements and strains at different points within the
cardiac cycle. Normal cardiac tissue condition are represented
as mid-diastole (Breath hold), mid-diastole (Free breathing)
and end-systole (Breath hold) while myocardial iron overload
condition has been selected to represent a myocardial

Fig. 6 Radial displacement as a function of time and deformed radius at (a) mid-diastole (Breath hold) (b) mid-diastole (Free breathing) (c) end-systole
(Breath hold) (d) myocardial iron overload
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dysfunction. As a first step in achieving this, we have mapped
deformed endocardial radii of 0.0063 m - 0.013 m to various
points within the cardiac cycle. The values of the constant
parameters used for computations of Tables 3, 4, 5 and 6 are
l = 0 . 0 4 1 2 5 , g = 0 . 0 1 8 T m − 1 , τ = 2 m s ,
γ = 42,666,666.67 s−1 T−1, r0 = 0.00114 m and R = 0.0118 m.

Using the computations in Tables 3 to 6, we have obtained
distribution maps of displacement and radial strain for the
normal and abnormal heart condition in Figs. 6 and 7.

Figures. 6 and 7 demonstrated that the computed displace-
ments and radial strains are distributed in such a way that their
values showed contrast between different normal conditions.
The significance of this is in early detection of myocardial
dysfunction and in monitoring disease progression. Since the
methods developed are able to differentiate different normal
cardiac conditions, they would definitely be very good for im-
proved diagnosis. The importance of this to disease diagnosis is
shown in Figs. 6d and 7d where the contrast is conspicuous. It
is also interesting to note that radial strain tends to be better in

diagnosis than the use of displacement. This is especially ob-
vious in Fig. 6a and 6c where there is no significant difference
in the displacement distribution of mid-diastole (Breath hold)
and end-systole (Breath hold). Meanwhile, Fig. 7a and 7c dem-
onstrated that radial strain distribution is better in showing dif-
ference between these conditions. Generally, the image con-
trasts in Fig. 7 are better than those of Fig. 9. However, dis-
placement distribution tend to be better in mapping heart con-
dition at mid-diastole (Free breathing and at the beginning of
the cardiac cycle) and myocardial iron overload towards the
end of the cardiac cycle (shown in Fig. 6b and 6d as compared
to Fig. 7b and 7d). The implication of this could be that for
myocardial conditions which are directly related to cardiac cy-
cle, displacement distribution could be more reliable compared
to radial strain analysis. In addition to the computational ap-
proach used in this analysis which is fast, cost-effective and
less-cumbersome, we can employ this method to interpolate
for displacements or radial strains for inaccessible deformed
radial measurements.

Fig. 7 Radial strain as a function of time and deformed radius at (a) mid-diastole (Breath hold) (b) mid-diastole (Free breathing) (c) end-systole (Breath
hold) (d) myocardial iron overload
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Figures 8 and 9 further elucidate the behaviour of displace-
ment and radial strain as functions of time.

As shown in Fig. 8, at mid-diastole (Free breathing-
FB) and myocardial iron overload, the displacements are
low just at the onset of the cardiac cycle and have the
highest values towards the end of the cycle. Hence, if
the displacement is to be sampled for any diagnostic
reason, the appropriate times for best measurements
have thus been demonstrated. This could be very impor-
tant in relating the measured displacement to the blood
pumping process of the heart. Fig. 9 is more complicat-
ed because of the data distribution within the profile.
The best time for sampling radial strain for dysfunction
(myocardial iron overload) is around 0.2 s where the
strain for normal conditions are not far from zero.
This may prove to be very important for monitoring
disease progression because the curves would tend to
evolve differently at different points within the cardiac
cycle. In addition to this, we could use these profiles to
monitor how a patient suffering from myocardial dysfunc-
tion is responding to treatment. However, in such cases, the
profile evolution needs to be automated so that patients’ con-
dition could be observed in real time.

Conclusion

We have developed detailed analytical solution to the Bloch
NMR flow equation for myocardial tagging function using
spherical wave model with spin diffusion. The systolic and
diastolic functions of the heart are mathematically simulated
using diffusive magnetization distribution. This will be a use-
ful tool to investigate mechanical factors involved in normal
and abnormal cardiac function or to aid in the design and
evaluation of new therapies for impaired cardiac function.
Based on the newly developed spherical wave tagging func-
tion for myocardial motion, Harmonic Phase MRI method
was used to compute the difference between tagged and un-
tagged magnetization. It is interesting to note that we used the
less-elusive transverse magnetization instead of the longitudi-
nal magnetization (Mz) function. The limitation of conven-
tional cardiac function measurements is the inability to follow
the motion of individual portions of the heart wall during RF
excitations and the onset of Fourier induction decay (FID).
The computational HARP-MRI as presented in this investiga-
tion may measure myocardial motion and strain in near real-
time and may be seen as a potential candidate to make
Magnetic Resonance Tagging clinically viable. It can

Fig. 9 Multiple plots of radial
strain against the time at mid-
diastole (Breath hold-BH), mid-
diastole (Free breathing-FB), end-
systole (Breath hold-BH) and
myocardial iron overload

Fig. 8 Multiple plots of radial
displacement against the time at
mid-diastole (Breath hold-BH),
mid-diastole (Free breathing-FB),
end-systole (Breath hold-BH) and
myocardial iron overload
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significantly allow for accurate monitoring and forecast in
clinical settings using computer programming before and after
the actual commencement of specific medical procedure for
diagnosis and therapy.
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