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ABSTRACT: An artificial neural network (ANN) was applied to study the hierarchy of significance of process variables affecting
the degradation of amoxicillin (AMX) in a heterogeneous photo-Fenton process. Catalyst and H2O2 dosages were found to be
the most significant variables followed by degradation time and concentration of AMX. The significant variables were optimized
and the optimum condition to achieve degradation of 97.87% of 40 ppm AMX was 21.54% excess H2O2 dosage, 2.24 g of catalyst
in 10 min. A mathematical model (MM) for the degradation of AMX was developed on the basis of the combined results of the
ANN and the optimization studies. The MM result showed that increases in both catalyst and H2O2 dosage enhanced the rate of
AMX degradation as shown by the rate constants evaluated from the model. The highest rate constant at the optimum conditions
was 122 M−1 S−1. These results provided invaluable insights into the catalytic degradation of AMX in photo-Fenton process.

1. INTRODUCTION

Amoxicillin (AMX) is an antibiotic that belongs to the
penicillin class and is used in both veterinary and human
medicine.1 It belongs to the class of the most prescribed
antibiotics in both developing and developed because of its
high-therapeutic efficiency at blocking the biosynthetic enzymes
that compose the cell walls of bacteria due to the presence of
broad-spectrum β-lactam rings.1,2 The major problem that is
created by the presence of AMX at low concentration in the
environment is the development of antibiotic resistant
bacteria.3 AMX is a highly recalcitrant pollutant that cannot
be easily degraded by conventional wastewater treatment
methods like adsorption or biological and even the chemical
oxidation methods,4−6 but with the advent of Fenton, Fenton-
like and photo-Fenton processes, AMX and other refractory
pollutants have been conveniently degraded and mineralized
completely under mild reaction condition.5,6 The efficiency of a
typical photo-Fenton process is strongly influenced by the iron
(catalyst) loading, oxidant dosage, pollutant initial concen-
tration, treatment time, and temperature. Therefore, for the
purpose of gaining more insights into the photo-Fenton process
application in wastewater treatment, the use of an artificial
neural network to determine or ascertain process variables that
strongly affect the pollutants degradation process cannot be
over emphasized.7−10 In addition, each of the parameters
should be optimized for efficient treatment of wastewater8−12

especially when mathematical model of the degradation kinetics
is of interest.
Owing to the complexity of the photo-Fenton process, it is

relatively difficult to model and simulate the degradation
process using conventional mathematical methods, hence an
artificial neural network (ANN) has now been introduced
because of its simplicity toward modeling, simulation, and

prediction,3 and it is considered a promising tool. Its ability to
recognize and reproduce cause−effect relationships through
training for multiple input−output systems makes it efficient in
representing even the most complex systems,9 and it is more
advantageous since the mathematical description of the
phenomena involved in the process is not required. It also
required lesser time with limited numbers of experiments for
model development compared to the traditional mathematical
models.13,14 Application of ANN to solve environmental
engineering problems ranging from biological wastewater
treatment to advanced oxidation processes (AOPs) has been
recently reported in literature.9,13−16

Similarly, due to the complex systems of the photo-Fenton
catalytic degradation process, application of a one-factor-at-a-
time-optimization approach could mislead the optimization
process because of the lack of cross-factor effects.9 Thus, the
application of the design of experiments (DOE) seems to be an
alternative option. There are different types of DOE available
that usually require a number experiment and they are highly
cost-effective and statistically reliable.11 A good example of such
methods that consider the simultaneous varying of influencing
process parameters and still take into account the interactions
between them is referred to as a response surface methodology
(RSM).12 However, the use of combined ANNs and RSM to
study and optimize the factors that strongly affect the
degradation process of a pollutant for the purpose of
developing a phenomenological mathematical model of a
pollutants degradation process is scarce in the literature.
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In this study, ANN and RSM modeling techniques were used
to establish the relationship between AMX degradation process
variables (catalyst dosage, hydrogen peroxide dosage, time, and
initial AMX concentration) and output variable (degradation
efficiency). The choice of the parameters was based on the
previous report.17 In the first step, the process variables were
fed as inputs to an ANN with AMX degradation efficiency as
the output of the network. The significance of each input
variable on the output response was determined. Second, D-
Optimal design a form of RSM was used to optimize the
significant process variables, and finally, a phenomenological
mathematical model for AMX degradation process was
developed on the basis of the ANN and the RSM results.

2. EXPERIMENTAL SECTION
2.1. Materials and Methods. Montmorillonite clay

(Neimenggu, China) with a cation exchange capacity (CEC)
of 108.4 mequiv/100 g of clay was purchased from Sigma
Aldrich Co. Analytical grade Amoxicillin trihydrate and
hydrogen peroxide (H2O2) solution (30%) were obtained
from Fluka. The iron hydroxide, oxalic acid, aluminum
trichloride, and phosphoric acid were purchased from Merck
(Germany), and polyvinyl alcohol was obtained from Sigma.
The aluminum pillared montmorillonite catalyst (AlPMC) was
prepared by direct dissolution of aluminum pillared montmor-
illonite (AlPM) precursor used as support with ferrioxalate
(FeOx) complex prepared from iron hydroxide and oxalic acid.
The details of the catalyst preparation were earlier reported.17

2.2. Experimental Procedure. A 1.0-L beaker filled with
500 mL of AMX was used as the Fenton reactor, and it was
placed in a water-partly filled 2.0-L beaker situated on a hot-
plate with variable magnetic stirrer equipped with a temper-
ature monitor and control facilities. Prior to the commence-
ment of the Fenton process, the initial pH of the aqueous
solution of AMX was measured and found to be 5.03, in the
course of the reaction it decreased due to the formation of
H2SO4 and HNO3. After the addition of the AlPMC to the
AMX solution, the UV lamp (Unilux Philips lamps 15W, λmax =
254 nm) was switched on and the reaction was initiated by
adding the required dosage of HP under a predetermined
optimal magnetic stirring speed of 340 rpm. At selected time
intervals, samples of the reaction mixture were taken with a
syringe and filtered through a 0.45 μm membrane for analysis
in a UV−vis spectrophotometer.
2.3. Analytical Methods. The maximum absorbance

wavelength (λmax) of AMX recorded from 500 to 200 nm
using a spectrophotometric quartz cell in a UV−vis
spectrophotometer (Shimadzu, model UV 1700 PharmaSpec,
Japan) was found at 274 nm. The withdrawn filtered samples
were quickly analyzed to minimize experimental errors since
the reaction could still continue after withdrawal. The
degradation efficiency (DE) of AMX was evaluated as follows:

=
−⎡

⎣⎢
⎤
⎦⎥

C C
C

DE% 100o t

o (1)

where Co and Ct are the initial concentration and the measured
concentration of AMX at the time of withdrawal, respectively.

3. EXPERIMENTAL DESIGN
3.1. Artificial Neural Network. The artificial neural

network for computational studies consists of simple processing
units called neurons and each network consists of artificial

neurons grouped into layers and put in relation to each other
by parallel connections.9 The strength of these interconnec-
tions is determined by the weight associated with the
neurons.3,9 The multilayer feed-forward net is a parallel
interconnected structure consisting of an input layer which
includes independent variables and an output layer; in between
them is one or more neuron layers called hidden layers.3 The
number of variables used in the prediction and the number of
variables to be predicted are represented by the number of
input and output neurons, respectively. The degree of accuracy
in the neural predictions is a function of the number of neurons
in the hidden layer which acts like feature detectors, and there
can be more than one hidden layer. On the basis of the theory
of approximation, with a sufficiently large number of neurons, a
network with a single hidden layer can interpret any input−
output structure, and the most widely reported transfer
function for the input and hidden layers is the sigmoid transfer
function (eq 2) while the linear activation function (eq 3) is
used as the output layer activation function.9,14−16
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A mono hidden layer multilayer feed forward ANN is applied
in this study. Sigmoidal activation function and a linear transfer
function were used in the hidden layer and in the output node,
respectively, for all the data sets. All calculations are carried out
with Matlab mathematical software v 7.2 with ANN toolbox for
training the ANNs using feed-forward neural network trained
by the back-propagation (BP) algorithm. The independent
variables earlier reported17 were used as the input variables to
the network. The variables were assigned the following
notations: H2O2 dosage, p1; catalyst dosage, p2; time, p3 and
initial AMX concentration, p4, while the AMX degradation
efficiency was assigned the output variable.

3.2. Response Surface Methodology. A four factor D-
Optimal design was used to determine the optimum operating
conditions for maximizing the efficiency of the AMX
degradation process. The four factors selected as independent
variables based on previous experience and also as a
prerequisite for process/product design of AMX treatment
facility for industrial applications are H2O2 dosage, catalyst
loading, time of degradation, and the initial concentration of
AMX. They are assigned with DOE notation for independent
variables as X1, X2, X3 and X4 respectively. Other parameters
such as agitation speed and temperature were set at
predetermined values based on previous experience. The pH
was not adjusted because FeOx catalysts were able to achieve
degradation at the natural pH (5.03) of AMX due to the
presence of the ferrioxalate ligands.17−19 Temperature of
reaction was maintained at 30 ± 2 °C. The objective function
to be optimized is degradation efficiency of AMX and is
denoted as Y. Application of D-Optimal design as an
optimization technique demands selections of a model at the
beginning, in this particular case study, quadratic model was
chosen as shown in eq 2. The adequacy of the final model was
verified by graphical and numerical analysis.
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+ + + + +

+ + + +
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where bn is the coefficient associated with each nth factor, and
combination of factors (such as X1X2) represents interactions
between the individual factors in that term.
The number of experiments for four independent variables

was calculated as follows according to DOE configuration using
Design-Expert 7.1.6 from Stat Ease Inc.: minimum model
points, 15; lack of fits estimate points, 5; replicates points, 5;
additional center points, 0; total experiments, 25. The model
obtained was evaluated for the response function and the
experimental data were analyzed statistically applying analysis of
variance (ANOVA).

4. RESULTS AND DISCUSSION
4.1. Degradation of AMX/UV/H2O2/AlPMC Process. A

classical and systematic sequential approach was followed for
the degradation of AMX to determine the range (−1 to +1) of
values of the independent variables to be used in the design of
experiment for the optimization studies. The degradation
process was first carried out without catalyst in a stoichiometric
ratio of eq 5 and followed by 10, 15, 20, and 25% excess H2O2,
and the process efficiency was monitored and recorded. The
best experimental condition was identified and repeated with
different AlPMC dosage. Finally, the range of best H2O2 dosage
and AlPMC loading was investigated with different initial
concentration of AMX. The range of all experimental input
variables are shown in Table S1 (online Supporting
Information).

+ +

→ + + + +

+

+
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16CO 54H O 3HNO H SO Fe
16 19 3 5 2 2

2

2 2 3 2 4
2

(5)

4.2. Artificial Neural Networks (ANN) Model Develop-
ment. The H2O2 dosage, catalyst loading, treatment time and
initial concentration of AMX were all found to affect the
degradation of AMX in the previous report.17 Hence, there is
need for ANN studies to establish the hierarchy of significance
of these input variables.
4.2.1. Selection of Back-Propagation (BP) Training

Algorithm. Ten different BP algorithms were studied in order
to determine the best BP training algorithm. Tangent sigmoid
transfer function (tansig) and a linear transfer function
(purelin) were used at the hidden and output layers,
respectively. The result of comparisons among the different
BP training algorithms (for those with R2 greater than 0.9) is
shown in Table S2 (see online Supporting Documents).
Levenberg−Marquardt back-propagation algorithm (LMA) was
chosen in this study as the training algorithm because among
the algorithms with a very high degree of correlation (R2), it has
the least mean square error (MSE). The MSE measures the
performance of the network using eq 6.

=
∑ −=

= y y

N
MSE

( )i
i N

i i1 ,pred ,expt
2

(6)

where N is the number of data points, yi,pred and yi,expt is the
network prediction and experimental response, respectively,
while i is an index of data.
4.2.2. Optimization of the Neurons Number. A series of

network architecture was used to determine the optimum
number of hidden nodes, in which the number of nodes was
varied from 2 to 20 as shown in Figure 1. The mean square
error (MSE) was used as the error function and plotted against
the number of neurons prediction set. ANN optimization

process required network training to minimize the error
function (MSE) by searching for a set of connection weights
that can enable the ANN to produce outputs that are identical
or possibly equal to target values.3 It can be seen that with two
neurons, the MSE was 155.94; the value decreased to 0.0015
when the number of neurons were increased to 5. Further
increment in the number of neurons from 5 to 11 does not
significantly decrease the MSE, and the MSE increased when
the numbers of neurons were increased beyond 12. On the
basis of this observation, the tangent sigmoid transfer function
(tansig) at the hidden layer with five neurons and linear transfer
function (purelin) at the output layers were used for the
modeling of the AMX degradation process.

4.2.3. Testing and Validation of the Developed Model.
The results of the validity of the ANN tested by comparing its
predicted output values with the experimental values at 20, 40,
and 60 ppm initial concentration of AMX using independent
set of data is shown in Figure 2. The result showed two types of

line with a high degree of correlation; the first is the perfect fit y
= x (predicted data = experimental data) and the others are 20,
40, and 60 ppm AMX. The three concentrations tested showed
very high correlation (R2) which increased from 0.997 to 0.999
as the initial concentration is decreased from 60 to 20 ppm.
This result is in agreement with what has been reported earlier
in the literature. Elmolla et al.3 reported 0.997 in the
degradation of amoxicillin, ampicillin, and cloxacillin in the
homogeneous photo-Fenton process, and Kasiri et al.9 reported
0.998 in the degradation of C.I. Acid Red 14 azo dye using Fe-
ZSM5.

Figure 1. Effect of number of the hidden neurons on performance of
the neural network.

Figure 2. Comparison between predicted and experimental values of
the output.
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4.2.4. Determination of the Significance of Each Input
Variable on the Output Variables. To evaluate the relative
importance of the input variables, neural net weight matrix and
Garson equation were used in the evaluation processes. Garson
proposed the equation based on the partitioning of connection
weights as shown in eq 7. The weights are coefficients between
the artificial neurons, which are analogous to synapse strengths
between the axons and dendrites in real biological neurons.3,9

Consequently, each weight decides what ratio of the incoming
signal will be transmitted into the neuron’s body.20 The neural
net weight matrix can be used to assess the relative significance
of the various input variables on the output variable:
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where, Ij is the relative significance of the jth input variable on
the output variable, Ni and Nh are the number of input and
hidden neurons, respectively. W is connection weight, the
superscripts “i” “h” and “o” represents the input, hidden, and
output layers, respectively, while the subscripts “k”, “m” and “n”
refer to input, hidden, and output neurons, respectively.3

The relative significance of the four input variable computed
by the Garson equation showed that H2O2 dosage and AlPMC
loading are the most significant variables with 30.07 and
31.02%, repectively, followed by the treatment time (25.09%),
and finally the initial concentration of the AMX (13.79). The
higher significance of H2O2 dosage and AlPMC loading
observed was in consonance with the trend in the photo-
Fenton process of wastewater treatment.3,9,20 This strong
significance may be because the two variables have both linear
and polynomial effects on the degradation process (as revealed
by response surface plots); that is, the initial increase in their
values enhanced the degradation efficiency up to the optimum
point where further increment decreased the degradation
efficiency due to scavenging effect of the excess H2O2 and
AlPMC loading on the reactive HO•4 according to eq 8−10.
The lower relative importance of antibiotic concentration
showed that the selected H2O2 dosage and AlPMC loading are
valid for the range of AMX simulated wastewater studied.3

+ → +• •H O HO HO H O2 2 2 2 (8)

+ →• •HO HO H O2 2 (9)

+ → ++ • + −Fe HO Fe OH2 3 (10)

The second evaluation process is based on the possible
combination of variables that were examined by the optimal
ANN structure using the LMA with 5 hidden neurons. The
result for the sensitivity analysis for different possible
combinations is available in the Supporting Information
(Table S3). The result showed that p2 (AlPMC loading) was
the most effective parameter among other input variables in the
group of one variable, this is also in agreement with the result of
the Garson equation. The MSE (323.93) decreased to 314.52,
157.21, and 43.73 when combined with p1, p3, and p4,
respectively. This emphasized its significance on the degrada-
tion process. Similarly, in the group of single variables, p1 has
an MSE of 457.49 which is next to p2. The value decreased
drastically to 314.52, 69.65, and 138.22 when combined with
p2, p3, and p4, respectively. The significance of p2 is observed

to be prevalent in all the combinations as already noted, its
MSE decreased to 43.73 which is the minimum in the group of
two. Its MSE further decreased to 3.83 when combined with p3
and p4, which also is the minimum in the group of three. It can
be concluded therefore that the contribution of p1 and p2 were
responsible for the drastic reduction in the MSE to 0.46 when
all input variables are combined together. In addition, it can be
seen that all variables were significant on their own merit and
this is in accordance with the sensitivity test using the Garson
equation.

4.3. D-Optimal Experimental Design. 4.3.1. Develop-
ment of Regression Model Equations. Having established the
significance of the input variables, there is additional need to
optimize the AMX degradation process especially for the most
significant variables (H2O2 dosage and AlPMC loading). To
achieve this, a total of 25 experiments were performed for the
construction of the experimental design according to D-
Optimal design and their results are shown in Supporting
Information, Table S4. The coefficients of independent
variables (X1, X2, X3, and X4) and their interaction effects on
the response functions, Y (AMX degradation) were determined.
The corresponding statistical polynomials model was obtained
by multiple regressions and is shown in eq 11.
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− − − + ×

− + + +
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−
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4.3.2. Analysis of Regression Model Equations. A
comparison between the model prediction and the exper-
imental response parity plots (see Figure S1 in the Supporting
Information) showed a reasonable degree of agreement
validating the second-order polynomial model applied. The
experimental error observed between the predicted and
experimental response functions is very negligible which
showed that there is a strong correlation between the
independent variable and the response function. To corrobo-
rate this, the analysis of variance (ANOVA) was used test the
goodness of fit for the polynomial coefficients of the response
function (AMX degradation), and the results are presented in
Table S5 (Supporting Information). The mean squares were
obtained by dividing the sum of squares for each variation by
their respective degrees of freedom while the F-value was
calculated by dividing the obtained mean squares with the
residual mean square (7.34). The model F-value is 110.04 for
the AMX response function (Y). This implied that the models
are significant, and there is only a 0.01% chance that model F-
values this large could occur due to model error,21 although it
may be associated to experimental error. Values of ″Prob > F″
less than 0.0500 indicated that model terms are significant. In
this case X1, X2, X1

2, X2
2, and X3

2 are significant model terms,
which is a confirmation of the result of the ANN that showed
p1 and p2 to be the most significant input variable. The
obtained regression coefficient (R2) is 0.9932 and the adjusted
regression coefficient (Radj

2), that corrects R2 for the sample
size and the number of terms in the models is 0.9838.
Generally, if a mode contains many terms and has a small
sample size this could result in a much lower Radj

2 compared to
R2;7,22 in this case the model has high R2 and Radj

2 which
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confirmed that the chosen quadratic models in the D-Optimal
design for the response surface method adequately described
the Experimental data in the range of the operating parameters.
Finally, two important pieces of information to investigate

any deficiency or descrepancy in the model fitting to the
experimental data on the performance of the model can be seen
in the plot of internally studentized residuals vs normal
probability (see Figure S2a in the Supporting Information) and
the plot of run number vs outlier T points (see Figure S2b in
the Supporting Information). The normal probability plot
showed orchestrated points and points cluster in close
neighborhood of the diagonal line, an indication of the
homogeneousity of the error variances and independent style
of the residuals which confrimed that errors are normally
distributed and independent of each other.11,21−23 From the
plot of run numbers vs outlier's T points, which can be used to
evaluate the assumption of constant variance, it was observed
that the points are randomly scattered and structureless which
confirm that all the information is well extracted and the
residuals are unrelated to any other variables.4,23 All the
outlier’s T points lay well within the range of −3.5 to +3.5,
which is considered as the bottom and top outlier detection
limits. Since all the points were captured within this range, it
can be concluded that the response transformation is
appropriate and successful in capturing the correlation between
the four studied parameters influencing the degradation of
AMX without any apparent problem with the normality. From
the various analysis studied, it can be seen that the quadratic
model adequately and successfully captured and described the
AMX degradation processes; hence it was applied for the RSM
and optimization study.
4.3.3. Response Surface Plots. 4.3.3.1. Effect of AlPMC

Loading and H2O2 Dosage. The response plot for the effect of
AlPMC loading and H2O2 dosage (Figure 3) showed that the
degradation of AMX is enhanced by an increase in H2O2
concentration from 15 up to 20% excess H2O2, but a decrease
in degradation rate was observed when the amount of H2O2
was further increased to 25% excess H2O2. This is probably due
to the scavenging effect of H2O2 on the reactive HO• as shown
in eq 8 to form the hydroperoxy radical (HO2

•) with a lower

reactivity and oxidation potential of 1.7 eV compared to 2.8 eV
of the HO•. Excess H2O2 could also generate excess HO•

radicals that undergo dimerism to form H2O2 according to eq 9.
These cumulative effects were believed to be responsible for the
reduction in the response function Y (degradation rate of
AMX).
Similarly, the effect of AlPMC loading on the response

function Y showed a significant increase in the degradation of
AMX as the catalyst dosage is increased from 2.0 to 2.5 g. This
is due to the increase in the rate of HO• generation as more
active sites were available for the catalytic hydroxylation of
H2O2 at a faster rate. On the contrary, when catalyst loading
was increased to 3.0 g, degradation efficiency decreases due to
the inhibition effect of excess iron ions that act as scavengers on
the HO• in the photo-Fenton process as shown in eq 10. It can
be seen that the plots are predominantly quadratic as revealed
by the contour lines on the H2O2 dosage−AlPMC loading
plane. This further confirmed that the quadratic model earlier
chosen adequately described the degradation process. These
observations are at par with the established trend in the
literature.22−27

4.3.3.2. Effect of Initial Concentration of AMX and Time.
The response plot for the effect of initial concentration of AMX
and time in Figure 4 shows that both factors affect the

degradation efficiency. At a higher initial concentration of
AMX, the degradation efficiency is low but it increased as the
initial concentration of AMX is reduced. This is because as the
initial concentration was increased other factors affecting the
rate of degradation were not simultaneously increased, thereby
making the available HO• insufficient for the degradation of the
AMX pollutant. The degradation efficiencies increased as the
reaction time increased at both low and high initial
concentrations of AMX. At about 8 min of reaction time, 20
ppm initial concentration of AMX showed a parallel plot with
the time axis. This implied that any treatment beyond that time
may not reflect in further degradation based on the
experimental conditions. The parallel plot diminished toward
the positive side of the AMX concentration axis and showed an
inflection around 40 ppm initial concentration. This suggested
that the process parameter conditions for any concentration of
AMX below this point of inflection could be in excess of the
requirement, but definitely not sufficient for concentration

Figure 3. Response surface plots for degradation of AMX using
AlPMC; [AMX]o = 40 ppm, temperature = 30 °C, time = 8 min.

Figure 4. Response surface plots for degradation of AMX; AlPMC
loading = 2.5 g, H2O2 dosage = 20% excess, temperature = 30 °C.
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above it, as the degradation efficiency is seen to reduce as the
initial concentration of AMX approached 60 ppm. Hence there
is a need to optimize to get the exact process requirement for a
given concentration.
4.3.4. Optimization (Desirability Plot) and Validation of

Results. The optimized degradation conditions of AMX based
on the interaction between the independent factors were
plotted as contour lines and the desirability increased toward
the center of the plot as shown in Figure 5. The best desirability

point on the contours gave the optimum condition to achieve
97.87% degradation of 40 ppm of AMX to be 21.54% excess
H2O2, 2.24 g of AlPMC in 10 min reaction time. The
optimization result was validated in a repeated experiment and
the average degradation efficiency is shown in Table 1. The
result showed 2.47% variation between the predicted and the
observed experimental degradation efficiencies of AMX.
However, since the adequacy of the quadratic model had
earlier been validated, this variation could be ascribed to human
error during experimental studies. Consequently, these
optimization results in conjunction with the results of ANN
were used for the development of mathematical model for the
kinetics of AMX degradation studies.
4.4. Kinetic Modeling for Degradation of AMX in

Photo-Fenton Process. 4.4.1. Model Development. A
typical photo-Fenton process has three major reaction stages:
chain initiation, chain propagation and chain termination.
Although there are many possible reaction that may take place
during photo-Fenton process, the following are the most
predominantly accepted and used in literature since 1930s
when the mechanisms of HO• were first proposed and studied
because they adequately describe all the three stages.10

Stage 1, chain initiation:

+ → + +

≈

+ + • −

−k

Fe H O Fe HO OH
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2
2 2

3

1
1 1

(R1)

Stage 2, chain propagation:

+ → + +•AMX HO CO H O mineral products
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Stage 3, chain termination:

+ → +
= ×

+ • + −

− −k
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+ → +
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In the degradation of AMX in photo-Fenton process, the
degradation is caused by the HO• attack on the AMX molecule
and subsequent opening of its β-lactam ring.6,17 Therefore, it
can be concluded that AMX is primarily degraded in these
studies due to HO• generation at the AlPMC active sites as
earlier noted elsewhere. At the completion of the photo-Fenton
process, the amount of the H2O2 is considered zero, since
Fenton catalysts have not been reported to suffer from any
severe deactivation or poisoning that can halt the generation of
the HO•.
The rate equation for AMX degradation can be represented

as

Γ = − = •

t
k

d[AMX]
d

[AMX][HO ]AMX 2 (12)

Similarly, the rate of HO• consumption can be represented as

= −

− −

•
+ •

• • +
t

k k

k k

d[HO ]
d

[Fe ][H O ] [HO ][AMX]

[HO ][H O ] [HO ][Fe ]

1
2

2 2 2

3 2 2 7
2

(13)

From the optimization process, overdosing the reaction with
H2O2 had been prevented; hence the effect of R3 can be
eliminated. As discussed earlier, an increase in the H2O2 dosage
from 10 to 20% excess H2O2 enhanced the degradation of
AMX. A decrease in degradation rate was observed when the
H2O2 dosage was increased to 25% excess due to the
scavenging effect of H2O2 on the HO• to form hydroperoxy

Figure 5. Desirability plot for the degradation of AMX using AlPMC.

Table 1. Validation of the Optimization Result for AMX Degradation with AlPMC

factors AMX degradation (%)

H2O2 dosage (% excess) AlPMC loading (g) time (min) AMX concentration (ppm) predicted (%) experimental (%) residual (%)

21.54 2.24 10.0 40 97.87 95.4 2.47
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radical (HO2
•) whose reactivity and oxidation potential is lower

compared to HO•. The optimization process achieved an
optimum value of 21.54% between 20 and 25% excess H2O2
with a comparably higher AMX degradation efficiency of
97.87%. Therefore, eq 13 can be reduced to

= −

−

•
+ •

• +
t

k k

k

d[HO ]
d

[Fe ][H O ] [HO ][AMX]

[HO ][Fe ]

1
2

2 2 2

7
2

(14)

The rate of H2O2 and Fe2+ disappearance can be written as

= − −

−

+ •

+
t

k k
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d[H O ]
d

[Fe ][H O ] [HO ][H O ]

[Fe ][H O ]

2 2
1

2
2 2 3 2 2

4
3

2 2 (15)

= − −

− −

−

+
+ +

+ • + •

+ •

t
k k

k k

k

d[Fe ]
d

[Fe ][H O ] [Fe ][H O ]

[Fe ][HO ] [Fe ][HO ]

[Fe ][HO ]

2

1
2

2 2 4
3

2 2

6
3

2 7
2

8
2

2 (16)

It is worth noting that the application of UV irradiation to
photoreduce Fe3+ to Fe2+ will have an overriding effect on R4 as
earlier reported17 such that R4 is employed to reduce Fe3+ to
Fe2+ in the absence of UV irradiation. Consequently, R4 can
also be eliminated more so because its rate constant is
extremely small compared to other constants. Similarly, since k8
≪ k7 in the termination stage, that is, a comparably lower rate
constant, R8 can be ignored,10,28,29 and more importantly the
generation of HO2

• required for the reaction in R8 was
inhibited by the optimization process R3 and photoirradiation
R4. This also affected R6, hence it can also be ignored coupled
with the fact that the application of UV irradiation is assumed
to have photoreduced all Fe3+ to Fe2+ in either classical photo-
Fenton process R5 or ferrioxalate photochemistry (eq 17) as
soon as they are generated.

+ → + −

+ =

− + + −

·−

hv n
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Fe (C O ) Fe ( 1)C O

C O 1, 2, or 3

nIII
2 4 n

(3 2 ) 2
2 4

2

2 4 (17)

Considering the above process constraints and noting that k1 ≪
k7 in eq 16, eq 15 and eq 16 can be rewritten as

= − +
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2 2 (18)
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Since the HO• is a very reactive radical and possess a limited
lifespan of nanoseconds, it can only be used up immediately
upon generation, therefore its concentration can be considered
constant throughout the propagation stage and its rate of
change approaches zero;10,29 i.e., d[HO•]/dt = 0, then from eq
14 we have

=
+

•
+

+
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k k
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(20)

To obtain an equation showing the relationship of all the
species on the degradation rate of AMX, eq 20 can be
substituted into eq 12 to obtain eq 21.

= =
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+r
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k k
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1 2
2

2 2
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For the purpose of simulation, eq 21 can be written in terms of
initial concentration of H2O2 and Fe2+ by integrating eq 18 and
eq 19 as shown in eq 22 and eq 23, respectively, and substitute
into eq 21.

= γ[H O ] [H O ] e t
2 2 2 2 o

1 (22)

= γ+ +[Fe ] [Fe ] e t2 2
o

2 (23)

where γ1 and γ2, respectively, represent k1[Fe
2+] and k7[HO

•].
The equation implies that the residual concentrations of H2O2
and Fe2+ depend on their respective initial concentrations and
their rate of consumption.
Then the rate of AMX degradation can be represented as

follows:

= =
+

γ γ
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+r
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When the separation of variables and integration are applied,
the concentration of AMX in eq 24 becomes a function of
reaction time decreasing from its initial value of [AMX]t=o to
[AMX]t=t as shown in eq 25.
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Equation 25 shows that in a typical photo-Fenton process, the
overall degradation efficiency depends more on the four
process parameters (i.e., H2O2 dosage, AlPMC loading, reaction
time, and initial concentration of AMX) that were earlier
studied with ANN and optimized using the RSM. As it was
earlier noted, the contributory effects of state functions like
temperature, UV irradiation, and agitation were assumed to be
lumped up into k2 as shown by eq 26.

= ′ + + +k k k T k k( ) (UV) (rpm)2 2 2 2 2 (26)

where k2′, k2(T), k2(UV), k2(rpm) are the rate constant due to
the concentration of the reactants, temperature, UV irradiation,
and agitation, respectively. Determination of individual k values
was not considered in this study. For simplification, the terms
of eq 25 can be lumped as shown in eq 27:

α β
δ

+ − = − δ−⎛
⎝⎜

⎞
⎠⎟ln

[AMX]
[AMX]

([AMX] [AMX])
1 e t

o
o

(27)

where α = (k7[Fe
2+]o)/(k1k2[H2O2]o), β = 1/(k2[H2O2]o) and

δ = (γ1 + γ2).
The above set of equations established a new kinetic model

for the optimized degradation process of AMX in a photo-
Fenton process.

4.4.2. Verification of the New Kinetic Model Accuracy. The
accuracy of the new kinetic model was tested on the optimized
two significant variables (AlPMC loading and H2O2 dosage) in
ANN studies. Figure 6 compares the experimental and the
modeled residual concentration of AMX at different AlPMC
loading and time. The new kinetic model showed the highest

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie302390b | Ind. Eng. Chem. Res. 2012, 51, 16311−1631916317



R2 of 0.999 in 0.0 g AlPMC loading but this cannot be used to
validate the model because the quantity k7[Fe

2+]o/k1k2[H2O2]o
is equal to zero in this condition, hence the high correlation
may be due to mere mathematical coincidence. Both 1.0 and
2.0 g AlPMC loading showed 0.987 while 2.25 g showed 0.989,
but 2.5 g showed the least R2 value of 0.953. The results of k2
obtained from the model are shown in Table 2. As the AlPMC
dosage is increased from 1.0 to 2.25 g, the value of k2 increased
from 57.11 to 122.5 M−1 S−1. Further increment of AlPMC to
2.5 g decreased the value of k2 to 107.9 M−1 S−1. The initial
increment in k2 is due to the availability of more catalyst active
sites for the generation of HO• as earlier noted, while the
reduction in the value of k2 at 2.5 g of AlPMC loading could be
because it was in excess of the optimized dosage for 40 ppm
AMX concentration. Therefore, it can be concluded that at this
prevailing condition R7 in the chain termination stage with a
very high rate constant is dominating the reaction process via
ferrous ion scavenging on HO•10,17,24 leading to a decrease in
the degradation rate of AMX.
The result of effect of H2O2 dosage on residual AMX tested

with the new kinetic model is shown in Figure 7 with average
R2 value of 0.989. It was observed that as the degradation time
increases, the residual AMX concentration decreases. The value
of k2 (Table 2) increased with an increase in H2O2 dosage from
the stoichiometric ratio up to the optimized dosage. This
confirmed that the mathematical model satisfactorily and
adequately described the influence of the H2O2 dosage over
the experimental scope on which the model is based. The
results obtained from this new kinetic model were in
accordance with the trend observed in the ANN and
optimization (RSM) studies.

5. CONCLUSION
Catalyst loading and H2O2 dosage have been revealed by
artificial neural network modeling to be the most significant
input variables affecting the degradation of AMX in the
heterogeneous photo-Fenton process. The optimization study
using response surface methodology also confirmed this same
observation. The optimum condition to degrade 97.87% of 40

ppm of AMX was 21.54% excess H2O2 dosage, 2.24 g of
AlPMC in 10 min degradation time. The experimental
validation result showed a variation of 2.47%, probably due
to some interference during laboratory studies. The mathe-
matical model developed for the degradation kinetics showed
high R2 values signifying a strong degree of correlation. Both
the result of AlPMC loading and H2O2 dosage showed
enhanced increase in the rate of AMX degradation as shown
by the rate constants for AMX degradation evaluated from the
developed mathematical model.
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Figure 6. The effect of AlPMC loading on AMX residual
concentration fitted by the developed kinetic model and the
experimental observed values; [AMX]o = 40 ppm, [H2O2]o = 15%
excess H2O2, temperature = 30 °C.

Table 2. Rate of Hydroxyl Radical Attack on AMX

AlPMC (g) H2O2 (% excess)

dosage 0 1.0 2.0 2.25 2.5 stoic ratio 10 20 21.5
k2 (M

−1 S−1) 12.55 57.11 97.38 122.5 107.9 87.45 98.05 110.2 122.5

Figure 7. The effect of H2O2 dosage on AMX residual concentration
fitted by the new kinetic model; [AMX]o = 40 ppm, temperature = 30
°C, AlPMC loading = 2.25 g.
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