DIyty-noginil

Published by Academic Press on behalf of
Published © November, 2022

[^0]
VoL

S/NO.	TITLE/AUTHORS	PAGE
1.	ANDROID BASE IMPROVED AUTOMATION APP (ABIAA) *S. O. ADETONA; *K. U UDEZE; **S. K. OGUAGBAKA	01
2.	CONCEALED BEAM IN REINFORCED CONCRETE STRUCTURES: A PERFORMANCE-BASED ANALYSIS MAHMUD ABUBAKAR*', HASHIM ABDULLAHI ${ }^{2}$, AND MAIKUDI YABAGI SANI ${ }^{3}$	22
3.	REVIEW OF 5G ENABLING TECHNOLOGIES AND BACKHAULING STRATEGIES USMAN, L. A.; MOHAMMED, A. S.; \& ALENOGHENA, C. O.	31
4.	DEVELOPMENT OF AN ENHANCED LIFTING WAVELET TRANSFORM (LWT) FOR VIDEO FRAME COMPRESSION USING BRIGHTNESS IMPROVEMENT TECHNIQUE H. A. ABDULKAREEM, M. D. ALMUSTAPHA, H. ADAMU, U. F. ABDUAGUYE, H. BELLO AND I. K. MUSA	43
5.	ENGINEERING AND ENVIRONMENTAL ADVANTAGES OF SLAG CEMENT CONCRETE: THE NEED FOR SLAG CEMENT IN NIGERIA S. TERLUMUN', ALABI JO', SANNI JACOB ENEWO', MU YUSUF ${ }^{2}$ AS OGBIYE' MS AWOPETU	57
6.	EVALUATION OF THE APPROPRIATENESS OF SUGERCANE BAGASSE ASH (SCBA) AS FILLER IN ASPHALT PAVEMENT RECYCLING TECHNIQUE ABAH JOHNSON CANDY; OJO TTODO DANIEL; \& DR SANI MAGAII	71
7.	DETERMINATION OF COMPRESSIVE STRENGTH OF CONCRETE USING DIFFERENT BRANDS OF CEMENT IN MAIDUGURI, BORNO STATE. AHMED TIJANI GUBIO', ALHAJI BUKAR AI', ZARA KYARI KOLO' AND GAMBO ZUBAIRU'	88
8.	FEASIBILITY DESIGN OF A MOBILE PHONE FOR A FUTURE LOCAL PRODUCTION IN NIGERIA. OLUWATOBILOBA AYOFE', TAOFEEK ABDUL-HAMEED ${ }^{2}$, LUKMAN SAKA ${ }^{3}$, ONYEKACHI AUAH ${ }^{4}$, OLUMIDE ORIMOGUNJE	98
9.	EFFECTS OF THERMAL. VARIANCE ON THE BOND STRENGTH OF SLAG CEMENT CONCRETE SESUGH TERLUMUN'; VICTORIA HASSAN JIYA'; OKAH MICHAEL CHUKWU'; IBRAHIM BADAMASI BILAL'; \& ASHIRU MUHAMMED ASHIRU ${ }^{2}$	114
10.	STUDY OF OPTICAL PROPERTIES OF HYDROXYAPATITE/TITANIUM DIOXIDE FOCUS: IN BANDGAP ENERGY DETERMINATION USING THREE DIFFERENT MODELS. *T. YUNANA; **H. ALI; \& **M. ONIMISI	127
11.	 **IBRAHIM A. SUKAMARI	152
12.	CASE STUDY ON RENEWABLE ENERGY STORAGE TECHNOLOGY BOYA S. N.; YUNUSA M. A.; C. S. ONATE; \& ABDULKADIR A.	168

The authors are fully responsible for their work and they hold sole responsibility for the articles published in the journal. The editors, editorial board and publisher do not assume any responsibility for the article's contents and for the authors' views expressed in their contributions.

Aims and Scope

Timbou-Africa Academic Publication is a peer-reviewed quarterly (beginning in 2019) journal aimed at disseminating significant research and
 of agricultural and biotechnology, sustainable development, medical and 'КІоןоичวә子 pue әэиə!
 and management science, and engineering researches. The journal encourages authors to frame their research questions and discuss their

 pinous səp! make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts.

Submission

The journal offers to authors a fully webenabled online manuscript submission, instructions for authors and review system available at advertising flyer for each quarter. Papers are published in English (British spelling) and the authors are fully responsible for the originality of their

 urged to have the papers reviewed linguistically prior to submission. Manuscripts submitted must be edited, for clarity and conformity purposes according to Authors guidelines, and must not have been previously published or simultaneously submitted elsewhere. The papers can be
 responsibility for the integrity of the work as a whole, from submission to

and respecting the
educational rights.

 journal appears quartenths):
First Edition: January-March

Third Edition: July-September
Fourth Edition: October-December

Publication Ethics and Publitation Malpractice Policy

The journal respects the publication ethics norms, based on internationally accepted best practice guidelines for iournal editors.

capacity (Eze et al, 2018). Other enabling technologies include small cells, millimeter-wave (Akyildiz et al., 2016) and mobile backhauling (Nasr \& Fahmy, 2017).
 backhauling strategies, and proposes an energy efficient priority

ENABLING TECHNOLOGIES

Massive MIMO
 .
turan TIMBOU-AFRICA ACADEMIC PUBLICATIONS

antennas are deployed at the base station each with their respective radio frequency chain. This results in massively enhanced spatial multiplexing performance, serving tens of user equipment with greater reliability (Harris et al., 2016).
Increase in the number of antennas in a massive MIMO system result to narrower radiated beams. These beams are spatially focused towards the user. These spatially focused antenna beams increase the throughput for the desired user and reduce the interference to the neighboring user (Chataut \& Akl, 2020); cellular and backhaul services (Alsharif\& Nordin, 2016).
The millimeter-wave spectrum is attractive for future wireless systems because of the massive amount of raw bandwidth that is available for According to International Telecommurication Union (ITU), millimeterо -300 GHz (Ahmed et al., 2019). The millimeter-wave has the following pros which make it suitable for wireless backhauling of small cells; Extremely Wide Bandwidths:
Compared with existing wireless networks, millimeter-wave communications employ much higher frequencies as carrier frequencies.
 quite alluring under the conditions of intensive spectrum (Wang et al., 2018).

Small Element Sizes:

arrays to be packed in small physical dimension (Wang et al., 2018).

TIMBOU-AFRICA ACADEMIC PUBLICATIONS TIMBOU-AFRICA ACADERNTIONAL IOURNAL OF: NOV, 202 EOIIIONS, INTERN ENGINEERING RESOURCE $\&$ TECHNOLOGY VOL. 11

Narrow Beams:
With the same antenna size, it is possible to pack more antenna elements
 beam can be narrower, which can further facilitate the develop other applications, such as detection radars (Wang et al., 2018). The propagation properties of millimeter-wave at 60 GHz and at $70-80$
 This spectrum is spacious and can potentially minimize interference with highly directive narrow beam-width antennas.

Millimeter-wave signals do not travel very far, and cannot penetrate walls, therefore making small cells vital for their in-building coverage (Oliver, 2021).

Small Cells

 provide coverage and capacity over smaller areas (Salami et al., 2019). Small cells are majorly categorized into three depending on the coverage area and number of users they can support.

Femtocells:

 provide extended coverage fer small cells. They are designed to The poor signal strength from midential and enterprise applications. solved using Femtocell implementation operators' base stations can be offload network congestion, extion. They are primarily introduced to for indoor users. Femtocells typi coverage and increase data capacity coverage area of 10 to 50 meters (Baby, 2022). 8 to 16 users with a
Picocells:

Small indoor spaces like buildings or aircraft are covered by picocell

 2022). Picocells boast a more extensive range of up to 200 meters, they can support a maximum of 100 users (Zola \& Lewis, 2022).
 cells sizes. They are suitable for applications like smart cities. The coverage area for microcells is between 500 meters to 2.5 kilometers, supporting up to 200 simultaneous users (Baby, 2022).

The demand for massive network capacity to support more users begs
 backhaul to be one of the main problems facing the deployment of smalls cells (Nasr \& Fahmy, 2017).

Mobile Backhaul
Backhauling is the forwarding or receiving of the end user traffic to or
from the core network, as well as to exchange mutual information among different small cells (Siddique et al., 2015).

There are two methods or ways of implementing backhaul, one way is to use copper or optical fiber in a wired connection, providing high reliability and high data rates (Orainy, 2016). This method of implementing backhaul is very costly and considering the densification of small cells that comes into play for the realization of 5 C networks, wired backhauling would also be very complex to implement. In contrast
 backhauling has recently been recognized as a practical and affordableриә－оł－puə алә！чวеstrategy that enables network oper ，2015）．Satellite о！pey＇wnцววads алемо八刀！ frequency bands，Sub－6 GHz spe Frequency（RF）
（Orainy，2016）．
 small cells，which makes it the most suitable for the backnauling of networks．

TOPOLOGIES OF SMALL CELLS

 syu！l SOTN pue 507 dot Uolperap！suos s！arayt＇sa！sojodot asayt to

Centralized or Star Topology

 ｜｜ə微 of transmission power，with each having the same coverage（Ahmed

 The star topology has a
 there is a single point

TIER1］ SSN：2707－5654
 ॥едәло алодәлац1 'дамоd 子!

 a topology that aims to conserve energy through very limited multi-hop routing.
In this topology, a node connects to the central or aggregator node and

 nodes. With this structure, each node has three path to the aggregator node through which they can forward their backhaul traffics. The structural representation of the proposed topology of small cells is presented in Figure 3.

Figure 3: Layout of the Proposed Topology
 single point of failure and reducing link congestion. With the availability
 is employed to route backhaul traffic using suitable Quality of Service (QOS) parameter as KPI. Since energy conservation is the outmost priority is this system, the system is designed to forward backhaul traffic
тиват

TIMBOU-AFRICA ACADEMIC PUBLICATIONS
 ENGINEERING RESOURCE \& TECHNOLOGY vOL.11

overview, recent trends, challenges, and future research direction. Sensors, 20(10),
2753
Eze, K. G.,
K. G., Sadiku, M. N. O., \& Musa, S. M. (2018). 5G Wireless Technology: A Primer.
International Journal of Scientific Engineering and Technology. 7(7). $62-64$ Harris, P., Hasan, W. B., Brice, H., Chitambira, B., Beach, M., Mellios, E., Doufexi, A. (2016). An Overview of Massive MIMO Research at the University of Bristol. Radio Propagation and Technologies for 5G (2016). doi:10.1049/ic.2016.0064

Khan, S. (2022, November 8). The 5C Network Backbone: A Guide to Small Cell Technology. Telit. Retrieved from https://www.telit.com/blog/sg-networks-guide-
to-small-cell-technologyl
Nasr, A. I., \& Fahmy, צ. (2016). Millimeter-wave wireless backhauling for 5 C small cells: Star versus mesh topologies. 2016 28th international Conference on Microelectronics (ICM). doi:10.1109/icm.2016.7847914

Nasr, A. I., \& Fahmy, Y. (2017). Millimeter-wave wireless backhauling for 5 G small cells: Scalability of mesh over star topologies. 2017 IEEE 18th International Symposium on

A World of Wireless, Mobile and Multimedia Networks (WoWMoM)
Oliver, D. (2021, February 18). 5C Small Cells: everything you need to know. 5 C Radar. Retrieved from https://www.5gradar.com/features/sg-small-cells-everything-you-need-to-know

Orainy, A. A. A. (2016). Wireless Backhauling for 5 C. Small Cell Networks. International
Journal of Electrical, Electronic and Communication Sciences. 10(2): 267-270 https://doi.org/10.5281/ZENODO. 1111719

Sahu, G., \& Pawar, S. S. (2020). Wireless backhaul networks: centralised vs. distributed scenario. International Journal of Systems, Control and Communications, 11(3), 261. doi:10.1504/iscc.2020.109075

Salami, G., Faruk, N., Surajudeen-Bakinde, N., \& Ngobigha, F. (2019). Challenges and Trends in 5 C Deployment: A Nigerian Case Study. 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf). doi:10.1109/nigeriacomputconf4597 Siddique, U., Tabassum, H., \& Hossain, E. (2017). Downlink spectrum allocation for inband and out-band wireless backhauling of full-duplex small cells. IEEE Transactions on Communications, 65(8), 3538-3554. doi:10.1109/tcomm.2017.2699183

Siddique, U., Tabassum, H., Hossain, E., \& Kim, D. I. (2015). Wireless backhauling of 5 C small cells: challenges and solution approaches. IEEE Wireless Communications,

22(5), 22-31. doi:10.1109/mwc.2015.7306534

Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., \& Chen, G. (2018). Milimeter
Wave Communication: A Comprehensive Survey. IEEE Communications Surveys \&
Tutorials, 1-1. doi:10.1109/comst.2018.2844322
Zola, A., \& Lewis, S. (2022, November 8). Small cells. Tech Target. Retrieved from
httos://www.techtarget.com/searchnetworking/definition/small-cell

тиаат

[^0]: Notice \quad Acablication is not The Editorial Board of Timbou-Africa Academic pepresent the
 views of the authors or persons to whom they are credited. Pendation or research information does not endorsement of products involved.

