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ABSTRACT 

In this work, a fourth order ODE of the form  is transformed into a system of differential 

equations, that is suitable for solution by means of Numerov method. The obtained solutions are compared 

with the exact solutions, and are shown to be very effective in solving both initial and boundary value 

problems in ordinary differential equations.     
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INTRODUCTION 

A most preferred method in industry and other applications for numerically solving ordinary differential equations (ODE) is 

the classical Runge-Kutta method (RK4). However, when the differential equation does not include a first order term, the 

Numerov method comes to mind, as it is more accurate than the RK4 by an order. More so, a great many general second 

order ODEs can be transformed into one without a first order term, the solution of which can be obtained via the Numerov 

method, which requires less computational complexity, thereby being easier to program. The Nemerov’s method, a fourth-

order implicit linear multistep method (LMM), is a numerical method for solving second order ordinary differential 

equations wherein the first-order term is missing; that is, 

 

The method takes the form  

 

Suppose  is linear in , then by letting , the method (2) reduces to the explicit form 

 

 

In terms of efficiency, the Numerov method is the most preferred method when compared to the Runge-Kutta method, in 

that with just one evaluation of  and  per step a local error of  is obtained, as against the Runge-Kutta method 

that requires six function evaluations per step to attain a local error of . More so, it is computationally easier for both 

the computer and the programmer. Accuracy wise, the Numerov method is an order more accurate than the fourth order 

Runge-Kutta method (Salzman, 2001). 

The Numerov method is a popular algorithm that is widely used in physics and engineering. Particular examples of 

application of this method in numerical physics can be found in the solution of Schrodinger’s one-dimensional time 

independent equation (Bennett, 2015). 
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This is a typical example of an equation of type (1).  Another example is the equation of motion of an undamped forced 

harmonic oscillator, 

  

A comparison of the shooting and the matrix diagonalization forms of the finite difference method for the Schrodinger 

equation leads to an order doubling principle which produces an eigenvalue estimate of 8th order from the traditional 

Numerov method. 

 

Several studies have made substantial contributions to the improvement or modfication of Numerov method; for example, 

Killingbeck and Jolicard (1999) introduced an order doubling principle which produces an eigenvalue estimate of 8th order 

from the traditional Numerov method by comparing the shooting and the matrix diagonalization forms of the finite 

difference method for the Schrodinger equation. Vigo-Aguiar and Ramos (2005) developed a variable-step Numerov method 

for the numerical solution of the Schrodinger equation. This method needs fewer evaluations of the potential than the 

classical Numerov method of fixed stepsize. Dongjiao (2014) recast the generalized version of the Numerov method into the 

Generalized Matrix Numerov Method based on the algorithm of the existing Basic Matrix Numerov Method. The 

Generalized Matrix Numerov Method is capable of producing results to any desired accuracy. Adeboye et al. (2018) 

proposed a convergent iterative process modification of the Numerov method. The new algorithm is applicable to the 

solution of second order initial value problems, including those with periodic solutions.  Tsitouras and Simos (2018) 

proposed a new family of effectively nine stages, ninth-order hybrid explicit Numerov-type methods for solving some 

special second order initial value problem. By having a reduced set of order conditions, they derived an optimal constant 

coefficients method along with a similar kind of method with reduced phase errors. Yasser and Nahool (2018) transformed 

the Numerov method into a representation of matrix form to solve Schrodinger equation. The validity of the new method 

(Matrix Numerov Method) was tested by applying it to calculate spectra of bottomonium. The obtained results were 

compared with the experimental observed masses and theoretically predicted results. The obtained results were found to be 

in good agreement with the experimental results. Afolayan et al. (2019) considered the classical four-stage family of explicit 

sixth-order Numerov-type method. Two kinds of interpolants were provided: (i) a three-step interpolation based on all 

available data at mesh points and (ii) a local interpolant (i.e. two steps) that is constructed after solving scaled equations of 

condition. Application of these interpolants in a set of tests produced global errors of the same magnitude with the 

underlying method.  Simos and Tsitouras (2020) proposed a new low cost two-step hybrid Numerov-type method for solving 

inhomogeneous linear initial value problems with constant coefficients. By solving a special set of order conditions, it 

became possible to save one stage (function evaluation) per step for this type of problems when compared with the best 

existed methods. The present work employs the Numerov method to solve numerically the fourth order differential equation 

.  

Definition 1 The first and second characteristic polynomials of a  linear multistep method are defined as  

 

and 

 

Respectively. 
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Definition 2 A linear multistep method is of order  if  and , where the 

term   is called the error constant,  is the truncation error at the 

point .  

Definition 3 A linear multistep method is said to be consistent if it is at least first-order. 

Definition 4 A linear multistep method is said to be zero-stable if as , the roots  of the first 

characteristic polynomial  satisfy , and for every  the multiplicity must be simple. 

Definition 5 A linear multistep method is convergent if and only if it is stable and consistent. 

MATERIALS AND METHODS 

Derivation of the Method 

Given the differential equation (1); in order to derive the Numerov method for solving this equation, we begin with the 

Taylor expansion of the function we want to solve,  at ,  based on the idea of Mohamed (1979) thus,  

 

where, 

 

and  

 

when  and  are substituted for  and  respectively. Thus, 

 

where the backward difference and the shift operators,   and , are defined respectively as  and 

. 

The following expansions 

 

 

results in expression of  as 

 

By truncating the above expression after the second difference term and substituting  for  results in  
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Equation (6) is now in form of the Numerov method (2) with the leading term of the local truncation error in the step from 

 to  expressed as  

 

 Thus, the global error is of order 4. 

Absolute Stability of the Numerov Method 

Following Lambert (1973), the locus of the boundary of the region of absolute stability is, 

 

where  and  defined by (6) and (7) are explicitly expressed by  and 

 respectively. Consequently, 

 

which makes the interval of the real axis to be the boundary of the region; and the extreme values (maximum and minimum) 

of the function  are the end points of the interval. Consequently, the interval of absolute stability is computed as 

. 

From the foregoing sections, it is evident that the Numerov method is shown to be consistent and stable, hence its 

convergence. 

Application of the Numerov Method to Solution of Fourth Order ODEs 

Two fourth order ordinary differential equations will be considered. The exact solutions of the differential equations will be 

obtained analytically and the absolute value difference between the exact and approximate solutions compared.  

Example 1 We consider the initial value problem: 

 

Suppose ;  then ;  . Then by implication, 

 

 

Equations (10) and (11) are second order ODEs wherein the first order terms are missing, thereby making them suitable for 

implementation by the Numerov method, respectively as follow. 

 

 

That is, 
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For application of the Numerov method (14), a two-step implicit method, the need arises to obtain two previous values of the 

solution,  and , in order to calculate a new one, . Now,  

 

 

From whence, 

 

 

 

 

The exact solution of the DE (6) is obtained thus, 

 

Thus, 

,        

 

,      

,        

Solving the above results in  

 

,  ,  

Consequently, 

,    , 

,      

with the resultant values for the constants as, 

 

And the exact solution is,  

 

Also,  

 

From the known boundary conditions, the following values are computed. 
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The above are the starting values necessary to implement the first iteration step (16) and (18), where the following results are 

obtained  

 and   

Subsequent iterations of (14) and (15) are performed and the computed solutions are compared with the exact solutions as 

shown in Table 1. 

Example 2 We consider the boundary value problem: 

 

The exact solution of (21) is obtained analytically as 

 

where, 

 

Similar to problem 1, equations (14), (15) and (18) are employed to solve this problem with the following starting values: 

. 

RESULTS AND DISCUSSION 

In order to verify numerically whether the proposed schemes are effective, the computations of the approximate numerical 

solutions of the two fourth order initial and boundary value problems of ordinary differential equations presented in 

Examples 1 and 2 are implemented using Maple 2019 software package and the results are presented in Tables 1 and 2. In 

the tables,  denotes the step number,  is the integration points,  represents the solutions of (15),  stands for 

exact solutions of (11),  is the approximate solution obtained from (14) and  is the exact solution of (9) or (21), as 

the case may be. 

 

Table 1 Absolute errors for Problem 1 

       

 

0 0 1 1 1 1.0 0 

1 0.1 1.105337668 1.105337668 1.105171001 1.105171001 0 

2 0.2 1.222738764 1.222738760 1.221405432 1.221405427 5E-09 

3 0.3 1.354379112 1.354379102 1.349879117 1.349879102 1.5E-08 

4 0.4 1.502577047 1.502577024 1.491910391 1.491910357 3.4E-08 

5 0.5 1.669816618 1.669816576 1.648983304 1.648983243 6.1E-08 

6 0.6 1.858772450 1.858772382 1.822772480 1.822772382 9.8E-08 

7 0.7 2.072336511 2.072336408 2.015169887 2.015169741 1.46E-07 

8 0.8 2.313647056 2.313646910 2.228313781 2.228313577 2.04E-07 

9 0.9 2.586120037 2.586119836 2.464620114 2.464619836 2.78E-07 

10 1.0 2.893483290 2.893483021 2.726816723 2.726816354 3.69E-07 

 

Table 2 Absolute errors for Problem 2 
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0 0 5.436563656 5.436563656 0 0 0 

1 0.1 4.819206222 4.819206222 0.0261322653 0.0261322653 0 

2 0.2 4.251081872 4.251081856 0.1004976204 0.1004975977 2.27E-08 

3 0.3 3.727505458 3.727505414 0.2174109175 0.2174108550 6.25E-08 

4 0.4 3.244237684 3.244237601 0.3716328597 0.3716327403 1.194E-07 

5 0.5 2.797442677 2.797442541 0.5583275727 0.5583273797 1.93E-07 

6 0.6 2.383649595 2.383649395 0.7730242137 0.7730239330 2.807E-07 

7 0.7 1.999717890 1.999717615 1.0115822350 1.0115818510 3.84E-07 

8 0.8 1.642805878 1.642805516 1.2701599510 1.2701594520 4.99E-07 

9 0.9 1.310342296 1.310341836 1.5451860990 1.5451854700 6.29E-07 

10 1.0 1.000000570 1.000000000 1.8333341050 1.8333333330 7.72E-07 

Table 1 depicts the results of applying the Numerov method to the fourth order ODE,  with the initial 

conditions taken at  so that the solution is 

. All necessary starting values are taken as exact. The approximate 

results compare quite favourably with the exact solutions as exhibited by the negligible errors. In Table 2, the differential 

equation,   with boundary conditions taken at  

is solved. Starting values for Numerov method is obtained from the exact solution. Similar to Table 1, the results are in close 

agreement with the exact solution.  

CONCLUSION 

The Numerov method, a two-step implicit linear multistep 

method for solving second order ordinary differential 

equations wherein the first order term is missing, has been 

employed to solve fourth order initial and boundary value 

problems in ordinary differential equations involving the 

second derivative. This has been achieved through a 

transformation of the original fourth order ordinary 

differential equation into a system of two coupled second 

order ordinary differential equations without a first 

derivative term, which is suitable for solution with the 

Numerov method. The solutions of the system of second 

order equations thus effectively provides the solutions of the 

original fourth order equations. The results of comparing the 

computed approximate solutions with the exact solutions 

exhibited very negligible errors, thus confirming clearly that 

the method is not only effective, but equally efficient. 
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