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Abstract 
 
In this paper, we consider the modified epidemiological malaria model proposed by Abadi and 
Harald. The multi-step homotopy analysis method (MHAM) is employed to compute an 
approximation to the solution of the model of fractional order. The fractional derivatives are described 
in the Caputo sense. We illustrated the profiles of the solutions of each of the compartments. 
Figurative comparisons between the MHAM and the classical fourth-order reveal that this method is 
very effective 
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Introduction 
 
Malaria is one of the oldest diseases studied for a long-time from all angles, and vast literature 
exists describing a host of modelling approaches. Different approaches are helpful in guiding 
different stages of the disease and its transmission through synthesizing available information 
and extrapolating it. It is felt that a combination of different approaches, rather than a single 
type of modelling, may have long term usefulness in prevention and control. Malaria is a 
parasitic vector borne disease, endemic in many parts of the world. At present, at least 300 
million people are affected worldwide and there are between 1-1.6 million malaria related 
deaths annually (Nedelman, 1983). 

There have been a number of control strategies against the transmission of malaria 
and most importantly antimalarial drugs that have played a mainstream role through the 
treatment of clinical cases, prophylaxis of the high risk groups (infants, nonimmune travellers, 
and pregnant women). Early treatment of suspected cases with adequate drugs continue to 
be the main control strategy of malaria in the sub-Saharan Africa. However, despite intensive 
control efforts, global incidence of malaria case is increasing especially in the sub-Saharan 
Africa. This has been attributed to poverty, war and the collapse of health care systems 
following abandonment of WHO’s Eradicate Malaria Campaign(Ngwa,2004). In the 1960s, 
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another important factor has been largely due to emergence of drug resistant strains of 
Plasmodium to cheap and affordable antimalarial drugs such as chloroquine (CQ) and 
sulfadoxine-pyrimethamine (SP, trade name: Fansidar) that have been the mainstay of malaria 
treatment in disease endemic regions (Ridley, 2002; Baird, 2000; Peters, 1998). 

Several researchers work on the fractional order differential equations because of best 
presentation of many phenomena. Fractional calculus has been used to model physical and 
engineering processes, which are found to be best described by fractional differential 
equations. It is worth noting that the standard mathematical models of integer-order 
derivatives, including nonlinear models, do not work adequately in many cases. In the recent 
years, fractional calculus has played a vital role in various fields such as mechanics, electricity, 
mathematics, biology, economics, notably control theory, and signal and image processing 
see for example. (Ertürk, and Momani, 2011; Lin, 2007; Miller, 1993).   
In this study, we employ the Multi-step Homotopy Analysis Method (MHAM) to the system of 
differential equations proposed by Gebremeskel and Krogstad (2015), which describe our 
model and approximating the solutions in a sequence of time intervals. In other to illustrate the 
accuracy of the MHAM, the obtained results are compared with fourth-order Runge-Kutta 
Method. Other semi-analytical methods to determine the solutions of nonlinear system 
includes: Homotopy Pertubation Method (HPM), Reduced Differential Transform Method 
(RDTM), Viarational Iterational Method (VIM), Differential Transform Method. The methods 
mentioned above have been used as a tools to approximate linear and non-linear problems in 
Physics and Engineering respectively (Abbasbandy and Shivanian, 2009; Abdallah, 2009; 
Peter and Akinduko, 2018; Peter and Ibrahim, 2017; Peter et al., 2018). 
 
Materials and Methods 
 
The endemic malaria model transmission considered in this study is SIR and SI in human a 
mosquito population respectively. The model is formulated for the spread of malaria in the 
human and mosquito population with the total population size at time t denoted by Nh(t) and 
Nv(t), respectively. These are further compartmentalized into epidemiological subclasses as 
susceptible Sh(t), infected Ih(t), and recovered Rh(t) human population, and susceptible Sv(t) 
and infected Iv(t) vector population. The vector component of the model does not include an 
immune class as mosquitoes does not recover from the infection, that is, their infective period 
ends with their death due to their relatively short lifecycle. Thus, the immune class in the 
mosquito population is negligible and death occurs equally in all class. The model can be used 
for diseases that persist in a population for a long period of time with vital dynamics. The basic 
model incorporates a set of assumptions. Both the human and vector total population sizes 
are assumed to be constant.  

The recovered individuals in human population develop permanent immunity. The 
populations in compartments of both humans and vectors are non-negative. All newborns are 
susceptible to infection, and the development of malaria starts when the All human individuals, 
whatever their status, are subject to an infectious female mosquito bites the human host. The 
vectors do not die from the infection or are otherwise harmed. Individuals move from one class 
to the other as their status with respect to the disease evolves. Humans enter the susceptible 
class through birth rate μh and leave from the susceptible class through death rate αh, and 
infective rate βhIh. natural death, which occurs at a rate αh, and disease induced death rate ρh. 
In this model, μhNh and μvNv are denoted the total birth rates of human and mosquito, 
respectively. The terms αhSh,, αhIh and αhRh refer to the total number of removed susceptible, 
infected and recovered humans per unit of time. The terms αvSv and αvIv are the number of 
removed susceptible and infected mosquito populations per unit of time. The term ρhIh is the 
number of removed human population because of the disease per unit of time, whereas γhIh is 
the total recovered human population per unit of time. The term βhShIv denotes the rate at which 
the human hosts Sh get infected by the mosquito vector. Iv, and βvSvIh refers to the rate at which 
the susceptible mosquitoes Sv are infected by the human hosts Ih at a time, t. Thus, both these 
terms are important parts of the model describing the interaction between the two populations. 
The aim of this work is to extend HAM to solve the system of the model equations (1). This 
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modification is called Multi-Step Homotopy Analysis Method (MHAM). The ordinary differential 
equations which describe the dynamics of malaria in the human and mosquito populations 
become: 

 

hhvhhhh

h SISN
dt

dS
   

hhhhhhhhvhh

h IIISIS
dt

dI
   

nnhh

h RI
dt

dR
   

 
       (1) 
 

vvhvv

v IIS
dt

dI
   

 
Basic Definitions and Notation 
 
Lemma 1 [Generalized Mean Value Theorem (Lin, 2007)] 
Let p(x) ∈ C[e, f] and Dα p(x) ∈ C[e, f] for 0 < α ≤ 1, then we have 

p(x) = p(e) + 
1

Γ(α)
Dαp(ε)(x − e)α 

0 ≤ ε < 𝑥 ∀ x ∈ [e, f] 
Remark  

Suppose p(x) ∈ C[e, f] and Dαp(x) ∈ C[e, f] for 0 < α ≤ 1. It is obvious from Lemma 1 that if 

Dα p(x) ≥ 0, ∀x ∈ (0, f) then the function p is non-deceasing and if Dα p(x) ≤ 0, ∀x ∈ (0, f) then 

the functionp is non-increasing 
 
Definition 1 
A function 𝑔(𝑥) having a position value of 𝑥 is defined in the space 𝐷𝛼 (𝛼 ∈ ℝ ) if it is expressed  

in the form 𝑔(𝑥) = 𝑥𝑎𝑔(𝑥) and for some 𝑎 > 𝛼 where 𝑔(𝑥) is continuous in  [0, ∞] and it is 

identified to be in the space 𝐷𝛼
𝑛 if 𝑔(𝑛) ∈ 𝐷𝑛 ∈ ℕ 

 
Definition 2 

The Riemann Liouvoille integral Operator of a given order𝛼 > 0 with 𝑏 ≥ 0 is expressed as:  

(𝐽𝑎
𝛼𝑔)(𝑥) =

1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝑛−1

𝑥

𝑎

𝑔(𝑡)𝑑𝑡, 𝑥 > 𝛼 

(𝐽𝑏
0𝑔)(𝑥) = 𝑔(𝑥). 

We require only the following for: 
 

𝑔 ∈ 𝛽𝑛, 𝛼 > 0, 𝛽 > 0, 𝑐 ∈ ℝ and  𝛾 > −1, we get 

𝐽𝑏
𝛼𝑥𝛾 =

𝑥𝛾+𝛼

𝛤(𝑏)
𝛽(𝑥 − 𝑏)(𝛼, 𝛾 + 1) 

Where 𝛽𝜔 (𝛼, 𝛾 + 1) characterized the incomplete beta function stated as: 

𝐷𝜔(𝛼, 𝛾 + 1 ) = ∫ 𝑡𝛼1(1 − 𝑡)𝛾𝑑𝑡,
𝜔

0

 

𝐽𝑏
𝛼𝑓(𝑥) = 𝑓(𝑥)(𝑥 − 𝑏)𝛼 ∑

[𝑐(𝑐 − 𝑏)]𝑘

𝛤(𝛼 + 𝑘 + 1)

∞

𝑘=0

 

 
The Riemann Liouville derivative possesses some setbacks when applying to a real life 
situation with fractional differential equations. Thus we employ a modified version of fractional 

vvhvvvv SISN
dt

dSv
 
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differential  operator 𝐷𝑏
𝛼 which has been employed in  the Caputo work on the theory of 

viscoelasticity. 
 
Definition 3 

The caputo fractional derivative of 𝑝(𝑥) order 𝛼 > 0 with 𝑎 ≥ 0 is given as  

(𝐷𝑏
𝛼𝑔)(𝑥) = (𝐽𝑏

𝑚−𝛼)(𝑥) =
1

𝛤(𝑚 − 𝛼)
∫

𝑔(𝑚)(𝑡)

(𝑥 − 𝑡)𝛼+1−𝑚
𝑑𝑡

𝑥

𝑏

 

For 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑥 ≥ 𝑏𝑓(𝑥) ∈ 𝐷−1
𝑚  

 
 
 

Multistep Homotopy Analysis Method 
 
The principle of homotopy analysis method are given in (Ibrahim, et al., 2017; Liao, 1992). 
HAM is used to provide approximate solutions for all wide range of non-linear problem in terms 
of convergent series. The HAM has been extended by many researchers to solve linear and 
nonlinear problems in terms of convergent series with easily computable components, 
however it does have some drawbacks: the series solution always converges in a very small 
region and it has slow convergent rate or is completely divergent in the wider region (Alomari, 
et al., 2009; Zurigat, et al., 2010; Cang, et al., 2009; Zurigat, et al., 2010). 

It is only a simple modification of HAM and this can ensure the validity of the 
approximant solution for a large interval. To overcome the shortcoming of HAM we present 
(MHAM) that we have developed for the numerical solution of the system of fractional 
differential equations. 

 
𝐷𝛼1𝑆ℎ(𝑡)  = 𝒰𝑛𝑁ℎ − 𝛽ℎ𝑆ℎ(𝑡)𝐼𝑣(𝑡) − 𝛼ℎ𝑆ℎ(𝑡) 

𝐷𝛼2𝐼ℎ(𝑡) = )()()()()( tItItItItS hhhhhhvhh    

𝐷𝛼3𝑅ℎ(𝑡) = 𝛾ℎ𝐼ℎ(𝑡) − 𝛼𝑛𝑅ℎ(𝑡) 

𝐷𝛼4𝑆𝑣(𝑡) = 𝒰𝑣𝑁𝑣 − 𝛽𝑣𝑆𝑣(𝑡)𝐼ℎ(𝑡) − 𝛼𝑣𝑆𝑣(𝑡) 
𝐷𝛼5𝐼𝑣(𝑡) = 𝛽𝑣𝑆𝑣(𝑡)𝐼ℎ(𝑡) − 𝛼𝑣𝐼(𝑡)               (2) 
 
To expand the solution over the interval [0, 𝑡], we subdivide the interval [0, 𝑡] into 𝑛 subintervals 
of equal length: 
 

𝛥𝑡, [𝑡0, 𝑡1), [𝑡1, 𝑡2], [𝑡2, 𝑡3), [𝑡3, 𝑡4) … … … … … … [𝑡𝑛−1, 𝑡𝑛) 
with 𝑡0 = 0, and 𝑡𝑛 = 𝑡 
 

We let 𝑡∗ be the initial value for each subinterval [𝑡𝑗−1, 𝑡𝑗];   𝑗 = 1,2, ⋯ 𝑛 with initial guesses: 

 

𝑆ℎ1
(𝑡) = 3, 𝑆(ℎ,𝑗)(𝑡∗) = 𝑆ℎ,𝑗(𝑡𝑗−1) = 𝑆ℎ𝑗−1(𝑡𝑗−1) 

𝐼ℎ2
(𝑡∗) = 1, 𝐼ℎ,𝑗(𝑡∗) = 𝑖ℎ,𝑗(𝑡𝑗−1) = 𝑖ℎ𝑗−1(𝑡𝑗 − 1) 

   𝑅3(𝑡∗) = 1, 𝑅ℎ,𝑗(𝑡∗) = 𝑟, 𝑗(𝑡𝑗−1) = 𝑟𝑗−1(𝑡𝑗−1) 

        𝑆𝑣4(𝑡∗) = 1 𝑆(𝑣,𝑗)(𝑡∗) = 𝑆𝑣,𝑗(𝑡𝑗−1) = 𝑆𝑣𝑗−1(𝑡𝑗−1)                         (3)                                                

𝐼𝑣5(𝑡∗) = 1 𝐼(𝑣,𝑗)(𝑡∗) = 𝑖𝑣,𝑗(𝑡𝑗−1) = 𝑖𝑣𝑗−1(𝑡𝑗−1) 

 
Now, we constructed the Zeroth order transformation of the model equation (1): 

(1 − 𝑝)[𝜙1,𝑗(𝑡; 𝑝) − 𝑆ℎ𝑗(𝑡∗)] = 𝑝ℎ [𝐷𝛼1
1 𝑗

(𝑡; 𝑝) − 𝒰𝑛𝑁𝑛 + 𝛽ℎ𝜙1,𝑗(𝑡; 𝑝)𝜙5,𝑗(𝑡, 𝑝) + 𝛼ℎ𝜙1,𝑗(𝑡; 𝑝)] 

(1 − 𝑝)[𝜙2,𝑗(𝑡; 𝑝) − 𝐼ℎ𝑗(𝑡∗)] = h [𝐷𝛼2𝜙2,𝑗)(𝑡; 𝑝) − 𝛽ℎ𝜙1,𝑗(𝑡; 𝑝)(𝑡; 𝑝)𝜙5,𝑗(𝑡, 𝑝)+𝛿ℎ𝜙2,𝑗(𝑡; 𝑝) 

+𝛾ℎ𝜙2,𝑗(𝑡, 𝑝) + 𝛼ℎ𝜙2,𝑗(𝑡, 𝑝)] 

(1 − 𝑝)𝐿[𝜙3,𝑗(𝑡; 𝑝) − 𝑅ℎ(𝑡∗)] = 𝑝ℎ[𝐷𝛼3𝜙3,𝑗(𝑡; 𝑝) − 𝛾ℎ𝜙2,𝑗(𝑡, 𝑝) + jh ,3 (𝑡, 𝑝)] 
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(1 − 𝑝)𝐿(𝜙4,𝑗(𝑡; 𝑝) − 𝑆𝑣(𝑡∗)]

= 𝑝ℎ[𝐷𝛼4𝜙4,𝑗 (𝑡, 𝑝)] − 𝒰𝑣𝑁𝑣 + 𝛽𝑣𝜙4,𝑗(𝑡, 𝑝)𝜙2,𝑗(𝑡, 𝑝) − 𝛼𝑣(𝜙4,𝑗(𝑡; 𝑝)] 

 

(1 − 𝑝)𝐿[𝜙5,𝑗(𝑡; 𝑝) − 𝐼𝑣(𝑡∗)] =  𝑝ℎ[𝐷𝛼5𝜙5,𝑗(𝑡, 𝑝) − 𝛽𝑣𝜙4,𝑗(𝑡; 𝑝)𝜙2,𝑗(𝑡, 𝑝) + 𝛼𝑣𝜙5,𝑗(𝑡, 𝑝)] 

 
Where 𝑝 ∈ [0,1] is an embedding parameter, 𝐿 is an auxiliary linear operator, ℎ ≠ 0 , is an 
auxiliary parameter and 𝜙𝑖,𝑗(𝑡, 𝑝), 𝑖 = 1,2,3,4,5, 𝑗 = 1,2,3, ⋯ 𝑛 are unidentified function. When  

𝑝 = 0, we  have: 
 

𝜙1,1(𝑡; 0) = 3, 𝜙1,𝑗(𝑡; 0) = 𝑆ℎ𝑗−1
(𝑡𝑗−1), 

𝜙2,1(𝑡; 0) = 1, 𝜙2,𝑗(𝑡; 0) = 𝐼ℎ𝑗−1
(𝑡𝑗−1), 

𝜙3,1(𝑡; 0) = 1, 𝜙3,𝑗(𝑡; 0) = 𝑅ℎ𝑗−1
(𝑡𝑗−1), 𝑗 = 1,2, ⋯ 𝑛 

𝜙4,1(𝑡; 0) = 1, 𝜙4,𝑗(𝑡; 0) = 𝑆𝑣𝑗−1
(𝑡𝑗−1),  

𝜙5,1(𝑡; 0) = 1, 𝜙5,𝑗(𝑡; 0) = 𝐼𝑣𝑗−1
(𝑡𝑗−1), 

 
And when  𝑝 = 1, we obtain: 
 

𝜙1,𝑗(𝑡; 0) = 𝑆ℎ𝑗
(𝑡𝑗), 

𝜙2,𝑗(𝑡; 0) = 𝐼ℎ𝑗
(𝑡𝑗), 

𝜙3,𝑗(𝑡; 0) = 𝑅ℎ𝑗
(𝑡𝑗), 

                                     𝜙4,𝑗(𝑡; 0) = 𝑆𝑣𝑗
(𝑡𝑗),                 𝑗 = 1,2, ⋯ 𝑛. 

𝜙5,𝑗(𝑡; 0) = 𝐼𝑣𝑗
(𝑡𝑗) 

 
Expanding 𝜙𝑖,𝑗(𝑡; 𝑝), 𝑖 = 1,2,3,4,5 and 𝑗 = 1,2,3, ⋯ 𝑛  using Taylor’s series expansion with 

respect to 𝑝, we obtain: 

𝜙1,𝑗(𝑡; 𝑝) = 𝑆ℎ𝑗
(𝑡∗) + ∑ 𝑆ℎ𝑗,𝑚

∞

𝑚=1

(𝑡)𝑃𝑚 

𝜙2,𝑗(𝑡; 𝑝) = 𝐼ℎ𝑗
(𝑡∗) + ∑ 𝐼ℎ𝑗,𝑚

∞

𝑚=1

(𝑡)𝑃𝑚 

𝜙3,𝑗(𝑡; 𝑝) = 𝑅ℎ𝑗
(𝑡∗) + ∑ 𝑅ℎ𝑗,𝑚

∞

𝑚=1

(𝑡)𝑃𝑚 

𝜙4,𝑗(𝑡; 𝑝) = 𝑆𝑣𝑗
(𝑡∗) + ∑ 𝑆𝑣𝑗,𝑚

∞

𝑚=1

(𝑡)𝑃𝑚𝑗 = 1,2, ⋯ 𝑛. 

𝜙5,𝑗(𝑡; 𝑝) = 𝐼𝑣𝑗
(𝑡∗) + ∑ 𝐼𝑣𝑗,𝑚

∞
𝑚=1 (𝑡)𝑃𝑚 

           Where 

𝑆ℎ𝑗,𝑚(𝑡) =  
1

𝑚!

𝜕𝑚𝜙1,𝑗(𝑡, 𝑝)

𝜕𝑝𝑚
|𝑝 = 0    𝑗 = 1,2, ⋯ 𝑛 

𝐼ℎ𝑗,𝑚(𝑡) =  
1

𝑚!

𝜕𝑚𝜙2,𝑗(𝑡, 𝑝)

𝜕𝑝𝑚
|𝑝 = 0 

𝑅ℎ𝑗,𝑚(𝑡) =  
1

𝑚!

𝜕𝑚𝜙3,𝑗(𝑡, 𝑝)

𝜕𝑝𝑚
|𝑝 = 0 

𝑆𝑣𝑗,𝑚(𝑡) =  
1

𝑚!

𝜕𝑚𝜙4,𝑗(𝑡,𝑝)

𝜕𝑝𝑚 |𝑝 = 0 

𝐼𝑣𝑗,𝑚(𝑡) =  
1

𝑚!

𝜕𝑚𝜙5,𝑗(𝑡, 𝑝)

𝜕𝑝𝑚
|𝑝 = 0 

 

(4) 

(5) 

(6) 
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If the auxiliary linear operator 𝐿 together with the initial guesses 
𝑆ℎ𝑗

(𝑡∗), 𝐼ℎ𝑗
(𝑡∗), 𝑅ℎ𝑗

(𝑡∗), 𝑆𝑣ℎ
, 𝐼𝑣𝑗

(𝑡∗) and the nonzero auxiliary parameter ℎ are power series 

selected in order that the power series (1) converges at 𝑝 = 1, we obtain: 

𝑆ℎ𝑗
(𝑡) =  𝜙1,𝑗(𝑡; 1) = 𝑆ℎ𝑗

(𝑡∗) + ∑ 𝑆ℎ𝑗,𝑚

∞

𝑚=1

(𝑡) 

𝐼ℎ𝑗
(𝑡) = 𝜙2,𝑗(𝑡; 1) = 𝐼ℎ𝑗

(𝑡∗) + ∑ 𝐼ℎ𝑗,𝑚

∞

𝑚=1

(𝑡) 

𝑅ℎ𝑗
(𝑡) = 𝜙3,𝑗(𝑡; 1) = 𝑅ℎ𝑗

(𝑡∗) + ∑ 𝑅ℎ𝑗,𝑚

∞

𝑚=1

(𝑡) 

𝑆𝑣𝑗
(𝑡) =  𝜙4,𝑗(𝑡; 1) = 𝑆𝑣𝑗

(𝑡∗) + ∑ 𝑆𝑣𝑗,𝑚

∞

𝑚=1

(𝑡) 

𝐼𝑣𝑗
(𝑡) = 𝜙5,𝑗(𝑡; 1) = 𝐼𝑣𝑗

(𝑡∗) + ∑ 𝐼𝑣𝑗,𝑚

∞
𝑚=1 (𝑡) 

 
Define the vectors: 

𝑆ℎ𝑗,𝑚
(𝑡) = {𝑆ℎ𝑗,0

(𝑡), 𝑆ℎ𝑗,1
(𝑡) ⋯ 𝑆ℎ𝑗,𝑚

(𝑡)} 

𝐼ℎ𝑗,𝑚
(𝑡) = {𝐼ℎ𝑗,0

(𝑡), 𝐼ℎ𝑗,1
(𝑡) ⋯ 𝐼ℎ𝑗,𝑚

(𝑡)} 

𝑅⃗⃗ℎ𝑗,𝑚
(𝑡) = {𝑅ℎ𝑗,0

(𝑡), 𝑅ℎ𝑗,1
(𝑡) ⋯ 𝑅ℎ𝑗,𝑚

(𝑡)} 

 

𝑆𝑣𝑗,𝑚
(𝑡) = {𝑆𝑣𝑗,0

(𝑡), 𝑆𝑣𝑗,1
(𝑡) ⋯ 𝑆𝑣𝑗,𝑚

(𝑡)} 

𝐼𝑣𝑗,𝑚
(𝑡) = {𝐼𝑣𝑗,0

(𝑡), 𝐼𝑣𝑗,1
(𝑡) ⋯ 𝐼ℎ𝑗,𝑚

(𝑡)} 

 
Differentiating the zero-order definition in (3) m times with regard to 𝑝 then putting 𝑝 = 0 and 

partitioning them by 𝑚!. Finally using (6) we obtain the higher order definition equations: 
 

𝐿 [𝑆ℎ𝑗,𝑚
(𝑡) − 𝑋𝑚𝑆ℎ𝑗,𝑚−1

(𝑡)] = h ℝ𝑗,𝑚
′ (𝑆ℎ𝑗,𝑚−1

(𝑡)), 

𝐿 [𝐼ℎ𝑗,𝑚
(𝑡) − 𝑋𝑚𝐼ℎ𝑗,𝑚−1

(𝑡)] = h ℝ𝑗,𝑚
2 (𝐼ℎ𝑗,𝑚−1

(𝑡)), 

𝐿 [𝑅ℎ𝑗,𝑚
(𝑡) − 𝑋𝑚𝑅ℎ𝑗,𝑚−1

(𝑡)] = h ℝ𝑗,𝑚
3 (𝑅⃗⃗ℎ𝑗,𝑚−1

(𝑡)), 

𝐿 [𝑆𝑣𝑗,𝑚
(𝑡) − 𝑋𝑚𝑆𝑣𝑗,𝑚−1

(𝑡)] = h ℝ𝑗,𝑚
4 (𝑆𝑣𝑗,𝑚−1

(𝑡)),        (9)

  

𝐿 [𝐼𝑣𝑗,𝑚
(𝑡) − 𝑋𝑚𝐼𝑣𝑗,𝑚−1

(𝑡)] = h ℝ𝑗,𝑚
5 (𝐼ℎ𝑗,𝑚−1

(𝑡)), (10) 

 
 
 
Subject to the initial condition: 
 
𝑆ℎ𝑗,𝑚

(0) = 𝐼ℎ𝑗,𝑚
(0) = 𝑅ℎ𝑗,𝑚

(0) = 𝑆𝑣𝑗,𝑚
(0) = 𝐼𝑣𝑗,𝑚

(0) = 0                (11)

  
𝑗 = 1,2, ⋯ 𝑛,   𝑚 = 1,2, ⋯ 𝑛 
 
Where 
 

ℝ𝑗,𝑚
1 = (𝑆ℎ𝑗,𝑚−1

(𝑡)) =𝐷𝛼1𝑆ℎ𝑗,𝑚−1
(𝑡) + 𝛽ℎ ∑ 𝑆ℎ𝑗,𝑖

(𝑡)𝐼𝑣𝑗,𝑚−𝑖−1

𝑚−1
𝑖=0 − 𝒰ℎ𝑁ℎ + 𝛼ℎ𝑆ℎ𝑗,𝑚−1

(𝑡) 

(7) 

(8) 
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ℝ𝑗,𝑚
2 = (𝐼ℎ𝑗,𝑚−1

(𝑡)) = 𝐷𝛼2𝐼ℎ𝑗,𝑚−1
(𝑡) − 𝛽ℎ ∑ 𝑆ℎ𝑗,𝑖

(𝑡)𝐼𝑣𝑗,𝑚−𝑖−1
(𝑡)

𝑚−1

𝑖=0

+ 𝛿ℎ𝐼ℎ𝑗𝑚−1
(𝑡) 

+ 𝛾ℎ𝐼ℎ𝑗,𝑚−1
(𝑡) + 𝛼ℎ𝐼ℎ𝑗,𝑚−1

(𝑡) 

ℝ𝑗,𝑚
3 = (𝑅ℎ𝑗,𝑚−1

(𝑡)) = 𝐷𝛼3𝑅ℎ𝑗,𝑚−1
(𝑡) − 𝛾ℎ𝐼ℎ𝑗,𝑚−1

(𝑡) + 𝛼ℎ𝑅ℎ𝑗,𝑚−1
(𝑡) 

ℝ𝑗,𝑚
4 = (𝑆𝑣𝑗,𝑚−1

(𝑡)) = 𝐷𝛼4𝑆𝑣𝑗,𝑚−1
(𝑡) − 𝒰𝑣𝑁𝑣 + 𝛽𝑣 ∑ 𝑆𝑣𝑗,𝑖

(𝑡)𝐼ℎ𝑗,𝑚−𝑖−1

𝑚−1

𝑖=0

(𝑡) + 𝛼𝑣𝑆𝑣𝑗𝑚−1
(𝑡) 

ℝ𝑗,𝑚
5 = (𝐼𝑣𝑗,𝑚−1

(𝑡)) = 𝐷𝛼5𝐼𝑣𝑗,𝑚−1
(𝑡) − 𝛽𝑣 ∑ 𝑆𝑣𝑗,𝑖

(𝑡)𝐼ℎ𝑗,𝑚−𝑖−1

𝑚−1
𝑖=0 (𝑡) + 𝛼𝑣𝐼𝑣𝑗,𝑚−1

(t) (12) 

 
Where  
 

𝑋𝑚 =












11

10

m

m

 

 

Selecting  the linear operator 𝐿 = 𝐷𝛼𝑖  , 𝑖 = 1,2,3, ⋯ 𝑛 then, the  𝑚𝑡ℎ - order deformation in (7) 
can be written in the form: 

𝑆ℎ𝑗,𝑚
(𝑡) = 𝑋𝑚𝑆ℎ𝑗,𝑚−1

(𝑡) + ℎ𝐽𝛼1  [ℝ𝑗,𝑚
1  (𝑆ℎ𝑗,𝑚−1

)]  , 

𝐼ℎ𝑗,𝑚
(𝑡) = 𝑋𝑚𝐼ℎ𝑗,𝑚−1

(𝐼𝑡) + ℎ𝐽𝛼2  [ℝ𝑗,𝑚
2  (𝐼ℎ𝑗,𝑚−1

)]  , 

𝑅ℎ𝑗,𝑚
(𝑡) = 𝑋𝑚𝑅ℎ𝑗,𝑚−1

(𝑡) + ℎ𝐽𝛼3 [ℝ𝑗,𝑚
3 (𝑅⃗⃗ℎ𝑗,𝑚−1

)]  , 

𝑆𝑣𝑗,𝑚
(𝑡) = 𝑋𝑚𝑆𝑣𝑗,𝑚−1

(𝑡) + ℎ𝐽𝛼4 [ℝ𝑗,𝑚
4 (𝑆𝑣𝑗,𝑚−1

)] , 

𝐼𝑣𝑗,𝑚
(𝑡) = 𝑋𝑚𝐼𝑣𝑗,𝑚−1

(𝑡) + ℎ𝐽𝛼5  [ℝ𝑗,𝑚
5  (𝐼𝑣𝑗,𝑚−1

)] 

 
 
The solutions of system (2) in every  subinterval [𝑡𝑗−1, 𝑡𝑗], 𝑗 = 1,2,3, ⋯ 𝑛  has the structure : 

𝑠ℎ𝑗
(𝑡) = ∑ 𝑆ℎ𝑗,𝑚

(𝑡 − 𝑡𝑗−1 )

∞

𝑚=0

 

𝑖ℎ𝑗
(𝑡) = ∑ 𝐼ℎ𝑗,𝑚

(𝑡 − 𝑡𝑗−1)𝑗 = 1,2, ⋯ 𝑛

∞

𝑚=0

 

𝑟ℎ𝑗
(𝑡) = ∑ 𝑅ℎ𝑗,𝑚

(𝑡 − 𝑡𝑗−1)

∞

𝑚=0

 

𝑠𝑣𝑗
(𝑡) = ∑ 𝑆𝑣𝑗,m

(t − tj−1 )

∞

𝑚=0

 

                                                                       Ivj
(t) = ∑ Ivj,m

(t − tj−1 )∞
m=0  

 

                                    and the solution of the system (6) for [0, T] as: 
 

Shj
(t) = ∑ shj,m

(t − tj−1 )

∞

m=0

 

                  Ihj
(t) = ∑ ihj,m

(t − tj−1)    j = 1,2, ⋯ n

∞

m=0

 

(13) 

(14) 
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Rhj
(t) = ∑ rhj,m

(t − tj−1)

∞

m=0

 

Svj
(t) = ∑ svj,m

(t − tj−1 )

∞

m=0

 

                                                                       Ivj
(t) = ∑ Ivj,m

(t − tj−1 )∞
m=0  

 
 
Where 



















],[,1

],[,0

1

1

jj

jj

p

ttt

ttt

X  

 
 
 
Results and Discussion 
 
Numerical Simulation and Graphical Illustration of the Model 
 
We present the numerical simulation which demonstrate the analytical results for the model. 
This is achieved by using some set of parameter values. The MHAM provides approximate 
solutions to linear as well as nonlinear differential equations. We choose the auxiliary 

parameter h= -1 and partition the interval [0, 25] into subintervals with step size 1.0t   and 

thereafter we obtain HAM series solutions of order k=5 at every subintervals. We also employ 
MHAM algorithm constructed on the interval [0, 30]. The MHAM is demonstrated against maple 
in-buit fourth order Runge-Kutta procedure for the solution of the model. We take into 

consideration the following set of parameters values h =0.1, h =0.4, v =0.2 h =40, h =1, 

h =1, v =0.4, v =0.1 

Figure 1 to Figure 5 show the combined plots of the solutions of Sh, Ih, Rh, Sv and Iv by MHAM 
and RK4. 

 
Figure 1. Solution of Susceptible Human Population by MHAM and RK4. 

 

(15) 
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Figure 2. Solution of Infected Human Population by MHAM and RK4. 

 
 
 
 

 
 

Figure 3. Solution of Recovered Human Population by MHAM and RK4. 
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Figure 4. Solution of Susceptible Mosquitoes  Population by MHAM and RK4. 

 

 
Figure 5. Solution of Infected Mosquitoes  Population by MHAM and RK4. 

 
 
Conclusion 
 
In this paper, a fractional order differential Sh, Ih, Rh, Sv, Iv model is studied and its approximate 
solution is presented using a MHAM. The approximate solutions obtained by MHAM are highly 
accurate and valid for a long time. The reliability of the method and the reduction in the size of 
computational domain gives impetus of broad applicability. The comparison between MHAM 
and Runge-Kutta (RK4) were performed which were found to be efficient, accurate and rapidly 
convergence. 
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