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Abstract 

Hydrological alterations may result either from changes in average condition or from changes in the 

distribution and timing of extreme events. In view of this, the study attempted an evaluation of the 

hydrological response of River Kaduna at Shiroro Dam site, Nigeria to hypothetical climate change 

scenarios using the Artificial Neural Network (ANN) paradigm. For the deployment of the ANN, monthly 

historichydrometeorological data (i.e., evaporation, rainfall, streamflow and temperature) spanning 33 

years were obtained. To this end, four climate change scenarios: +10% rainfall, 2×coefficient of variation 

in rainfall, -10% rainfall and +3
0
C average temperature were considered. The historical data were used as 

input to the ANN and selected monthly synthetic streamflow hydrographs in the seasons (i.e., dry and 

wet) were generated with an average high value of the goodness-of-fit (R
2
=0.96). The response pattern 

indicated a variability index for the River to be in the range of 0.85-1.25 while for the recession pattern it 

is 0.75-0.81. It is imperative to note that the ANN enhanced the generalization of the flow dynamics of 

the extreme events (peak and low flow regime) with relative predictability capacity values of 103% ( 

    ) and 96.35% (    ), respectively. However considering the fact that the upgraded temperature and 

coefficient of variation in rainfall might impact negatively on the average runoff, flow variability, flood 

frequency and predictability, there is the need  for the use of an extensive hydrometeorological data 

base coupled withthe application of associated risk value for effective flood forecasting in real-time. 
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1. Introduction 

In line with Alexi et al., (2007), any critical evaluation of hydrological impact of climate change 

find relevance against the backdrop of the need to plan for effective water resources 

management. Because of the importance of this subject, different methods have been employed 

to assess the severity of the impact of climate change. Thus, regardless of uncertainty in future 

climate, there are manifestations/features that there would be significant result on the water 

cycle and its environs (Merritt, et al., 2006). Water cycle rises when there is increasing 

evaporation which in turn causes excessive rainfall (Zhang et al., 2007a and Ahn, et al., 2011). 

Rainfall intensity and amount vary with time and space and these changes have either positive 

or negative significance on the water resource management (Ahn et al., 2011) thereby causing 

hydrological response. In this context therefore, hydrological response of a stream is simply by 

the production of runoff against a given rainfall, which in turn is characterized by basin 

morphometric properties, soil characteristics and land use pattern (Ajibadeet al.,2010). 
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There are basic methods for the assessment of hydrological response which are downward and 

upward approaches. Downward approach gives best fitness between observations and 

simulations while the upward approach represents all the hydrological processes in the river 

system (Hulme and Brown, 1998; Merritt et al., 2006). Climate impacts on runoff and stream 

response are assessed and accomplished by coupling General Circulation Model (GCM) outputs 

and hydrological models. Andersson et al., (2006) employed four GCMs and Pitman stochastic 

and physical based model to measure the impact of varied development and climate change 

scenarios about river system within Okavango river basin. Merritt et al. (2006) appraised the 

response of the river to scenarios of climate change in Okanagan basin accompanied with  three 

GCMs. Zhanget al., (2007b) forecasted the consequence of possible climate change on 

streamflow quantity in Luohe river basin using two GCMs and Soil and Water Assessment Tool 

(SWAT) model (Ahn et al., 2011). Regardless of this, prediction of climate change is still 

challenging (ASCE Task Committee, 2000; Merritt et al., 2006). But available information 

lacks adequate real-time planning especially during the incidences of flood situation and its 

mitigation. Therefore the study aimed to assess stream hydrological response using ANN 

2. Materials and Methods 

(i) Hydrology of the study 

The Shiroro is located on latitude 9° 58’ 00” N and latitude 6° 51’ 00” E. River Kaduna is the 

only riverfeeding Shiroro dam. Shiroro River has fifteen drainage tributaries among its 

watershed and these tributaries are rivers Dinya, Sarkin Pawa, Guni, Erena, and Muyi as shown 

in Figure 1 below;the tributaries flow in the North-South direction and then meander in the 

Northwest to Southeast direction. This river has a low base flow problem and the volume of the 

rivers swell in volume with ranging torrent while in the dry season they dry up.  
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Fig. 1: Map of Nigeria Showing the Location of Niger State with the projected extracts (top and 

right) of Niger State with Shiroro dam inset and the River Kaduna drainage basin, respectively 

Source: Shiroro Local Government Secretariat (2005) 

 

(ii) Data collection/assembly 

Monthly discharge (streamflow), rainfall, temperature and evaporation records were obtained 

for a period of thirty three (33) years (1980 -2012) from the Shiroro Hydroelectric Plc.(2013). 

These variables were used to examine the hydrological response of the area. 

(iii) Establishment of Climate Change Scenarios 

This study utilized incremental scenarios to determine the climate change scenario of the river. 

The establishment of the climate change scenarios was hypothetical, premised on the 

recommendations of Shaka (2008).The thirty-three (33) years streamflow, rainfall and 

temperature data were subjected to climate change scenario and these scenarios according as: 

Scenario I: rainfall data increases by 10%; this was predicated on the seasonal variation 

 of the rainfall; 1.13 seasonal variation index. This implies that on the average, the river 

 experiences about 10% increase at the commencement of the raining seasons.   

Scenario II: rainfall data decreases by 10% 

Scenario III: rainfall’s Coefficient of Variation was doubled 

Scenario IV: temperature data was increased by 3
0
C. 

The study used hydrological statistics such as mean flow, high flow and low flow of the river; in 

this case, the mean flow estimates the average flow in the river channel. The percentage 

coefficient of variation of the monthly hydro-climatic data was estimated as the division of the 

standard deviation by the mean times 100. In the same context, flood frequency and Baseflow 

were also considered. Based on the submissions of Poff et al. (1996)flood predictability was 

estimated as the degree or magnitude to which all bank full events occur over the entire period of 

the record. Itwas computed as the ratio of the number of flood occurrence to the entire event 

distribution or size while Baseflow on the other hand as the ratio of the minimum average flow 

to the mean flow. 

(iii) Development of the ANN 

Artificial Network structure consists of input and output dimensions; the Network architecture is 

as shown in Figure 2. The input include monthly discharge (Q), rainfall (±10%, R), coefficient of 

variation (2CV), temperature (+3
0
C (T) and evaporation (E) for time steps of t-1. while the 

output dimension is streamflow at time t. The ANN has a total 15nodes in the hidden layer for 

both training and validation based on sequential network optimization. 
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Fig. 2:Structure of the feed-forward Artificial Neural Network Architecture 

(a) Modelling Strategy 

The ANN model is written as shown below: 

                        (1) 

where  

               

and, 

  = inputs to flow,   = weight of   and   = critical value. The output of node j, yj, was 

calculated to determine the response of a node to the total input signal it received.  

The forecast function used for this study as stated in equation 2. 

  
   

                
            

            
       (2) 

Where: 

i= year, 

    ,  , and   are parameter sets, 

       = predicted streamflow 

     = applicable hydro-climatic variables as a function of season and elements of climate 

change scenario.  

          =previousmonthly streamflow 
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(b) Database Management 

The entire time series of length of 198 monthly values was partitioned into two sets of 138 

and 60 data point corresponding to training and validation, respectively.  The outcome of the 

training procedure relies on the power of the optimization method utilized to search the 

response surface for the best parameters estimates; training was executed using the Bayesian 

regularization training algorithm so as overcome generalization problems that do results from 

over fitting (Otacheet al., 2012). The entire input and output data were pre-processed and 

standardized using the long term mean and standard deviation for the training and validation 

data sets. The network training was implemented using Matlab routine. 

 

(vi) Performance Criteria 

The performance of the ANN model was evaluated by using both global and distribution 

statistics; these statistics were correlation coefficient (R
2
), Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) as in equation 3-5:  

       
        

  
   

 
(3) 

    
                
   

            
               

   

(4) 

      
 

 
 

       

  

 
   (5) 

where: 

   are the observed values at the ith time step 

  are the simulated values 

 is the number of data points 

   and   are the mean value of observations and simulations 

The measures of forecast accuracy were computed with respect to high and low extreme 

 values(Otacheet al., 2012): 

         
  

  
                           (6a) 

         
  

  
                            (6b)                                                               

Where: 

  
 
 = forecasted maximum 

  
 
 = observed maximum 

  
 
 = forecasted minimum 

    = observed minimum 
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 3. Results and Discussion 

(i)Flow Simulation 

The results of the convergence patterns as a function of RMSE and R
2
 were shown in the 

Table.1 below. 

Table 1: Convergence patterns as a function of RMSE and R
2
 

 

 

 

 

 

Table.1 above shows the RMSE and Correlation Coefficient computed for training and 

validation data sets. Generally, RMSE values ranged between 1.04E-03 and 6.55E-04 for 

training set while that of validation set ranges from 3.25E-04 to 6.58E-04, respectively. The 

ANN model shows varying predictive capability for both seasons in terms of R
2
. As shown in 

Table. 1, the ANN model, on the average performed much better in the dry season period for the 

training and validation periods. The situation in the wet season though good relatively perhaps 

considering the test statistics in the overall could be explained as a direct consequence of the 

seeming variable runoff accretion dynamics. On the other hand, Figure 3(a-f) shows that the 

comparative simulation hydrograph for the different months considered and the variations in the 

simulation regime. It is obvious from the figure that the ANN was able to capture the flow 

dynamics well; this lends credence to the adequacy of the model architecture and effectiveness of 

the optimization algorithm employed. But while it is obvious from Figure 3 (a-c) that the results 

of the estimation between observed and predicted have relative good agreement, Figures 3 (d-f) 

is to the contrary; there is a seeming under-prediction between 2004 and 2008 year periods. The 

only conjecture for this is sheer debilitating climate change effects. 

    

 

 

 

 

 

 
Training 

 

Validation 

      Month RMSE R
2
 RMSE R

2
 

Jan 6.55E-04 0.97 6.58E-04 0.96 

Feb 1.04E-03 0.79 6.40E-04 0.97 

Mar 5.96E-04 0.92 5.92E-04 0.93 

Sept 6.20E-04 0.87 3.25E-04 0.83 

Oct 6.42E-04 0.86 4.81E-04 0.87 

Nov 4.69E-04 0.92 6.28E-04 0.88 
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    (a) January 

 

(b) February 

 

 

(c) March 
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(d) September 

 

 

(e) October 

 

(f) November 

 

Fig. 3: Simulation hydrographs of the seasons in Shiroro hydrological Station 
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Table 2: Summary of measured and simulated hydrological Characteristics 

Variables Observed Predicted 

Average flow 6.6 6.2 

Monthly CV (%) 20.1 16.7 

Predictability of monthly 

flow (%) 30 70 

Flood Frequency(1/yr) 0.9 1.1 

Flood free period(Fraction of 

year) 0.3 0.7 

Baseflow (Min/Mean) 0.8 0.3 

The monthly predictability, flood frequency, flood free period show greater deviation than 

observed values as shown in Table2 above. Also, the average flow, CV flow, and base flow 

exhibited greater deviation than simulated values. It is interesting to note that the findings 

here are relatively in accord with similar works, e.g., Poff et al. (1996), though values of 

climate change scenarios on incremental basis differ slightly and too, there is a seeming 

variation in hydro-climatic regime. Precisely, the simulated values had greater deviation than 

the actual values whereas monthly predictability, flood frequency and flood free period 

exhibited greater deviation than the observed streamflow in this study. This can be 

attributable to the erratic inflow regime or accretion in the upstream and probably the 

definition of climate change scenarios adopted. 

 
Table 3: ANN Model Performance in terms of extreme events  

 

Months      (%)      (%) 

 

Jan 99.6 90 

 

Feb 91.2 104 

 

Mar 101 99 

 

Sept 137 129 

 

Oct 96.2 71.4 

 

Nov 94 84.7 

 Average 103 96.35 

Table.3 above shows the performance of the Artificial Neural Network model in terms of flow 

variability. The extreme flow indices: Rmax and Rminindicate that the ANN model, on the 

average, reproduced the variability of the flow pattern adequately. The Artificial Neural 

Networkmodel over predicted maximum and minimum flow situation; the inability of the 

Artificial Neural Network model to adequately produce flood situation and low flow situation 

could be attributed to variability in rainfall-runoff formation regime.  
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(ii) Hydrological Response to Climate Change Scenarios 

 

 

 

 

 Fig. 4: Responses of hydrological variables in the flow system 

Figure 4 shows the hydrological response of the flow system to climate change scenarios adopted 

for the study. The results of the 10% increase in rainfall yielded excess runoff in the area. When 
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compared with the normalmean rainfall pattern, the riverexperienced about9.5 % increase in 

rainfall which in turn produced increased hydrological variability whereas 10% decrease in 

rainfall resulted in less runoff in the area culminating in 18.5% reduction in flow volume of the 

river. By and large, this scenario led to reduction of flood frequency, mean flow, flow coefficient 

of variation and Baseflow. The results of double CV increased flood frequency, mean flow and 

reduced coefficient of variation flow and base flow. Lastly, the results of increase temperature by 

3
0
Cled to low mean flow, flood frequency; the river experienced additional 11.1 % increase in 

temperature and thus reduced coefficient of variation and Baseflow which in turn increased the 

surface water evaporation of the drainage basin. In summary, against the backdrop of the 

findings here, it suffices to note that the application of climate change scenarios particularly by 

±10% in rainfall and doubled coefficient of variation producedstaggering high flood during the 

wet season and low flow availability in the drying season period. On the other hand, increase in 

temperature led inadvertently to high evaporation. Considering the overall scenario, the 

definition of the hypothetical climate change situation should as a matter of principle derive 

directly from a holistic analysis of the long term trend pattern of the historic data. It is important 

because anything to the contrary might fail to capture appropriately the variations in hydro-

climatic dynamics of the basin. This is so because of the nonlinear nature of the rainfall-runoff 

relationship against the unusual assumption of linearity. 

 

4. Conclusions 

Globally, climate variability has resulted in fluctuations and increasing rainfall which in  turn 

cause river/stream to rise and fall. In view of this, the study assessed the stream hydrological 

response of the basin. From the results, monthly predictability, flood frequency, and flood free 

period deviated strongly from normality; this could be as a result of seeming volatility in hydro-

climatic processes. It is evidently clear however that the ANN forecasting approach is robust and 

effective in view of its high generalization ability. The ANN could simulate stream hydrological 

responsehydrograph with staggering vagaries. The ANN model predicted high flow much better 

than low flow regime; basically because of erratic inflow regime in the upstream of the river 

culminating in unstable dry season regime. The maximum prediction coefficient of correlation 

(R
2
) between the observed and predicted value for the long term monthly streamflow was found 

to be 0.97 (February) while the least was found to be 0.83 (November) which is in concord with 

the variability in wet and dry seasons’ inflow dynamics with respect to the basin drainage 

density.  However, based on the findings it is imperative to stress the need for mobilization of 

sufficient hydrological and climatic data for effective and efficient flood forecasting based on 

flood frequency analysis. Similarly, the use of risk value, resilience and reliability relationship 

with respect to flood adaptation and mitigation in the general context of varying hydro-climatic 

change scenarios is not just expedient but a viable complement to the overall general assessment 

protocol. 

 

 



42 
 

5. References 

Ahn S. R., Park G. A., Jung I. K., Lim K. J., and Kim S. J. (2011). Assessing Hydrologic 

Response to Climate Change of a Stream Watershed Using SLURP Hydrological Model.KSCE 

Journal of Civil Engineering, 15(1), pp: 43-55, doi: 10.1007/s12205-011-0890-9 

 

Ajibade, L.T., Ifabiyi, I.P., Iroye, K.A. & Ogunteru, S. (2010). Morphometric Analysis of 

Ogunpa and Ogbere Drainage Basins, Ibadan, Nigeria. Ethiopian Journal of Environmental 

Studies and Management, 3(1), pp: 1 

http://www.ajol.info/index.php/ejesm/article/viewFile/54392/42910 

Andersson, L., Wilk, J., Todd, M. C., Hughes, D. A., Earle, A., Kniveton, D., Layberry, R., and 

Savenije, H. G. (2006). Impact of climate change and development scenarios on flow patterns in 

the Okavango River. Journal of Hydrology, 331 (1-2), pp: 43-57, doi: 10.1016/j 

jhydrol.2006.04.039 

Alexi, S. C., Juan, B. V., Javier G. P., Kate, B., Luis, J. M. and Thomas, M. (2007). Modelling 

climate change impact and uncertainty on the hydrology of a riparian system. Journal of 

hydrology, Vol. 347(1-2), pp: 48-66  

ASCE Task Committee (2000). Artificial Neural Networks in Hydrology:Hydrologic 

Applications.  Journal of Hydrologic Engineering, 5(2),pp: 124 – 137, 

doi:  http://dx.doi.org/10.1061    . 

Hulme, M. and Brown, O. (1998). Portraying climate scenario uncertainties in relation to 

tolerable regional climate change. Climate Research 10, pp: 1–14 

http://www.int-res.com/articles/cr/10/c010p001.pdf 
  

Merritt, W. S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen, D. (2006). Hydrologic 

response to scenario of climate change in sub watersheds of the Okanagan basin, British 

Columbia. Journalof Hydrology, 326 (1-4), pp: 79-108,   

doi:10.1016/j.jhydrol.2005.10.025 

 

Otache Y. M., Mohammed A. S., Ahaneku I. E. and Egharevba N. A. (2012).  Modelling daily 

flows of River Benue using Artificial Neural Network approach. Nigerian  Journal of 

hydrological sciences Vol. 1, pp: 41-56, ISSN: 2315-6686. 

Poff N. L., S. Tokar and P. Johnson (1996). Stream hydrological and ecological responses to 

climate change assessed with an artificial neural network. Journal  of Limnology and 

Oceanography, 41(5), pp: 857- 863, http://m.aslo.net/lo/toc/vol_41/issue_5/0857.pdf 

Rajib K., M. A. Matin, and Sharmina N. (2013). Response of River Flow Regime to Various 

Climate Change Scenarios in Ganges-Brahmaputra- Meghna Basin. Journal of Water Resources 

and Ocean Science. 2(2); pp: 15-24, doi:10.11648/j.wros.20130202.12.   



43 
 

Shiroro Hydroelectric Plc. (2013). Reservoir operational and meteorology records. Shiroro, 

Niger State, Nigeria 

Solaimani K. (2009). A Study of Rainfall Forecasting Models Based on Artificial Neural 

Network. Asian Journal of Applied Sciences, 2: pp: 486-498, doi:10.3923/ajaps.2009.486.498 

Zhang X., Srinivasan R. and Hao F. (2007a). Predicting hydrologic response to climate change in 

the Luohe River Basin using the SWAT model. American society of Agricultural and Biological 

Engineer, 50(3), pp: 901-910, doi:10.13031/2013.23154    

Zhang, G. H., Fu, S. H., Fang, W. H., Imura, H., & Zhang, X. C. (2007b). “Predicting effects of 

climate change on runoff in the Yellow River Basin of China.” American Society of Agricultural 

and Biological Engineers, 5(3), pp: 911-918. 

 

http://dx.doi.org/10.3923/ajaps.2009.486.498
http://dx.doi.org/10.13031/2013.23154

