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Abstract  This work deals with a digital filtering 
technique that was developed to reconstruct a pulse after it 
has propagated along a pipe; a complex pulse that is 
progressively distorted. The technique developed makes use 
of the theory of digital filtering used in communications to 
remove distortion in long telephone links. 
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1. Introduction 
Digital filtering is desirable in many situations in 

engineering and embedded systems. A good filtering 
algorithm can remove the noise while retaining the useful 
information. Many digital filters are based on the Fast 
Fourier transform (FFT), a mathematical algorithm that 
quickly extracts the frequency spectrum of a signal, allowing 
the spectrum to be manipulated (such as to create band-pass 
filters) before converting the modified spectrum back into a 
time-series signal using the inverse FFT. Two types of digital 
filters are discussed because of the relevance to this work: 
deconvolution filters and linear filters 

1.1. Deconvolution Filter 

Deconvolution filtering techniques are widely used in 
digital signal processing and image processing. They are of 
great significance in scientific and engineering applications. 
The technique, as developed in this research for pulse 
reconstruction, is based on the principle of the deconvolution 
filter used in communications to recover a distorted signal. In 
mathematics, deconvolution is referred to an 
algorithm-based process used to reverse the effects of 
convolution on recorded data [1]. 

In optics and imaging, deconvolution is applied in 
correcting the optical distortion that is associated with 
optical microscope, electron microscope, telescope and other 
imaging instruments. It is usually done in the digital domain 
by a software algorithm [2], as part of a set of techniques in 

microscope image processing.  

1.2. Linear Filters 

All real measurements are disturbed by noise. This 
includes electronic noise, but can also include external 
events that affect the measurements taken, such as vibrations, 
variations of temperature, variations of humidity, etc., 
depending on what is measured and on the sensitivity of the 
device. It is often possible to reduce the noise by controlling 
the environment. Otherwise, when the characteristics of the 
noise are known and are different from the signals, it is 
possible to filter or to process the signal as mentioned above. 
Linear filters are useful in eliminating such unwanted 
frequencies (noise) from an input signal or to select a desired 
frequency among many other frequencies present in the 
signal. 

2. Digital Filtering 
This aspect deals with a technique developed for 

reconstructing the pressure pulse caused by an event such as 
an explosion or impact from measurements made by pressure 
sensors located along the pipeline. During the propagation of 
the pulse down the pipe it gets distorted in various ways 
before it reaches the place where it is being measured. It is 
necessary to reconstruct the original pulse before the 
distortion took place so that its potential for damage can be 
assessed. This is very much like the distortion removal in 
long distance telephone link by filtering.  

Convolution is a formal mathematical operation, just as 
multiplication, addition and integration. Basically, addition 
takes two numbers and produces a third number while 
convolution takes two signals and produces a third signal. 
Supposing an input signal, x[n], enters a linear system with 
an impulse response, h[n], resulting in an output signal, y[n]. 
In equation form this can be written as;  

           (1) 

This is to say, the input signal convolved with the impulse 
response is equal to the output signal. Where  represent 
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the convolution operator. 
This forms the basis of digital filtering, since it allows a 

filter to be defined as a short time domain signal which is 
convolved with an incoming signal to give the required 
output in the same way as a conventional analogue filter acts 
on an analogue signal. It is therefore desirable to design a 
filter which when applied to the output signal will give a 
replica of the incoming signal. The filter should be capable 
of removing all the undesirable effects (distortion, noise, etc); 
such a filter is called a deconvolution filter.  

The aim of deconvolution is to recreate the form of a 
signal as it existed before convoluting. This normally 
requires information about the characteristics of the 
convolution, such as impulse response or frequency response, 
to be known.  

The application of deconvolution in signal processing is 
more straight-forward in the frequency domain than in the 
time domain, which allows computation to be faster [3]. The 
amplitude and phase of each sinusoid that comprises the 
original signal may be changed during the processes of 
convolution. To obtain the original signal, the deconvolution 
filter must undo these changes to the amplitude and phase of 
the signal. Smith [3] gave two examples to illustrate how the 
deconvolution filter can be applied to a signal, using a 
gamma ray detector and an old phonograph recording, 
respectively.  

Generally, the objective of deconvolution is to find the 
solution of a convolution equation of the form: 

                (2) 

where  is some recorded signal, is the signal to be 
recovered, which has been convolved with some other signal 

before it was recorded, and  is the convolution operator 
as mentioned earlier.  

The function  might represent the transfer function of 
an instrument or a driving force that was applied to a 
physical system. If it is possible to know , or at least know 
the form of , then deterministic deconvolution can be 
performed on the signal. However, if  is not known in 
advance, then an estimate of it is required. This is most often 
done using methods of statistical estimation [4].  

In physical measurements, the situation is usually closer to 

           (3) 

Where ε is noise that has entered the recorded signal. If it is 
assumed that a noisy signal or image is noiseless when trying 
to make a statistical estimate of , the estimate will be 
incorrect, and so the estimate of will also be incorrect. 
The lower the signal to noise ratio, the worse the estimate of 
the deconvolved signal will be. However, if it is possible to 
have some knowledge of the frequencies of the noise in the 
signal, it is possible to improve the estimate of  through 
filtering. Although signals are always delayed during the 

passage through a filter, it is usually of no significance. The 
signal delay can be different for different frequencies [4], 
which mean that signals consisting of different frequency 
components suffer delay or time distortion.  

2.1. Pulse Reconstruction by Deconvolution Filter 

During the propagation of the pulse along the pipeline it 
gets distorted in various unknown ways before getting to the 
sensors where it is measured. This may be considered as the 
action of a filter. In DSP terms, this can be related as, 

         (4) 

where, , is the measured pulse at sensor 2, , is the 

measured pulse at sensor 3, , is the required digital filter 

kernal, All these are discrete functions in the time domain, 

representing the true functions of time at a suitable sampling 

rate.  

If is known, then the original pulse at the event, 

can be reconstructed from the measured pulse signal

. This filter function is obtained by the 

deconvolution of and .  

This is actually difficult to do in the time domain, but 
fortunately very easy in the frequency domain [3]. It is 
another foundation of digital signal processing that 
convolution in the time domain is equivalent to 
multiplication in the frequency domain, so  is 
the same as , using the usual convention that 
an upper case function represents the Fourier transform 
(DFT) of the equivalent lower case time domain function. 
Then the deconvolution filter function in the frequency 
domain is simply obtained by the division , 

which is then transformed into a time domain function 

using the inverse discrete Fourier transform. is the 

frequency spectrum of the desired filter kernel,  and F3 

are the frequency spectra of the measured pulses at sensors 2 
and 3, respectively.  

The solution to the above expression  to 
determine requires a complex division by the use of the 

magnitude and phase of divided by the magnitude and 

phase of . According to [71], this division in the frequency 
domain is achieved by an inverse operation of the 
multiplication of the two measured pulse signals at the 
sensors in the frequency domain by dividing their 
magnitudes and subtracting their phases. In polar form this is 
given by; 
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           (5) 

      (6) 

And in rectangular form it becomes, 

   (7) 

   (8) 

The pulse at the start of the event can then be 
reconstructed using the convolution function, 

            (9) 

where, is the reconstructed time domain pulse at the 
event site.  

In situations where the propagation path affects the phase 
as well as the magnitude of the propagating pulse signal, 
some manipulations of the time domain function will be 
required so as to take into account the nature of the discrete 
Fourier transform which covers the frequency range  the 
Nyquist frequency and so transforms into an aliased time 
domain function. Extracting the deconvolution filter function 
under these conditions is described fully in [3].  
The pulse reconstruction was implemented in an m-code 
program, using the FFT and convolution functions available 
within Matlab. 

2.2. Pulse Propagation Model used to Develop Pulse 
Reconstruction Techniques 

As an aid to the development of the various pulse 
reconstruction techniques investigated in this work, a 
standard model for a pulse propagating through a gas filled 
pipe was developed. The pulse takes the form of a sum of n 

decaying sine waves, each at a frequency determined by ring 
modes of a pipe [5]. The pulse is subject to frequency 
dependent attenuation and dispersion as it propagates along 
the pipe.  

Each component of the pulse is defined by; an 
exponentially decaying sine wave, , where α 
is a frequency dependent attenuation coefficient, f is the 
frequency and t is time measured from the pulse arrival; 
attenuation related to distance, where β is a frequency 
dependent attenuation coefficient and x is the distance 
propagated; dispersion simulated by setting the start of each 
component of the pulse to a time defined by its frequency 
dependent phase velocity. 

The attenuation coefficients α and β are proportional to 
frequency squared [5]. 

The pulse is built up at each sensor location as a 
superposition of pulses, each at frequency of a ring mode and 
attenuation as defined above. The fundamental frequency of 
the pulse is 53 Hz, which comes from a pipe of Young’s 
modulus of 220x109 Pa, density of 7860 kg/m3, wall 
thickness of 7.9mm and diameter 475mm. This fundamental 
frequency is obtained using equation (10) below; 

 
where 

E = Young's modulus (Pa) 

I = 2nd moment of area (m4) =  

D = Pipe diameter (m) 

t = wall thickness (m) 

u = mass per unit length (k/m) =  

ρ = density of pipe (kg/m3) 

3. Application of Deconvolution Filter to Pulse Reconstruction 

 

Figure 1.  Schematic representation of sensors on a pipeline 
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3.1. Simple Pulse Reconstruction  

This involved the use of the simplest form of pulse with a 
single frequency component, with a fundamental of the 
frequency of 53 Hz. 
Case 1 

Considering the first case with closely spaced sensors, 
Figure 1 shows the simulated pulses at the position of the 
event and that at sensors 2 and 3 in the time domain, while 
Figure 2 shows their frequency spectra. 

 

(a) original pulse (b) pulse at 110 m (c) pulse at 410 m 
Figure 2.  Pulse responses obtained at the event and sensors 2 and 3 (single 
frequency with sensors close to event) in the time domain 

 

(a) original pulse (b) pulse at 110 m (c) pulse at 410 m 
Figure 3.  Pulse responses obtained at the event and sensors 2 and 3 (single 
frequency with sensors close to event) in the frequency domain 

From Figures 1 and 2 the magnitudes of the pulses can be 
seen to be to be reducing gradually as the pulse propagates 
away from the event both in the time and frequency domain. 
This can be seen in Figure 2 that at the fundamental 
frequency of 53 Hz, the pulse at the event as shown in Figure 
2(a) had reduced by about 14% in magnitude by the time it 

arrived at sensor 3 as seen in Figure 2(c).  
This slight reduction in magnitude is as a result of the 

closeness of the sensors to each other and to the event. The 
single frequency peak at 53Hz can be seen in the frequency 
domain plot in Figure 2 at the event and both sensors.        

The digital filtering technique, implemented in the m-code 
program as outlined in section 3, was used to obtain a 
deconvolution filter using the pulse signals obtained at 
sensors 2 and 3, which was then applied to the signal from 
sensor 2 to reconstruct the form of the pulse at the event site. 
Figure 4 and Figure 5 shows the original and reconstructed 
pulse in the time and frequency domains.  

 

Figure 4.  Original and reconstructed pulse at event location by 
deconvolution filter (single frequency with sensors close to the event)  

 

(a) original pulse (b) reconstructed pulse 
Figure 5.  Reconstructed simulated pulse at event by deconvolution filter 
(single frequency with sensors close to the event) in frequency domain 

The form of the reconstructed pulse as shown in Figures 4 
and 5 indicates a fair approximation to the original simulated 
pulse at the event location. The frequency, phase, amplitude 
and decay of the pulses all coincide well in Figure 4. This can 
be seen more clearly in Figure 5 where the original and 
reconstructed have the same frequency of 53 Hz and differ 
by only 7% in magnitude. 
Case 2 

For the second case with widely spaced sensors, Figures 6 
and 7 show the simulated pulses in the time and frequency 
domains, respectively. 
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(a) original pulse (b) pulse at 800 m (c) pulse at 1800 m 
Figure 6.  Simulated pulses with sensors far apart to the event (single 
frequency) in time domain 

 

(a) original pulse (b) pulse at 800 m (c) pulse at 1800 m 
Figure 7.  Simulated pulses with sensors far apart to the event (single 
frequency) in frequency domain As before, the frequency of the pulses is 
unchanged, but the magnitudes are lower, reflecting the greater distance 
travelled. 

Figures 8 and 9 show the reconstructed pulse and the 
original simulated pulse in the time and frequency domains. 

 

Figure 8.  Reconstructed simulated pulse at event by deconvolution filter 
(single frequency with sensors far apart to the event) in time domain 

 

(a) original pulse (b) reconstructed pulse 
Figure 9.  Reconstructed simulated pulse at event by deconvolution filter 
(single frequency with sensors far apart to the event) in frequency domain 

The reconstructed pulse shows similar characteristics to 
that obtained with the closer spaced sensors (case 1), except 
for the magnitude of the reconstructed pulse which is 
overestimated by 15%.  

3.2. Complex Pulse Reconstruction  

The ability of the digital filter technique to reconstruct a 
complex pulse was tested using a pulse with eight frequency 
components. As before, the two cases of pulse reconstruction 
with closely and widely spaced sensors are used.  

Case 1 
Figures 10 and 11 show the simulated pulses obtained 

with closely spaced sensors in the time and frequency 
domains. 

 

Figure 10.  Simulated pulses with sensors close to the event (multiple 
frequencies) in the time domain 

The form of the multi-component pulse may be seen in 
Figure 10(a), which is calculated without any attenuation.  
The high frequency components are clearly apparent at the 
start of the pulse, but decay quickly leaving only the low 
frequency components in the tail. 
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The simulated pulses at the sensor positions shown in 
Figures 10(b) and (c) show the effect of the frequency 
dependent attenuation with propagation. The higher 
frequency components of the pulse at the start of the event 
can be seen to be progressively reduced as the pulse arrives 
at sensors 2 and 3 and as before to diminish rapidly within 
the pulse.  The effect of dispersion can also be seen in 
Figure 10(c), where a harmonic appears after one cycle of the 
fundamental component.  

 

(a) original pulse (b) pulse at 110 m (c) pulse at 410 m 
Figure 11.  Simulated pulses with sensors close to the event (multiple 
frequencies) in the frequency domain 

The frequency dependent attenuation can be seen more 
clearly in Figure 11. The magnitude of the fundamental 
component at 53 Hz decays slowly as before, but the higher 
frequency components decay much more rapidly so that the 
third and subsequent components cannot be seen in the linear 
plot used. Figures 12 and 13 shows the reconstructed pulse in 
the time and frequency domains. 

 

Figure 12.  Reconstructed simulated pulse at event by deconvolution filter 
(multiple frequencies with sensors closer to the event) in time domain 

Figure 12 shows that with closely spaced sensors, it was 
still possible to reconstruct the pulse in a form that looks 

similar to the original. The magnitude and decay rates are 
similar and the high frequency content is similarly 
concentrated at the start of the pulse. 

 

(a)original pulse (b) reconstructed pulse 
Figure 13.  Reconstructed simulated pulse at event by deconvolution filter 
(multiple frequencies with sensors closer to the event) in frequency domain 

Figure 13 shows that this appearance is not entirely correct. 
The fundamental component is close, having the correct 
fundamental frequency of 53 Hz with a difference of 14% in 
their magnitudes. The second and third modes also have the 
correct frequencies of 150 Hz and 288 Hz, but differ in their 
magnitude by 78% and 60% in opposite directions; i.e. with 
the second mode being underestimated and the third 
overestimated. The higher modes are not reconstructed at all, 
presumably because they attenuated to such a high degree 
before reaching sensors 2 and 3 that they cannot be seen in 
Figure 11, and so would not have contributed to the 
deconvolution filter. 
Case 2 

For the widely separated sensors, Figures 14 and 15 shows 
the simulated pulses obtained at the event and sensors in the 
time and frequency domains, respectively.  

 

(a) original pulse (b) pulse at 800 m (c) pulse at 1800 m 
Figure 14.  Simulated pulses with sensors far apart to the event (multiple 
frequencies) in time domain 
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(a) original pulse (b) pulse at 800 m (c) pulse at 1800 m 
Figure 15.  Simulated pulses with sensors far apart to the event (multiple 
frequencies) in frequency domain 

The high frequency content seen clearly at the start of the 
original pulse in Figure 14(a) is greatly reduced by the time 
the pulse arrives at sensor 2 and is practically invisible at 
sensor 3. This is shown more clearly in the frequency domain 
in Figure 15, where only the first mode peaks are clearly 
evident, but the second mode peak is barely visible at sensor 
2 only and higher mode peaks cannot be seen at all.  

Because of this the form of the reconstructed pulse as 
shown in Figure 16 below was affected, it was virtually 
difficult to see any of the high frequency components in the 
reconstructed pulse. This was confirmed from the frequency 
domain plot in Figure 17 where only two modes can be seen 
in the reconstructed pulse in Figure 17b compared to the 
eight modes at the start of the event in Figure 17a. 

Figures 16 and 17 show the original and reconstructed 
pulses obtained from using the widely separated sensors. 

 

Figure 16.  Reconstructed simulated pulse at event by deconvolution filter 
(multiple frequencies with sensors far apart to the event) in time domain 

Figure 16 shows that with the sensors widely separated 
and distant from the event, it is still possible to reconstruct a 

pulse by deconvolution filtering, though it is not as good as 
that obtained with the sensors closely spaced. The magnitude, 
phase and decay rate of the first mode appear to be correct, 
but there is little sign of any higher modes at all. 

 

(a) original pulse (b) reconstructed pulse 
Figure 17.  Reconstructed simulated pulse at event by deconvolution filter 
(multiple frequencies with sensors far apart to the event) in frequency 
domain 

This is confirmed in Figure 17, which shows the spectrum 
of the reconstructed pulse with a peak at the correct 
fundamental frequency of 53 Hz, but with magnitude 
overestimated by 14%. The peak for the second mode is at 
the correct frequency of 150 Hz but is greatly underestimated 
in magnitude, and higher modes are not present at all.  This 
enforces the intuitive expectation that the more closely the 
sensors are separated, the more accurately the pulse will be 
reconstructed.  

These simulated test results obtained using the pulse 
propagation model show that the digital filtering method of 
pulse reconstruction will work for all measurable pulses with 
any sensor spacing provided the spacing is not so great as to 
make the pulse arriving at the more remote sensor too small 
to trigger the pulse capture.  However, they show clearly the 
detrimental effect of wide spacing on the quality of pulse 
reconstruction.  For practical applications a trade off must 
be made between the competing desires to reconstruct 
accurately and to make low cost systems. The simulation 
used here could be used as a design tool, using 
experimentally determined values for the attenuation and 
dispersion coefficients for the specific application. It will 
enable a pipeline system designer to establish suitable sensor 
spacing to give only the quality of reconstruction required to 
assess damage envisaged for that pipeline. 

4. Experimental Work and Results 
To test the effectiveness of the event reconstruction by 

digital filtering, the extracted pulse measurements and 
 were used. The discrete Fourier transform of the pulses 

were calculated using the fast Fourier transform (FFT) 
function in MatLab, from which the discrete deconvolution 
function  was calculated. Figure 18 shows a 
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representative measurement of the pulse functions 
from which the deconvolution function h was 

obtained, truncated at 100 data points and padded to 830 with 
zeros. 

 

Figure 18.  Filter function obtained from pulse measurements at sensors 2 
and 3 

As can be seen, there is no apparent relationship between 
the measured pulse at sensors 2 and 3 and the deconvolution 
function obtained from them. The filter could not have been 
obtained except by means of the transformation into the 
frequency domain as earlier described. The pulse function at 
the position of sensor 1 was then reconstructed using the 
convolution and scaled according to the 
different distances between the sensors. The reconstructed 
pulse is shown in Figure 19, compared with the true function 

measured by the sensor.  

 

Figure 19.  Typical Reconstructed pulse at sensor 1 using the 
deconvolution filter method 

The shape of the reconstructed pulse is broadly similar, 
but is distorted by high frequency noise at the start of the 
pulse. Three reasons may be attributed to this discrepancy: 
the calculated deconvolution filter function is a finite length 
approximation to the true filter it includes the noise on the 
signals  and  

The technique neglects the non-linearities inherent in the 

propagation. 
The problem of the filter can be reduced to some extent by 

increasing its length, though the improvement quickly 
reduces with further lengthening and is inherent in the use of 
the digital filters. The noise problem is also inevitable, 
particularly in a pipeline with flowing gas and when the 
sensors are well separated to keep down costs, making the 
signal at the most remote sensor fairly small. 

This noise was easily removed by means of a low pass 
filter. A linear phase Blackman window filter of 100 points 
was found to work well as shown in Figure 20.  

 

Figure 20.  Reconstructed pulse signal at sensor 1 with low pass filtering 

The form of the final reconstructed pulse shown in Figure 
20 is a fair approximation to the true measured pulse at 
sensor 1. There are two main discrepancies: the peak 
magnitude is overestimated by about 17%, and the pulse 
shape is different in detail, most notably the introduction of 
an anomalous second peak. The delay which can be seen in 
the reconstructed pulse before it was compensated for is a 
normal effect of filtering and as such, is of no significance. 
This is evident from the reconstructed pulse when the delay 
was compensated for; moreover, the purpose of the 
reconstruction is to determine the pulse size and shape which 
carries the information required about cause of the event.  

Also, the small oscillations before the rise is an artefact of 
the Blackman window used in the low pass filter. These 
results are for one out of the fifteen repeat tests and are 
typical.  The range of magnitude overestimation was 
between 17 % and 23 % compared to the measured true pulse 
at sensor 1. 

5. Conclusions 
A Method of reconstructing the form of a pressure pulse at 

the site of an event causing it was developed using digital 
filtering technique. This was tested initially using a computer 
based modelled pulse propagation, and subsequently 
validated experimentally. The results obtained showed its 
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suitability to reconstruct the form of pressure pulse 
propagating along a gas filled pipeline from its source. 
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