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ABSTRACT 

The problem of mixed convective magnetohydrodynamics micropolar boundary layer past a stretching sheet with heat generation 

was presented in   rectangular form. The partial differential equations formulated are transformed into nonlinear ordinary 

differential equations using the stream functions and appropriate similarity variables. The solution to the nonlinear coupled 

ordinary differential equations is presented via decomposition method. The results are validated with the literatures and there is 

an agreement. The effects of dimensionless physical parameters which occur in the presented results are graphically studied in 

the absence of microstructural slip. The micro rotation is found to be a reducing agent of thermal and mass Grashof numbers 

while the fluid is an increasing agent due to the increase in the temperature which resulted in reduction of the viscousity. 

 

Keywords: Micropolar, Heat generation, Magnetohydrodynamics, Decomposition method, Boundary layer. 

 

INTRODUCTION 

Eringen (1972) extend the theory of micropolar fluids by 

considering the thermomicropolar fluids. Ebert (1973) 

studied the similarity solution of boundary layer flow close 

to a stagnation point for micropolar fluids.Micropolar fluids 

belong to the class of fluids which exhibit some certain 

microscopic effects arising from the motion of the micro 

elements. These class of fluid can be non-Newtonian due to 

the fact that they contain micro-constituents that can 

undergo rotation which can interfere with the 

hydrodynamics. Aiyesimi et al. (2013) studied 

hydromagnertic boundary micropolar fluid flow over a 

stretching surface embedded in a non-Dacian medium with 

variable permeability and it was observed that the magnetic 

parameter and the inverse Darcy number are reduction 

agent of the fluid velocity. Karwe and Jaluria (1988) works 

on mixed convection on micropolar fluids past a flat, wavy 

surface has been considered by a number of researcher due 

to significant of heat transfer on the flow of micropolar 

fluids.  

 

Si et al. (2017) presented the effect of slip-velocity on the 

flow of magnetohydrodynamics non-Newtonian fluid over 

a moving surface. The most important aspect of 

microsystem such as nozzles, micro-pump and hard disc 

are slip flows. They depicted that temperature -Jump and 

velocity slip boundary condition can cause the earlier flow 

to transit from laminar to turbulent. Hosseini et al. (2017) 

numerically studied the Heat transfer and boundary layer 

unsteady flow in the presence of velocity slip over a porous 

extending surface. He and Cai (2017) presented the entire 

effects of slip velocity and temperature Jump on flow of a 

boundary layer to a flat surface. Daniel et al. (2017) 

theoretically analyzed the slip effect on MHD nanofluid 

flow over a stretching/shrinking sheet. In their first 

solutions, the velocity, thermal and solutal boundary layer 

thickness is lower than that of the second solutions, and the 

first solution is more robust relative to the second solution. 

They also found that heat and mass convective boundary 

conditions are improved by temperature and nanoparticle 

concentration distributions. Heat transmission in 

magnetized Newtonian nanoliquids between vertical 

cylinders was presented by Mebarek-Oudina et al. (2017). 

They claimed that with the growth of porosity, nanoparticle 

concentration, Rayleigh number, Darcy number, and length 

of the source, the transferred thermal flux in laminar natural 

convection increases significantly. A theoretical analysis on 

heat transfer in MHD mixed convective micropolar fluid 

flow with velocity slip conditions was presented by 

Mahmoud and Waheed (2010). 

Several Researchers such as Bolarin et al. (2019), Suleiman 

and Yusuf (2020), Yusuf et al. (2021a), Yusuf et al. 

(2021b), have all demonstrated in their work the reliability 

of the Decomposition method in solving boundary layer 

problems.    

The use of decomposition method to study mixed 

convective magnetohydrodynamics micropolar boundary 

layer flow past a stretching sheet with heat generation is a 

new advancement in the literature.   
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PROBLEM FORMULATION AND SOLUTION 

Consider steady, laminar and boundary layer flow of a 

micropolar fluid past a stretching sheet with a second order 

and microstructural slip condition. The micropolar fluid has 

a stretching velocity of su ax where a is a constant rate 

of the stretching velocity. Neglecting the slip conditions, 

following the work of Dawar et al. (2021) with heat 

generation and convective boundary condition, the model 

formulations are: 
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The corresponding boundary conditions are: 

,   0,   T=T ,   0,     at  0

0,    0,   ,as  0

s s su u ax v N C C y

u N T y

      


    
                                                                 (6) 

Where x and y  are coordinate along velocity u and v  

respectively, a stretching constant, A B Slip constant, B0 

magnetic field, C fluid concentration, C concentration at 

free stream, sC concentration near surface, pc specific 

heat, 1 2     D and D constants, BD Brownian diffusion, 

TD thermopheric diffusion, Ec Eckert number, j micro 

inertia density, k thermal conductivity, k1 chemical 

reaction, k1reaction, T temperature, T temperature at free 

stream, sT temperature near the surface, Q heat generation, 

 dynamic viscosity,  heat capacity ratio,  votex 

viscosity,   electrical conductivity, 
*  Stefan 

Boltzmann constant,  kinematic viscousity,  density.  

Equations, (1) to (6) are transformed using the following 

similarity transformation: 

   , , , ,
a a

a xf u v N ax g y
y x
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Where , , , ,f g    are the dimensionless fluid distance, velocity, micro-rotation, temperature, and concentration.            

The continuity equation in (1) is satisfied on introducing the transformation in (7) and (8), while equation (2) to (6) becomes: 
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Corresponding to:  

Micro polar parameter, magnetic field, thermal Grashof 

number, mass Grashof number, radiation parameter, Eckert 

number, Prandtl number, Heat generation parameter, 

thermophoresis parameter, Brownian motion, chemical 

reaction parameter, Schmidt number respectively. 

In other to solve the problem in equation (9), the method of 

Decomposition is introduced with the decomposed equation

: 
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Maple 17 software is used to carry out the integrals in equation (10) and the initial guesses are assumed to be:  
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The final solutions are given as 
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RESULTS AND DISCUSSION 

The nonlinear coupled ordinary differential equations with 

corresponding boundary conditions in equation (9) are 

solved using the Adomian Decomposition method to obtain 

the solution. The results obtained are compared with the 

existing literature and a good agreement is observed as seen 

in Table 1.  

Table 1: Comparison of Skin friction (  / / 0f ) with slip parameter ( ) when 1 2 0M       

    Ibrahim (2016)   Khan et al. (2020)   Dawar et al.(2021)   

Present 

result 

0 

 

1 

 

1 

 

1 

 

1 

0.1 

 

0.872082 

 

0.8719 

 

0.87209 

 

0.8735 

0.2 

 

0.776377 

 

0.7762 

 

0.77638 

 

0.7973 

0.3 

 

0.701548 

 

0.7014 

 

0.70155 

 

0.7309 

0.5 

 

0.591196 

 

0.5922 

 

0.5912 

 

0.5981 

1 

 

0.43016 

 

0.4301 

 

0.43017 

 

0.4994 

2 

 

0.28398 

 

0.284 

 

0.28399 

 

0.2613 

3 

 

0.214055 

 

0.214 

 

0.21406 

 

0.2706 

5 

 

0.144841 

 

0.1448 

 

0.14485 

 

0.1378 

10 

 

0.081243 

 

0.0812 

 

0.08124 

 

0.0788 

20   0.04379   0.0438   0.04379   0.0431 

 

Figures 1 to 4 is the graphical presentation of the variation 

of micropolar parameter on fluid velocity, micro rotation, 

temperature and concentration respectively. As the micro 

rotation parameter increases, the fluid velocity, temperature 

and concentration get boosted while the micro rotation 

dropped. 

Figures 5 to 8 depict the implication of thermal Grashof 

number on fluid velocity, micro rotation, temperature and 

concentration profiles respectively. Grashof number which 

is the ratio of buoyancy to viscous force is found to 

enhance the fluid velocity temperature and concentration 

but decrease the micro rotation. Increase in temperature 

leads to decrease in the fluid viscousity and when the fluid 

viscousity dropped, the fluid velocity thickens. 
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Figures 9 to 12 shows the variation of mass Grashof 

number to fluid velocity, micro rotation, temperature and 

concentration respectively. The same effects as in the case 

of thermal Grashof number are observed.  

Figures 13 to 16 present the variation of magnetic 

parameter on fluid velocity, micro rotation, temperature 

and concentration. As the magnetic parameter increases the 

fluid velocity decreases, while the micro rotation, 

temperature and concentration all rises. The magnetic 

parameter produces a drag like force which causes the 

velocity to shrink as it gets boosted. 

Figure 17 present the variation of Prandtl number on 

temperature distributions. Prandtl number is the ratio of 

momentum diffusion to heat diffusion in the fluid. For 

higher values of Prandtl number, the fluid temperature 

drops. Figure 18 displays the distribution of heat generation 

parameter on temperature profile and is seen that as the 

parameter increases from negative to positive, the fluid 

temperature is boosted. The negativity shows absorption 

while the positivity signifies generation. Figure 19 show 

the distribution of Eckert number on temperature profile. 

The Eckert number is found to be an increasing agent of the 

fluid temperature. Figure 20 present the variation of 

Schimdt number on concentration profile. As the schimdt 

number increases, the concentration of the fluid reduces. 

 

  

      Figure 1: Variation of   on 
/f               Figure 2: Variation of   on g  

 

  

    Figure 3: Variation of   on                   Figure 4: Variation of   on   
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                  Figure 5: Variation of 1  on 
/f                   Figure 6: Variation of 1  on g  

  

                Figure 7: Variation of 1   on                                       Figure 8: Variation of 1   on   

 

                 Figure 9: Variation of 2  on 
/f            Figure 10: Variation of 2  on g  
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              Figure 11: Variation of 2   on                   Figure 12: Variation of 2   on   

 

 

Figure 13: Variation of M on 
/f          Figure 14: Variation of M  on g  

 

  

                 Figure 15: Variation of M   on                  Figure 16: Variation of M   on   
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         Figure 17: Variation of Pr   on             Figure 18: Variation of  Q   on   

 

Figure 19: Variation of Ec   on        Figure 20: Variation of  Sc   on   

CONCLUSION 

This present work extended the work of Dawar et al. 

(2021) by introducing the heat generation and neglecting 

the slip parameter. The formulated problems were solved 

using decomposition method and the results obtained were 

compared with literature as presented in Table 1. These 

results show an agreement between the present work and 

the literature. The work is hereby concluded with the 

following observations: 

1. The maximum velocity on the sheet surface remains 

constant due to the fact that the slip condition was 

neglected. 

2. The micro rotation is zero on the sheet surface 

irrespective of the parameter vary. 

3. The graphs presented in this work all satisfy both the 

initial and the boundary conditions. 

4. The fluid velocity, micro rotation, temperature, and 

mass concentration all decayed to zero at free stream. 
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