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Abstract Finding the best way to vaccinate people against 
infectious disease is an important issue for health workers. In 
this study a compartmental two-time delay SVEIRS 
mathematical model with pulse vaccination and saturated 
incidence was formulated to examine the dynamics of 
infectious disease in a population. The existence of the 
disease free periodic solution was established and the 
compact form was derived. From our study, it was 
discovered that short pulse vaccination or long latent period 
or long immune period will guarantee eradication of the 
disease in the population. Lastly, the conditions for the 
incurability of the disease were examined. 
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1. Introduction 
To control infectious diseases, vaccination is always the 

approach recommended by health workers and 
epidemiologists. Controlling and eliminating diseases has 
been studied by many authors, see [1] and [2]. Constant 
vaccination strategy or approach has been the major method 
proposed by many WHO workers and consultants, but Agur 
[3] started the study of pulse vaccination strategy as an 
alternative to constant vaccination strategy. Since then a lot 
of researchers had worked on the theoretical and practical 
advantages of pulse vaccination strategy, see [3-7]. The 
application of pulse vaccination strategy to epidemiological 
models was restricted to SIS and SIR models, but recently 
researchers have been studying more complex classifications 
[6] and [8-10]. Pulse vaccination is the repeated application 
of vaccine across age cohorts. 

Meng et al [11] and Jin et al [12] studied an SIR model 
with some people failing to obtain immunity after first dose 
but gained immunity after later doses.  

As we know immunity to infectious diseases after being 
vaccinated against them might not be life long, so in this 

study we assume that the latent and immunity (not 
permanent) period are constants. Delayed models (ordinary 
delay or two-time delay) with nonlinear or saturated 
incidence have also been proposed by some researchers, see 
[10-16], so a two-time delay model was replicated in this 
study but of SVEIRS type. Precisely, we consider a saturated 
incidence of the form (1 )I Sβ α+ and the two-time delay 
(latent and immunity) for this model. 

The focus of this work is to determine the conditions for 
which the disease will be eradicated or otherwise become 
incurable in a population.  

2. Model Formulation 
In this section we are going to formulate the model by 

considering vaccination as an epidemiological class.  
In this regard, we use the following notations and 

assumptions for subsequent development: Let 
denote respectively the 

susceptible, vaccinated, exposed, infectious and recovered 
partitions of the population, and  be the total 
population. We assume that new individuals enter into the 
susceptible class of the population at a constant recruitment 
rate  and death will occur to them at the rate  
(where is the per capital natural mortality rate). With the 
assumption of saturated incidence ( ) (1 ( ))I t S tβ α+ the 
interaction between susceptible individuals and infectious 
individuals can the represented by ( ) (1 ( ))I t S tβ α+ , where

 is the adequate contact rate that can lead to infection and 
 is the saturated incidence parameter. If  is the 

adequate contact of an infective and a vaccinated individual 
per unit time, then the interaction of infectives and 
vaccinated is describe by ( ) ( ) (1 ( ))V t I t S tβυ α+ .  

Death will occur to the vaccinated class, exposed class, 
infectious class and recovered class at the rate, ,

,  and  respectively and there will be 
an additional disease induced death of infectious individuals 
at the rate , where  is the death rate due to 
infection. We let  be the recovery parameter of infectious 
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individuals and  is the average rate for vaccinated 
individuals to obtain immunity and move to recovered class, 

 is the average immune period of the population and  
the latent period of the disease. 

Note: Parameters  are positive 
constant. 

So, using the formulation above we have the following 
system as the SVEIRS model: 

  (1) 

Now, we are going to incorporate pulse vaccination 
strategy into our model, this will lead us to the following 
impulsive system: 

   (2) 

 is the period of pulsing and  

    (3)  

where  is the total population at time   
.
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3. Model Description and Preliminaries 
By system (2)and equation (3) we have; 

                   (4) 

(by summing from the first to the fifth equation of (2)), 
therefore the total population is not constant over time. It 
follows from (1) that 

 

    (5). 

Following the approach of Gao et al [10,17] and Song et al 
[14], we can see from (2) that the first, second and fourth 
equations of the system does not contain the variables  
and , so we are going to focus on the following 
equivalent system of (2). 

   (6) 

The initial conditions for (6)are of the form 

          (7). 

We have,  
 such that  and 

 is the space of continuous functions on   

with uniform norm; where 

 

 

The solution of (6) is a piecewise continuous function 
 has a point of discontinuity at 

 of the first kind and continuous on 
( , ( 1) ],kT k T k J ++ ∈  and ( ) lim ( )

t T
J kT J t

+

+

→
= exists. 

Since  is smooth then the solution of (6) exists and is 
unique (using definition of smooth function).  

We assume that 

  
Also, using the fact that 

 

for  
Now from (6), since  then we 
have the following lemma. 

Lemma 1 
Suppose  is a solution of (6) with initial condition (7) 

then, 
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continuous on and by (4) 
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So  is uniformly bounded. If there exist a positive 

integer  , by definition of   we have that, 

 
More so, biologically we assume that 

 then the system (6) is positively 
invariant in the closed set: 

 
Definition 1 Uniform Persistence 

System (6) is said to be uniformly persistent if there is a  
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Definition 2 Permanence 
System(6) is said to be permanent in  if there exists a 

compact region  such that every solution of 
system (6) with initial conditions (7) will eventually enter 
and remain in region  . 

Lemma 2 [10] 
Consider the following impulsive system 

                  (8) 

where  Then there exists a unique 
positive periodic solution of  system (8) given by  

 
which is asymptotically stable, where 

 
Lemma 3 [18] 

Let us consider the following impulsive differential 
inequalities: 

 
where  are 
constants.  
Assume, 

i)the sequence satisfies with 
 

ii) and is left continuous at 
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Lemma 4 [9] and [19] 
Consider the following equation, 

 

 

3.1. Model Analysis 

3.1.1. Global Attractivity of Disease-free Periodic Solution 

From (5) and the fact that 

 
we have 

 
Now we show that there exist a disease-free periodic 

solution for system (6), that is the infectious individuals are 
absent from the population  
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exists [9,20] and derived subsequently. 

For we have 

 
Therefore using the fact that  

we have the following equations  

                    (10) 

and 

       (11).
 

Solving (11) between pulses and using the discrete 
dynamical system determined by the stroboscopic map and 
the integral of the system, we have 

 

 (12) 

liminf ( ) , liminf ( ) ,

liminf ( ) , liminf ( )
t t

t t

S t V t

I t N t

λ λ

λ λ
→∞ →∞

→∞ →∞

≥ ≥

≥ ≥

Θ
0 intΘ ∈ Θ

0Θ

' ( ) ( );           
( ) (1 ) ( );       

u t a bu t t T
u t u t t T

κ

θ κ+ −

 = − ≠


= − =

0, 0,0 1.a b θ> > < <

* ( )
, ,( ) ( ) ; ( 1)b t T

a b a b
a au t u e T t T
b b

κ κ κ− −= + − < ≤ +

*
,

(1 )(1 )
(1 (1 ) )

bT

a b bT

a eu
b e

θ
θ

−

−

− −
=

− −

( ) ( ) ( ) ( ) ( );        

( ) ( ) ( ) ;            ;
k

k k k k k

w t P t w t g t t t
w t d w t b t t k N+

′ ≤ ≥ + ≠

≤ ≥ + = ∈

( ), ( ) [ , ]; 0 and k kP t g t C R R d b+∈ ≥

{ }kt 0 1 20 ....,t t t≤ < < <

  lim ;kt
t

→∞
= ∞

'[ , ]w PC R R+∈ ( )w t
  , .kt k N∈

00 00 0

0

0

0

( ) ( ) ( ) exp ( ) exp ( )

exp ( ) ( ) ;              

kk k

k

t t

k k k
t t tt t t t t tt t

t t

k
s t tt s

w t w t d P s ds d P s ds b

d P d q s ds t tθ θ

< << < < <

< <

    
 ≤ ≥ +           

 
+ ≥ 

 

∑∏ ∏∫ ∫

∏∫ ∫

1 2( ) ( ) ( )x t a x t a x tω= − −

1 2

1 2

1 2

where , , 0; ( ) 0 for 0. We have;
( )If ;  then lim ( ) 0

( )If ;  then lim ( )
t

t

a a x t t
i a a x t

ii a a x t

ω ω

→+∞

→+∞

> > − ≤ ≤
< =

> = +∞

( ) ( ) ( ) ( ) ( )
1 ( )

dS t S t I tA S t I t e
dt S t

µτβ µ ρ τ
α

−= − − + −
+

( ) ( )dS t AA S t
dt A

βµ
µ α

 
≥ − + + 

(i.e. ( ) 0 0).I t t= ∀ ≥
( ) 0 0I t t= ∀ ≥

( )

( ) ( )

( ) ( )
              ,

( ) ( )

 

( ) (1 ) ( )
( ) ( ) ( )             ,
( ) ( )

dS t A S t
dt

dV t V t
t Tdt

dN t A N t
dt

S t S t
V t V t S t t T
N t N t

µ

γ µ
κ κ

µ

θ

θ κ κ

+

+ −

+ − − +

+ −

 = − 
 
 = − +  ≠ ∈  = − 
 
 
 = −
 

= + = ∈ 
 = 





( ) 0 0I t t= ∀ ≥

lim ( )
t

AN t
µ→∞

=

( ) ( ) ( ) ( )N t S t V t I t= + +

( ) ( )AV t S t
µ

= −

( ) ( )                

( ) (1 ) ( )            =

dS t A S t t
dt

S t S t t

µ κτ

θ κτ+ −

= − ≠ 

= − 

* ( )
, ,

*

( ) ;  ( 1)

(1 )(1 )
(1 (1 ) )

t T
A A

T

T

A AS t S e T t T

A eS
e

µ κ
µ µ

µ

µ

κ κ
µ µ

θ
µ θ

− −

−

−

 
= + − < ≤ + 

 
− −

⇒ =
− −



( )

1 ; ( 1) ,
1 (1 )

 
t T

T

A e
T t T

e

µ κ

µ

θ
κ κ κ

µ θ

− −
+

−
≡ − < ≤ + ∈

− −

 
 
 



 



226  Pulse Vaccination Strategy in a SVEIRS Epidemic Model with Two-Time Delay and Saturated Incidence  
 

By (10) and (12) we have 

     (13), 

with and  

 
By Lemma 2, (13) is GAS and the solution of (9) is 

 
So, the disease-free periodic solution of (6) is; 

. 

Next we determine the global attractivity condition of the 
disease-free periodic solution * *( ( ), ( ) ( ),0, )S t A S t Aµ µ−  
of system (6). 

First we consider the following lemma; 
Lemma 5 

System (9) has a unique positive solution 

, 
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then and  
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The proof follows from Lemma 2. 
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so if we set 
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arbitrarily small positive constant such that  
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dynamical system approach, we have 

 
which is GAS by Lemma 2. 
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By comparison theorem for impulsive differential 

equation [20], there exists an integer  such that  

  (17).
 

From(15), (17) and third equation of (6),  
we have, 

        (18).
 

Let us consider the following impulsive equation as the 
comparison equation 

 From (14), we have 

 
And so by Lemma 5 we have, 

 
Since  , then by the 

comparison theorem of differential equations and the fact 
that the solution of system (6) are non-negative with 

 . 
Next we assume that . From (6) 

we have 

 

If we have 

  (19) 

1

1 1

[ ]
1

[ ] 1

( )(1 )
( ) (1 ) ( 1)

1

t TT

t t TTT

T

S T e
q t e A e e e

e

κ µ

µ κ κ µµτ µ

µ

κ θ

ρ θ
µ θ

+

−
− +−

 − 
=  + − − −

− +  

1

1 1

[ ]
1

[ ] 1
1 1

( ) ( )(1 )

       = ( )(1 ) ( )

t Tt T

t T Tt tT

q t e S T e

e S T e e S T e

κ µµ

κ µ κ µµ µ

κ θ

κ θ κ

− +

+− + − +

≤ −

− <

([ ] 1 )

1 2( ) ( ) 1
1

t tT T T

T

A e eS t S S q t
e

µµτ

µ

ρ θ
µ θ

+ −−  +  ≤ + = + −
− +  

1
1( ) ( ) 1

1
Tt

T

A eS t e S T e
e

µτ
κ µµ

µ

ρ θκ
µ θ

−
− + +  ≤ + − − + 

limsup ( ) 1
1Tt

A eS t
e

µτ

µ

ρ θ
µ θ

−

→∞

+  ⇒ ≤ − − + 

2 1κ κ≥
ε 2 ,t Tκ≥

1( ) 1
1T

A eS t
e

µτ

µ

ρ θ ε
µ θ

−+  ≤ − + = Ψ − + 

1
' ( ) ( ) ( ),      ,   
( ) ( ) ( )        ,   

V t V t t T
V t V t S t t T

κ κ

γ µ κ κ

θ κ κ

+

+

∀ ≥

≤ − + ≠ ∈

= + = ∈





' ( ) ( ) ;              
( ) ;                    

y t y t T
y t y S t T

γ µ κ κ

θ κ κ

+

+

= − + ≠ ∈

= + = ∈





( )
*

( )

*
( )

( )( ) 1 ; ( 1)   
(1 ) 1

( )(0 ) 1 ; ,                   
(1 ) 1

T

T T

T T

e A ey t T t T
e e

A ey t T
e e

µ γ µτ

µ γ µ

µτ

µ γ µ

θ ρ θ κ κ κ
µ θ

θ ρ θ κ κ
µ θ

− + −
+

− +

−
+ +

− +

+  = − < ≤ + ∈ − − + 
+  = − = ∈ − − + 





( ), ( ), ( ), ( )S t V t I t N t

0 0(0 ) 0, (0 ) 0,S S V V+ += > = > ( )y t
0(0 )y V+ =

0κ >
*

0( ) ( ) ( ) ;      ( 1) ,   V t y t y t T t Tε κ κ κ +< < + < ≤ + ∈
( )

*
0 0 2( )

( )
( ) 1

(1 ) 1

T

T T

e A e
V t y

e e

µ γ µτ

µ γ µ

θ ρ θ
ε ε

µ θ

− + −

− +

+
⇒ < + ≤ − + = Ψ

− − +
 
  

2t Tκ ω∀ > +

' 1 2

1 1

( )
1 1

     ( ) ( )

e I t eI

I t

µω µωβ ω υβ
α α

µ ϕ ρ

− −   Ψ − Ψ
≤ +   + Ψ + Ψ   
− + +

' 1 2

1 1

( ) ( )
1 1

      ( ) ( ).

e x t e x tx

x t

µω µωβ ω β ω
α α

µ ϕ ρ

− −   Ψ − Ψ −
= +   + Ψ + Ψ   
− + +

1 2

1 1

( ).
1 1
e eµω µωβ β µ ϕ ρ
α α

− −   Ψ Ψ
+ < + +   + Ψ + Ψ   

lim ( ) 0
t

x t
→∞

=

3( ) ( ) 0  [ ,0]I s x s s lφ= = > ∀ ∈ −

( ) 0 then we have ( ) 0 as I t I t t≥ → →∞
0 ( )      0I t tε< < ∀ ≥

'

'

( )
( ) ( ) ( )

S t A S
V t V t

µ βε

υβε γ µ

≥ − −

≥ − − +

'
1 1
' '
1 1

1 1

1 1 1

1

1

( )
;    

( ) ( ) ( )

( ) (1 )
               ;     

( )

(0 ) (0 )

(0 ) (0 )

b t A b
t T

c t c t

b t b
t T

c t c b

b S
c V

µ βε
κ κ

υβε γ µ

θ
κ κ

θ

+

+
+

+

+ +

+ +

 = − −  ≠ ∈ 
= − − +  


= −  = ∈ 

= +  
 =
 =





 



228  Pulse Vaccination Strategy in a SVEIRS Epidemic Model with Two-Time Delay and Saturated Incidence  
 

and assuming that and  

 
where  is a unique positive periodic solution of 
(19). 

From (25) we have 

 
Again, using the comparison theorem of impulsive system 
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Corollary 1 
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3.1.2. Incurability or Permanence of the Disease 
The system (6) is said to be permanent if there are 

positive constants  and a finite time  

such that for all solution  with initial 
values,  

 . 

Let, 

 
and  

 

Theorem 2 

If  , then the disease is permanently incurable, i.e. 

there exist a positive constant  such that  for 
a large enough  . 

Proof 
Suppose  is any 

nonnegative solution of (6) with initial conditions (7) and so 
from the third equation of (7), we have the following 
equivalent equation: 
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of system (6) and set 
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Since  we can easily see that  and there 
exist a positive constant  small enough such that; 

  (25),
 

where 

 

Now, we assume that for any  it is not possible that 

  
By contradiction, suppose that this is not valid, then there 

exist a  . 
From system (6) we have 

 

Consider the following comparison impulsive system for 
 ; 
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By Lemma 2, we have 

 
as the unique positive periodic solution of (26) which is 
globally asymptotically stable with  
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there is  such that 
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such that  

From the condition that 

 
then there exist  sufficiently small such that 

 

                 (30) 

From (6), (29) and (30) we have 

 
We can continue with the same argument for  

 
Therefore, we conclude that with the choice of  

 which is independent of the nonnegative solution of 

(6) we have   
Hence the proof of Theorem 2. 

4. Conclusions 
Theorem 1 states the global attractiveness of periodic 

solution 

 
of system (6) with initial condition (7) in  domain  for 
the case  , i.e the disease will be eradicated from the 
population. Corollary 1 and corollary 2 implied that the 
disease will be eradicated if the pulse vaccination rate is 
larger than  , the latent period is longer than  and the 

infectivity period is shorter than . In this work, we have 
studied the delayed SVEIRS epidemic model with pulse 
vaccination and saturated incidence. We have been able to 
determine the conditions for which the disease will be 
eradicated in the population through the use of pulse 
vaccination strategy. Also we found that a smaller pulse 
vaccination rate or a shorter latent period of the disease or a 
shorter immunity period could lead to the disease been 
permanent in the population. Furthermore, the inclusion of 
saturated incidence in term of susceptible, allowed us to 
study the dynamics of the diseases with respect to population 

with very high proportion of it prone to being infected.  
Lastly, with this new model, optimal control theory can be 

employed to determine the cost benefit of maximizing the 
recovered individuals and minimizing the infected and 
susceptible individuals by adopting the framework proposed 
in [22].  
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