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a b s t r a c t

Spectrum sensing is an important technological requirement in the quest to realize dynamic spectrum
access (DSA) in today’s wireless world. Cognitive radio (CR) has been identified as an enabling technology
that will considerably mitigate the effect of spectrum underutilization and cushion spectrum scarcity.
But for this to happen, fast and accurate sensing technique must be developed. Quite a number of
spectrum sensing techniques are available in literature, but these are not without inherent short comings.
Recently, applications of wavelet techniques for spectrum sensing is receiving attention in the research
community, this is attributed to its unique ability to operate both in the time and frequency domains
and its suitability for wideband sensing. This paper takes a general look at the applications of wavelets
in solving problems in science and engineering and then focused on its recent applications in spectrum
sensing. Besides discussing the general spectrumsensing techniques in literature, the paper also discussed
wavelet-based spectrum sensing, and its variants; pointing out themerits and limitations of each. It noted
that, like any other sensing technique, wavelet-based technique has its strengths and weaknesses, hence,
the advantages and disadvantages of this technique are also highlighted. Also, wavelet techniques in
spectrum sensing was variously compared with existing wavelet sensing techniques; other spectrum
sensing techniques; and existing wideband sensing techniques. Emerging research trends involving
wavelets in wireless communications systems design are discussed while some challenges posed by
wavelet techniques arementioned. The paper is intended to provide necessary information and serve as a
pointer to relevant literatures for researchers seeking information about wavelets and their applications
in science and engineering and particularly in spectrum sensing for CR.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The electromagnetic radio spectrum is a unique natural re-
source which can be reused over and over by both transmitters
and receivers that are licensed by regulatory bodies and also the
unlicensed radios based on a given plan. This property of reusabil-
ity makes the radio spectrum a high-valued commodity with the
capability of allowing a large number of concurrent users derive
maximum benefit from it as long as goodmanagement and careful
planning are observed. However, with increasing wireless appli-
cations, there appears to be a scarcity of radio spectrum. Investi-
gation has revealed that this scarcity is caused by poor utilization
of allocated radio spectrum by primary users of such spectrum,
causing wastage andmaking the spectrum appear scarce [1,2]. The
second cause of the scarcity of radio spectrum is the convergence of
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wireless communications and computing systems, which include
entertainment systems, information systems, andmultimedia sys-
tems. This convergence has increased the competition for available
wireless bandwidth, hence the scarcity [3].

Cognitive radio (CR) is a technological innovation that is envis-
aged to provide solution to the problem of static spectrum alloca-
tion and thus enable dynamic spectrum access andmanagement in
wireless communication systems. Its core objective is the provision
of spectrum through dynamic and opportunistic access of the
primary user spectrum so long as there is no harmful interference
to the primary user; in so doing it helps to guarantee efficient
utilization of the radio spectrum. CR devices are developed with
an in-built capacity to sense and predict the environment in which
they operate. Apart from sensing, CR is also characterized by three
other distinct operations [4,5], these operations include spectrum
decision, spectrummobility and spectrum sharing. Fig. 1 [5] shows
the relationship between these four operations.

The relationship between these four operations [4,5] is a work-
flow process which a CR must go through in order to achieve its
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Fig. 1. Cognitive cycle of a cognitive radio.

core objective. The four operations are distinct fromeach other, but
they also rely on each other to achieve the desired performance for
a CRnetwork. The first operation the CRperforms is spectrumsens-
ing in order to detect whether or not a radio spectrum is present; if
it is, then the spectrum sensing operation determines howmuch of
the spectrum is available for utilization by estimating the frequen-
cies that are vacant. The spectrummobility anddecision operations
both tap from the output of the spectrum sensing operation to
make a transition/decision, as the case maybe, to better frequency
bands; in the course of this transition, it also ensures there is no
interruption in communication. The spectrum decision operation
decides on how best to use a vacant spectrum and how long a
secondary user (SU) can utilize the vacant frequency. The spectrum
sharing operation ensures that the allocation of vacant frequencies
is done fairly among secondary users. From Fig. 1, it can be seen
that all the four distinct operations are critically important for a
successful CR operation; if any of the four operations fails, then CR
functionality will not be attained. For example, the failure of the
spectrum sensing operation,which is the first operation performed
by the CR, would imply the basic objective of dynamic spectrum
access will not be achieved.

In the CR cycle, spectrum sensing operation has received a lot
of attention from researchers probably owing to the fact that it is
the first in the series of functions a CR must perform to achieve
dynamic spectrum access. Recent researches into the development
of techniques for spectrum sensing includes the application of
particle swarm optimization to address the trade-off between
sensing time and throughput [6]. Kernel least mean square (KLMS)
algorithm has been applied to achieve spectrum sensing in which
each SU makes a binary decision on its local sensing using energy
detection [7]. Analytical and learning-based spectrum sensing over
channels with both fading and shadowingwas proposed in [8]. The
technique involves the analysis of the performance of an energy
detector under local and collaborative scenarios in unreliable en-
vironments dominated bymultipath fading and shadowing effects.

In a CR, the spectrum sensing operation is achieved through
the identification of spectrum holes or white spaces in a given
radio spectrum. The spectrum holes [9] are a band of frequencies
allocated to a licensed user, but at a particular instance of the
space–time continuum, such band is unutilized by the primary
user. Fig. 2 [10] depicts a spectrum band with spectrum holes in
it.

Quite a number of techniques exist in the identification of
spectrum holes or spectrum sensing as will be discussed in the
following sections. However, this paper will pay a special attention
to wavelet-based spectrum sensing for two major reasons: (a)
it can sense a wide range of frequencies without the non-cost-
effective deployment of multiple bandpass filters (BPF) and (b)
its ability to resolve signal components and features in both time

Fig. 2. Spectrum band with spectrum holes or white spaces.

domain and frequency domain. It is anticipated that wideband
sensingwill become important to CRs of the future,whichwill need
a better opportunity for spectral hole identification. Therefore, the
main objective of this paper is to conduct a comprehensive survey
on the application of wavelets in spectrum sensing in terms of
its strengths, weaknesses, and current research challenges in its
application. The paper also highlights the properties of wavelets
which makes them particularly suitable for spectrum sensing, and
the advantages and disadvantages of the application of the three
variants ofwavelets in spectrum sensing. Another objective for this
survey is to highlight how well wavelet-based spectrum sensing
performswhen comparedwith other spectrum sensing techniques
especially in wideband sensing.

The rest of the paper is organized as follows. Section 2 explores
different spectrum sensing techniques in cognitive radio, high-
lighting the characteristic equations of each. Section 3 presents
the types of wavelets available in literature, and their classification
based on the type of properties each possesses. Section 4 throws
light on the application ofwavelets in different fields of science and
engineering. Section 5 explores wavelet based spectrum sensing,
highlighting the three variants ofwavelet-based spectrum sensing,
with their advantages and disadvantages. Section 6 presents an
example of the performance of a wavelet system based on the
choice made in terms of the mother wavelet. Section 7 presents
three comparisons, the first being on previous works on wavelet
based spectrum sensing; the second being a comparison ofwavelet
based spectrum sensing with other spectrum sensing techniques;
and the third is a comparisonbetweenwavelet andotherwideband
sensing techniques. Section 8 gives the generalized advantages
and disadvantages of wavelet-based spectrum sensing technique.
Section 9 reviews current research trends in wavelet-based spec-
trum sensing. Section 10 highlights research challenges in wavelet
based spectrum sensing. Finally, the paper gives a conclusion in
Section 11.

2. Spectrum sensing techniques in cognitive radio

There are quite a number of techniques that are used in spec-
trum sensing, some of which include matched filter detection, en-
ergy detection,waveform-based detection, Cyclostationary feature
detection, andwavelet-based detection. In this section, we analyze
these spectrum sensing techniques.

2.1. Matched filter detection

The matched filter detection is used in the detection of primary
user as long as there is prior knowledge of the transmitted sig-
nal. This technique achieves maximum signal-to-noise ratio (SNR)
in the presence of additive white Gaussian noise (AWGN) [11].
Fig. 3 [11] shows the block diagram of spectrum sensing using
matched filter detection technique.
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Fig. 3. Spectrum sensing using matched filter detection.

Fig. 4. Energy detector.

As shown in Fig. 3, there are two possible outcomes from the
thresholding block, one isH0 which is theNULL hypothesis, and the
other isH1 which is the alternate hypothesis. These hypotheses are
mathematically represented [11], as a distribution of a test statistic
T :

T ∼

{
H0 : x[n] = w[n], n = 0, 1, . . . ,N − 1

H1 : x[n] = s[n] + w[n], n = 0, 1, . . . ,N − 1 (1)

where x [n] is the received signal, w [n] is AWGN with zero mean
and variance σ 2, and s [n] is the source signal which is known.

The probability of false alarm and probability of detection for
the matched filter are expressed as:

Pfa = P
(
T > γ ′/H0

)
= Q

(
γ ′

√
σ 2ε

)
Pd = P

(
T > γ ′/H1

)
= Q

(
γ ′

− ε
√
σ 2ε

) (2)

where γ ′ is the threshold, and it is equivalent to Q−1
(
Pfa

)√
σ 2ε;

Q (.) is the Gaussian Complementary Density Function (CDF).
The matched filter detection has the following advantages: it

requires low sensing time, and it has high processing gain achieved
in a small amount of time. The disadvantage of the matched filter
detection includes the requirement for perfect knowledge of the
primary user signal, and the dedication of a receiver for each
primary user signal.

2.2. Energy detection

Energy detection technique requires no prior knowledge of the
primary user signal to achieve spectrum sensing [12]. This makes
the technique achieve low computational and implementation
complexities. The operation of the energy detection method as
shown in Fig. 4 is such that a received signal is passed through a
bandpass filter which narrows the measurement of information
in the received signal to the band of interest. The signal is then
passed through a squaring device in which every term in the
signal is squared in order to measure the energy by the integrator
block [13]. A threshold device is then applied to the computed sig-
nal energy to determine whether or not a primary user is present.

Given the binary hypothesis in (1), the energy over N samples
is computed as [14]:

y =
1
N

N∑
n=1

|x [n]|2. (3)

If y is greater than a predetermined threshold λ, the receiver
selects the hypothesis H1, otherwise hypothesis H0 is selected i.e.
Pfa = P (y < λ/H0)
Pd = P (y ≥ λ/H1) .

(4)

Fig. 5. Waveform-based detection.

The two major advantages of the energy detection methods
are: low computational as well as implementation cost, and non-
requirement of prior knowledge of the primary user signal. The
disadvantages of this technique include: not being useful for direct
sequence and frequency hopping signals, and poor performance at
low signal-to-noise ratio.

2.3. Waveform-based detection

Waveform-based detection is usually applied when the sys-
tem knows the pattern of the incoming signal, which is usually
used for synchronization purposes. The patterns which are also
called preambles, are known sequences transmitted before each
burst [15]. As shown in Fig. 5, sensing is achieved by performing
a correlation between the received signal and a known copy of
itself [16].

For a received signal x [n] defined in (1), the correlation block in
Fig. 5 involves the use of waveform-based sensing metric which is
given as [16]:

M = ℜe

[
N∑

n=1

x (n) s∗ (n)

]
(5)

where ∗ is conjugation operation. When a primary user is absent,
the metric becomes:

M = ℜe

[
N∑

n=1

w (n) s∗ (n)

]
. (6)

In the presence of a primary user, the metric becomes:

M =

N∑
n=1

|s (n)|2 + ℜe

[
N∑

n=1

w(n)s∗ (n)

]
. (7)

The decision on whether a primary user signal is present or not
ismade by comparing the decisionmetric against a fixed threshold.

The advantages of waveform-based detection include low
power consumption, and medium complexity in implementation.
The disadvantages of this technique include the requirement of
prior knowledge of the primary user signal, and low sensing ac-
curacy.

2.4. Cyclostationary detection

Cyclostationary detection deals with the periodicity of periodic
signals. This technique uses spectral correlation function to detect
the periodicity of the signal from the primary user [17]. Sinusoidal
carriers, pulse trains, spreading code, and other features are ex-
ploited by Cyclostationary detection technique in the detection of
periodicity [18]. The procedure bywhich Cyclostationary detection
achieves spectrum sensing is shown in Fig. 6.

For the received signal x [n], the cyclic spectral density (CSD)
function is [16]:

S (f , α) =

∞∑
τ=−∞

Rαx (τ ) e
−j2π f τ (8)
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Fig. 6. Cyclostationary detection.

where Rαx (τ ) = E
[
x (n + τ) x∗ (n − τ) ej2παn

]
is the autocorrela-

tion function, and α is the cyclic frequency.
For a given white Gaussian noise present at the input of the

detector defined as ψ =

⏐⏐⏐ρ̂αx⏐⏐⏐2, the detection statistic will have
a cumulative distribution function expressed as [19]:

Fψ (ψ | H0) = 1 − (1 − ψ)N−1 (9)

where ρ̂
α
x is the spectral autocoherence function, N is number of

samples, H0 is the NULL hypothesis i.e. when the primary user is
absent. Using the cumulative distribution function, the probability
of false alarm PFA can be determined for the H0 case. If the given
threshold is d, then:

PFA = Pr (ψ > d | H0) = (1 − d)N−1. (10)

Cyclostationary detection has the advantage of performingwell
at low signal-to-noise ratio, and being very robust to noise. How-
ever, the disadvantages of this technique include high complexity
in computation, and long observation time in order to achieve
desired level of performance.

2.5. Wavelet-based detection

The wavelet-based detection technique is unique from other
techniques in the sense that while the other techniques operate
only in the frequency domain, the wavelet-based technique op-
erates in both the frequency and time domains [20]. The time-
frequency characteristics makes a wavelet peculiar in the sense
that it is able to localize a signal in terms of frequency and time
through the use of its scaling and wavelet functions. Wavelets are
implemented using filter banks with highly desirable properties
for spectrum sensing. These properties include orthonormality,
paraunitary condition, and k-regularity.

2.5.1. Orthonormality
This is a property in which the bases of a wavelet in a particular

application are all mutually orthogonal to each other, and are all of
unit lengths. This is a very attractive property for spectrum sensing
based on wavelets because the signal being sensed can be decom-
posed into separate, independent, and non-interacting partswhich
can be processed individually [21]. Any wireless communication
system built on wavelets enjoys great spectral efficiency because
of orthonormality ofwavelets, which eliminates the need for guard
bands and cyclic prefixes as in Fourier transforms. The orthonormal
property of a wavelet has the form [21–23]:

ψj,k = |det A|
j/2ψ

(
Ajx − k

)
, j ∈ Z, k ∈ Zn (11)

where A is an expansive matrix, ψ i
j,k : i = 1, . . . , l, j ∈ Z, k ∈ Zn is

an orthonormal basis for L2 (Rn).

2.5.2. Paraunitary condition
The paraunitary condition guarantees the generation of or-

thonormal bases in a wavelet application. Its most attractive prop-
erty is that it enables perfect reconstruction in a wavelet-based
transmission system, which is very important in developing highly
accurate spectrum sensing techniques based on wavelets [24].

Fig. 7. Filter bank implementation of a wavelet system.

Given the filter bank implementation of a wavelet shown in
Fig. 7 [24], paraunitary condition exists when [24,25]:
−

E(z)E(z) = I (12)

where E(z) = E (1/z∗) .

2.5.3. K-regularity
Regularity gives a measure of the smoothness of wavelet func-

tion ψ (t) and scaling function φ (t) in both time and frequency.
The regularity of the scaling function φ (t) is the maximum value
of r such that [26,27]:

|Φ (Ω)| ≤
c

(1 + |Ω|)r+1 ,Ω ∈ R (13)

which implies that φ (t) is said to be m-times continuously differ-
entiable with r ≥ m. In (13), the decay of Φ (Ω) determines the
regularity or smoothness of φ (t) and ψ (t).

Regularity also provides the means by which compactly sup-
ported orthonormal wavelet bases can be generated. Regularity of
wavelets is very attractive in spectrum sensing because it guar-
antees the accuracy of a spectrum sensing technique built with
wavelets because of the smoothness factor.

3. Types and classification of wavelets

Wavelets, as shown in Fig. 8, are categorized into two groups
[28]. The first category are wavelets defined by mathematical
expressions which are continuous and infinite in nature [28]. They
are also called crude wavelets, and for them to be useful in any
signal processing system, they have to be converted to wavelet
filters with a finite number of discrete points. A typical example
of this type of wavelet is the Mexican hat wavelet shown in Fig. 8.

The second category of wavelets are wavelets that start out
as filters having two points of definition in the initial state [28].
Through the interpolation and extrapolation of more points from
the initial two points, these wavelets generate an approximation
of a continuous wavelet. A typical example of this type of wavelet
is the Daubechies 4 (Db4) wavelet shown in Fig. 8 [28,29].

Wavelets have an extensive application in different fields of
science and engineering. They have different properties, which
make them most suitable for a particular area of application. The
biorthogonal wavelets have wavelet and scaling functions that are
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Fig. 8. Types of wavelets.

symmetric. This property makes the biorthogonal wavelets ideal
for human vision perception since the human vision system is
more tolerant to symmetric errors than asymmetric error [30]. The
asymmetric errors are usually found in wavelet transforms like
Haar, symlet, and Daubechies.

The Shannon wavelets have sharp localization and infinite sup-
port in frequency. This makes them ideal in the identification of
events with specific frequencies [31,32]. The Haar wavelets have
two important properties that make them ideal for edge detection.
The first is that Haarwavelets conserve the energies of signals [33].
The second is that Haar wavelets are exactly reversible without
edge effects [34]; this property is very important in edge detection.

A high number of vanishing moments coupled with the almost
interpolating and linear phase low-pass within a given passband
makes Coiflet wavelets ideal in numerical analysis and is hence
able to deal with fractals in signal processing [35].

The Daubechies wavelets have good regularity, multiple van-
ishing moments, and approximate symmetry. These features are
highly desirable in signal processing anddata compression applica-
tions because thewavelets increase in smoothness as the vanishing
moments increase [36,37]. An example illustrating Daubechies
suitability for spectrum sensing is provided in Section 6.

The Morlet wavelet is often applied in environmentally-
oriented signals like earthquake vibrations. The ability of the Mor-
let wavelet to capture bothmagnitude and phase characteristics of
a signal while retaining the temporal nature of the signal makes it
attractive in this area of application [38–40].

The Mexican hat wavelets have good localization of patch and
gap events. They also have good resemblance of MUAPs (motor
unit action potential) which makes them widely applicable in
EMG (electromyography) [41,42]. The foregoing classification of
wavelets based on their functions is summarized in Table 1.

4. Application of wavelets

Wavelets have found use in different fields of human endeavor
owing to their flexibility and ability to localize events. It functions
by detecting the edges of the object of interest. In the study of
earthquakes, wavelets have been extensively applied [62–64] to
analyze the impact of earthquake on buildings, and also analyze
the behavior of volcanic mountains; the analysis is usually done
by measuring the energy contents of decomposition levels for
every monitoring points in a building, based on wavelet energy
content analysis. In the field of medical sciences, wavelets are
used extensively in classification of tissues, and production of
medical images [65–67]. In the detection of faults in machines,

wavelets are used to identify and localize faults in rotatingmachine
components [68,69]. Wavelets have also found use in nutrition,
especially in the study of consumption patterns by humans [70].
In signal processing and analysis, wavelets are the natural tool of
choice for the study of signals with abrupt and localized changes;
this is because wavelets can be shifted in time and stretched in
frequency. As a result of this dual property, wavelets are able to
detect edges in both frequency and time for any given signal by
identifying the time and frequency location of various levels of
energy in the signal [71,72]. Wavelets have also found use in stock
market prediction, especially in the study and prediction of stock
market trading [73].

Of recent,wavelets have been applied in spectrum sensing,with
a promising prospect of bringing on a new and better approach
to spectrum sensing especially when wide band signals are in-
volved [74–76]. The next section will discuss wavelet application
in this area.

5. Wavelet-based spectrum sensing

Wavelets are signals of finite duration. They differ theoretically
from sinusoids in the fact that while sinusoids stretch from −∞ to
∞, wavelets have a finite starting and terminal points. In wavelet-
based spectrum sensing, the assumption is that the CR system
receives a signal which is occupying N spectrum bands, and the
CR has to detect the PSD (power spectrum density) levels and the
frequency positions of each band. Fig. 9 [77] shows a spectrum
band located between f0 and fN , with their respective sub-band
frequencies located at f0 < f1 < · · · < fn. The nth band shown
in Fig. 9 is defined by [78] as:

Bn : {f ∈ Bn : fn−1 ≤ f < fn} , n = 1, 2, . . . ,N. (14)

A CR system receiving an input signal, computes its PSD by:

Sr (f ) =

N∑
n=1

α2
nSn(f ) + Sw(f ), f ∈ [f0, fN ]. (15)

Application of wavelet technique to spectrum sensing currently
has three variants. These include the continuous wavelet tech-
nique, discrete wavelet technique and discrete wavelet packet
technique. These are briefly discussed as follows.

5.1. Continuous wavelet transform-based spectrum sensing

The continuous wavelet (CWT) based spectrum sensing [77]
measures the similarity between a signal and an analyzing function
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Table 1
Classification of wavelets.

Area(s) of application Type of wavelet

Human vision perception Biorthogonal wavelets [43,44]
Identification of events with specific frequencies Shannon wavelets [45,46]
Edge detection and reconstruction of binary pulses Haar wavelets [47–49]
Fractals—data with self-similarities Coiflets wavelets [50–53]
Signal processing and data compression Daubechies wavelets [54–57]
Vibration and sound Gaussian and Morlet wavelets [58,59]
Biomedical signal analysis Mexican hat wavelets [60,61]

Fig. 9. N frequency bands with piecewise smooth PSD.

by using inner coefficients. There are two approaches to achieving
spectrum sensing using continuous wavelet: multi-scale product,
and multi-scale sum. The multi-scale product technique involves
the determination of discontinuities in the PSD of a signal by taking
the multi-scale and wavelet transforms, and then estimating the
edges given in [77,79] as:

p(f ) =

J∏
j=1

W ′

s=2jSr (f ) (16)

where J is the upper limit for scale j, the index of the scaling
function; Sr (f ) the PSD of the received signal, W ′

s=2j
the first order

derivative at scale s = 2j, and p(f) is the multiscale product.
This computation is done under an assumption that discontinuities
that exist in the PSD represent the spectral boundaries. For each
sub-band, the energy is calculated to determine the spectrum
occupancy.

The multi-scale sum technique [80] relies on the fact that dif-
ferent signals have different cross scales information at dissimilar
scales. This implies that the wavelet transforms at different scales
contain information about the Lipschitz exponent at sharp varia-
tion points. Hence multi-scale sum technique is used to preserve
information about the signals at all scales, and also avoid attenua-
tion. For a CWT, the multi-scale sum at the jth dyadic scale is given
as:

XjSr (f ) =

J∑
j=1

W2jSr (f ) . (17)

Table 2 shows some of the advantages and disadvantages of the
continuous wavelet transform-based spectrum sensing technique.

5.2. Discrete wavelet transform (DWT) based spectrum sensing

The discrete wavelet transform (DWT) decomposes an input
signal x[m] to obtain a coarse and detail information. The decom-
position which enables the DWT to analyze a signal at different
frequency bands and resolution, is achieved through successive

Fig. 10. DWT filter bank.

highpass and lowpass filtering of the time-frequency domain sig-
nal [81,82]. Mathematically, this can be expressed as:

yhigh[k] =

∑
m

x[m]h1[2k − m] (18)

ylow[k] =

∑
m

x[m]h0[2k − m] (19)

yhigh[k] is the highpass filter output and ylow[k] is the lowpass
filter output; h0 is the lowpass filter coefficient, and h1 is the
highpass filter coefficient.

The outputs are obtained after filtering anddown sampling by 2.
To achieve spectrum sensing, the DWT upon decomposition of the
signal, obtains the scaling (coarse) coefficients, andwavelet (detail)
coefficients of the signal. The signal power in these coefficients
is calculated and compared against a predetermined threshold.
Mathematically, the scaling (cj) and wavelet (dj) coefficients are
represented in [83,84] as:

cj(k) =

∑
m

h0(m − 2k)cj+1(m) (20)

dj(k) =

∑
m

h1(m − 2k)cj+1(m). (21)

Fig. 10 [85] shows the DWT filter bank used in the implementa-
tion of the DWT.

The discrete wavelet transform-based spectrum sensing tech-
nique has itsmerits and demerits, these are summarized in Table 3.

5.3. Discrete wavelet packet transform (DWPT) based spectrum sens-
ing

The discretewavelet packet transform (DWPT) operates like the
discrete wavelet transform, but, with a difference which lies in the
fact that the DWPT transform decomposes both the approximate
space and detail space of a signal [86,87]. Fig. 11 [88] shows the
structure of the DWPT. From Fig. 11, it can be seen that DWPT
decomposes a signal x[n] into 2L sub-bands, where L is the level
of decomposition.

To achieve spectrum sensing, the energy in each of the sub-
bands is calculated [88] and compared against a threshold to de-
termine if the sub-band is either occupied or not occupied by the
primary user. The calculation of the energy in each sub-band is
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Table 2
Advantages and disadvantages of continuous wavelet transform-based spectrum sensing technique.

Advantages Disadvantages

CWT makes better localization of transients in a signal, also better
characterization of oscillatory behavior.

CWT has excessive redundancy and it is computationally intensive, so
it is often used in offline analysis.

CWT has fine grained resolution, which is why it is usually chosen for
singularity detection.

CWT does not provide phase information for an analyzed signal.

CWT has high fidelity in signal analysis due to its fine sampling scales. An original signal cannot be perfectly reconstructed from CWT
coefficients.

Table 3
Advantages and disadvantages of discrete wavelet transform-based spectrum sensing technique.

Advantages Disadvantages

DWT provides sparse representation of many natural signals by using a
subset of coefficients to capture important features of signals.

DWT suffers from shift sensitivity whereby a shift in an input signal
causes an unpredictable change in coefficients of the transforms.

DWT provides a high quality approximation of a signal thereby
achieving signal compression. This is done by discarding many of its
coefficients that are close to zero.

DWT has poor directionality which compromises the optimality of the
DWT representation of signals in image processing.

DWT have perfect reconstruction and are computationally efficient
because they have non-redundant orthonormal bases.

DWT lacks phase information which is important in the description of
the amplitude and local behaviour of a function.

Fig. 11. DWPT structure.

given by [89,90] as:

E =
1
T

∫ T

0

⎡⎣∑
j≥j0

∑
k

cj,kϕj,k(t) + dj,kψj.k(t)

⎤⎦2

dt (22)

E =
1
T

∑
j≥j0

∑
k

(
c2j,k + d2j,k

)
. (23)

It can be seen from (23) that for a DWPT, the sum of the
square of the coefficients of the approximate space and detailed
space is used in the calculation of the energy in each sub-band.
The discretewavelet transform-based spectrum sensing technique
also has some benefits and limitations, which are summarized in
Table 4.

Fig. 12. Coefficients in sub-band channels at level-5 DWPT Decomposition.

6. An example of performance of wavelet systems in terms of
choice of mother wavelet

The choice of a mother wavelet in any design depends on the
application area as shown in Table 1. For spectrum sensing in cog-
nitive radio, the choice of a mother wavelet would be Daubechies
wavelet because spectrum sensing could be viewed as signal pro-
cessing. As an example, using Daubechies wavelet as a mother
wavelet because of its desirable properties in signal processing
and data compression in communications systems, a cognitive
radio system implemented as discrete wavelet packet transform
based orthogonal frequency division multiplexing (OFDM) with
five levels of decomposition would yield 32 sub-band channels as
shown in Fig. 12, with each channel having its own distribution of
coefficients [91].

The sub-band channels in Fig. 12 with higher energy value have
coefficients with higher values. This assertion is true because the
energy in each sub-band channel is a function of the coefficients
in that sub-band channel, as indicated by (23). Using an appro-
priate thresholding scheme, each sub-band channel in Fig. 12 can
be determined as a vacant channel or occupied channel, thereby
achieving spectrum sensing; this is shown in Fig. 13.

As seen in Fig. 13, six sub-band channels i.e. 6, 9, 18, 25, 26, and
29 were identified as vacant channels at 10 dB because the energy
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Table 4
Advantages and disadvantages of discrete wavelet packet transform-based spectrum sensing technique.

Advantages Disadvantages

DWPT has higher fidelity than DWT because it decomposes both the
high and low frequency component of an input signal.

The high-pass coefficients in a DWPT oscillate around singularities of a
signal.

DWPT has good universality in the adaptation of its transform to a
signal without assuming any statistical property of the signal.

In speech recognition, DWPT does not respect the non-linear
frequency perception phenomena.

DWPT has a high number of ways to encode a signal, by providing
22n−1

possible ways of achieving it.

Fig. 13. Spectrum sensing using DWPT at 10 dB.

in those channel is less than the corresponding adaptive threshold
for the channel. Fig. 13 also implies that the frequencies of signals
in channel 6, 9, 18, 25, 26, and 29 are vacant frequencies.

7. General comparisons on wavelet based spectrum sensing

In this section we present three categories of comparisons on
wavelet based spectrum sensing.

7.1. Comparative analysis of previous works on wavelet based spec-
trum sensing technique

There are quite a number of research in literature that has been
done regarding the application of wavelets in spectrum sensing.
We present in Table 5, a summary of some these research in terms
of their performance metrics, strengths, and weaknesses.

7.2. Comparison of wavelet based spectrum sensing with other spec-
trum sensing techniques

Wavelet based spectrum sensing competes favorably with
other spectrum sensing techniques. We present in Table 6, a com-
parison between wavelet based spectrum with other spectrum
sensing techniques. The metrics for performance measurement
include: speed, accuracy, preprocessing signal information, com-
plexity, and spectral efficiency.

7.3. Comparison of wavelet based spectrum sensing with other wide-
band spectrum sensing techniques

Wideband spectrum sensing techniques are implemented as ei-
ther Nyquist wideband sensing or sub-Nyquist wideband sensing.
Both of these approaches have their advantages and disadvantages.
We present in Table 7, these advantages and disadvantages.

Based on the information provided in Table 7, we make a com-
parison in Table 8 between wavelet based wideband sensing and
other wideband sensing techniques, categorizing as either Nyquist
wideband sensing or sub-Nyquist wideband sensing.

8. Advantages and disadvantages of wavelet-based spectrum
sensing technique

Like any other spectrum sensing technique, wavelets have their
merits and limitations. However, considering the stringent need
for dynamic frequencymanagement, themerits of wavelet sensing
techniques outweighs its limitations. These advantages ofwavelet-
based spectrum sensing are as itemized below:

i. Significant data compression is achieved through the im-
plementation of wavelet based algorithms. Such compres-
sion reduces the number of sensingmeasurements required
thereby increasing the speed of estimation and reducing the
communication power required for transmission. Reduction
in required transmission power is a very important benefit
for mobile communication devices in terms of longevity of
power source.

ii. Wavelet-based estimates have the attractive property of
fewer side-lobes and therefore reduced leakages than most
traditional methods for sharp-featured sources.

iii. Wavelets have an excellent ability to tune the time-
frequencywindow in such amanner as tomaintain orthogo-
nality, thereby detecting the dynamic variation of statistical
parameters of any spectrum.

iv. The effect of noise and interference on signal can be min-
imized through the flexible design of the time-frequency
window.

v. The mitigation of channel effects like inter-symbol inter-
ference (ISI) and inter-carrier interference (ICI) is achieved
through the tuning capability and flexibility of wavelet
bases.

vi. In OFDM applications, wavelets do not require cyclic prefix
and guard bands, thus making it more efficient than Fourier
transform in spectrum utilization.

The limitations of wavelet-based spectrum sensing are as item-
ized below:

i. Not naturally frequency selective.
ii. Requiresmodification to carry phase information of a signal.
iii. Requires very stringent conditions in the design of filters

that implement the desired wavelet.
iv. For discrete wavelet transform, and the discrete wavelet

packet transform, the higher the level of decomposition, the
more complex the system becomes.

9. Current research trends in wavelet-based spectrum sensing

Another recent research trend in the application of wavelets
in spectrum sensing include the development of wavelet orthog-
onal frequency division multiplexing (WOFDM), which is based
on wavelets [115]. The research which is based on the discrete
wavelet transform, showed that WOFDM has higher data rate
than the traditional OFDM based on the Fourier transform because
wavelet is a faster transform. The same research showed that
WOFDM has better spectral efficiency than the traditional OFDM.
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Table 5
Comparative analysis of previous works on wavelet based spectrum sensing.

S/N Author(s) Year Title of paper Metrics Strength Weakness

1 Nam-Seog, K., & Jan,
M, R.

(2017) A dual-resolution wavelet-based
energy detection spectrum
sensing for UWB-based
cognitive radios

Measured detected power
against input power

Has good energy efficiency and
reduced PLL division ratio
because of the dual resolution
spectrum sensing approach.

The implementation of
the technique in the
analog domain makes it
susceptible to offset
errors over time.
Secondly, like any other
analog system,
reconfigurability can be
quite a challenge

2 Kang, A, S., Sharma,
V., & Singh, J. S.

(2017) Efficient spectrum sensing using
discrete wavelet packet
transform energy in cognitive
radio.

Measured the power in
sub-band channels using wpdec
function.

It has low complexity because
the technique is based on
energy detection

The use of MAC for
second stage sensing
makes the technique
undesirable when a high
degree of decomposition
is involved and at the
same time meeting a tight
constraint of speed.

3 Said, E., Mina, B.
Abd-el-Malek., &
Sara, K.

(2016) A stationary wavelet transform
approach to compressed
spectrum sensing in cognitive
radio

Measured subcarrier occupancy
error rate against SNR, PFD
against SNR, and PT against SNR

Improved performance and
more accuracy in the estimation
of wideband channel boundaries

Lack of down sampling of
output signal results in
high data rate thereby
making this technique
expensive to implement
in hardware.

4 Arti, G. & Savitri, K. 2014 Performance evaluation of
energy detection using different
wavelet family for spectrum
sensing in cognitive radio

Measured Pd for varying SNR Classification of performance of
different wavelet families in
energy detection

Low frequency selectivity
between transition bands.

5 Said El-Khamy, et al. 2013 Multiscale Hilbert transform
approach to widespread sensing
for CR networks

Measured Pd against Pfa High immunity to increase in
noise power

Loss of localization
caused by the Hilbert
transform

6 Omar A, et al. 2013 Noise immune spectrum
sensing algorithm for CR

Measured Pd with varying SNR Combines WPT and higher order
statistics to achieve noise
immune spectrum sensing.

Additional complexity is
introduced by the higher
order statistics

7 Raghave S, et al. 2013 Wavelet and S-transform based
spectrum sensing in CR

Detection of primary users for
varying continuous wavelet
signal given as an input for
S-transform.

Achieved measurement of phase
data about a signal

Response time is
increased due to
combination of
S-transform and wavelet
transform

8 Varadharajan, E &
Rajkumar, M

2012 Discrete wavelet transform
based spectrum sensing in CR
using Eigen Filter

Variation of signal against Eigen
filter

High resolution than
conventional methods.

Different approach must
be used for CWT and DWT

9 Shrutika, S &
Kumbhar, M.

2012 Wavelet Packet Transform based
Energy Detector for Spectrum
Sensing

Measured Pd for varying SNR. Improved energy detector. Low frequency selectivity
between transition bands.

10 Shiann-Shiun et al. 2011 Wavelet-based spectrum
sensing for cognitive Radios
using Hilbert transform

Power spectral density
measurement

Better edge detection Used continuous wavelet
transform which is
computationally very
intensive and adds
redundancy in design.

Another current research trend is the combination of wavelet
transform and the s-transformwhich is used to calculate the exact
occupation of primary user signal and noise signal [116]. In this
research, continuous wavelet technique is used to sense vacant
spectrum and sub band edges, while the s-transform is used to
detect frequency boundaries at low signal-to-noise ratio.

Stationary Wavelet Transform (SWT) which is derived from
the discrete wavelet transform (DWT) to overcome the lack of
translation-invariance of the DWT, is another emerging area of
research inwavelet-based spectrumsensing. It involves the utiliza-
tion of SWT to achieve improved compressed wideband spectrum
sensing. This technique has the major advantage of allowing a
CR to operate at sub-Nyquist rates, and thus, has fast and better
edge estimation for the location of channel edges in a wideband
signal [117].

The application of genetic algorithm to achieve improved re-
construction for a wavelet (DWT and DWPT) filter bank is another
recent research area inwavelet-based compressive spectrum sens-
ing. In this technique, a population of initial guesses is created and

applied to a genetic algorithm in order to find the sparsest solution.
This approach has been shown to yield good performance in the
framework of CR spectrum sensing [118].

The application of wavelet networks in the reduction of enve-
lope fluctuations in Wireless MAN-OFDM systems is an emerg-
ing area of research. It is shown in this area of research that
the mitigation of high peak-to-average power ratio (PAPR) in
OFDM is achieved by using wavelet networks in fixed WiMAX
systems [119].

Statistically matched wavelet is another emerging field of re-
search in wavelet based spectrum sensing [120]. It involves the
design ofwavelets based on the characteristics of the power quality
event using fractional Brownian motion. The technique has shown
promising results as it outperforms well-known wavelets in the
detection of power quality events.

In addition to the current research trends above, a promising
area of research is the application of Hilbert transform to the dis-
crete wavelet packet transform [121]. This area of research seeks
to enhance the subband frequency edge detection capability of the
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Table 6
Comparison of wavelet based spectrum sensing with other spectrum sensing techniques.

Wavelet based
detection

Cyclostationary
detection

Matched filter Waveform based
detection

Eigenvalue/eigenvector
based detection

Energy based
detection

Sp
ee

d Has high speed
because no domain
transformation is
required [92,93].

Requires long
observation before
making a decision
[19].

Has high latency due
to the amount of time
required to obtain
perfect knowledge of
PU signal [94].

The requirement of
knowledge of PU user
signal implies the
speed of this
technique may be
undesirable when
high sensing speed is
required [95].

Requires long sensing
time to compute
Eigenvalues when
rank of signal matrix
representation is
large [96].

It has good speed
because it does
not require
knowledge of the
PU signal [95]

Ac
cu

ra
cy

Leverages on the
time-frequency
resolution capability
of wavelets to yield
high accuracy [81].

Performs well at low
signal-to-noise ratio
[19].

Accuracy depends on
perfect knowledge of
PU signal, which is
not practical in all
cases [94].

Accuracy depends on
the quality of
preamble patterns
used for
synchronization; this
can be a challenge at
low SNR [95].

It outperforms
wavelet based
detection because it
is insensitive to noise
uncertainty [96].

The accuracy is
poor especially
at low
signal-to-noise
ratio [95]

Pr
ep

ro
ce

ss
in
g

si
gn

al
in
fo
rm

at
io
n

Requires no prior
information of the PU
signal [81,92,93].

Requires prior
information of the
type of carrier, and
cyclic prefixes [97].

Requires prior
information of PU
signal like
modulation
technique and
spreading codes [97].

Requires preamble
patterns for
synchronization
purposes [16].

Requires no prior
information of PU
signal [98].

Requires no
knowledge of the
PU signal [96]

Co
m
pl
ex

ity

The complexity is
low because the
technique only
makes decisions on
the magnitude of
each coefficient in a
sub-band channel
[92,93].

Requires very high
complexity in
computation [19].

Requires very high
complexity in
computation [99].

Has low complexity
in implementation
[96].

The complexity
depends on the rank
of the matrix used in
representing the
signal [96].

It has low
complexity [95]

Sp
ec

tr
al

ef
fic

ie
nc

y It is spectrally very
efficient in OFDM
systems because it
does not require the
creation of guard
bands in its
implementation
[100].

Not as efficient as
wavelet based
detection because it
relies on Fourier
transform for its
implementation,
thereby requiring the
use of guard bands in
OFDM
implementation
[101].

Not as efficient as
wavelet based
detection because it
requires guard bands
to handle frequency
offset sensitivity in
OFDM applications
[102].

The addition of
preambles,
mid-ambles, and
pilot carrier reduces
the spectral
efficiency of
waveform based
detection [103].

If the eigenvalue
based detection is
based on FFT-OFDM,
the need for guard
bands also reduces
spectral efficiency
[104].

Exhibits spectral
efficiency if
implemented
using wavelet
technique [100].

Table 7
Advantages of Nyquist wideband sensing and sub-Nyquist wideband sensing.

Nyquist wideband sensing Sub-Nyquist wideband sensing

Advantages Generally has a simple structure [105] Low sampling rate [106].
Has a high dynamic range [107]. The low sampling rate makes it possible to achieve data acquisition at

a lower cost than Nyquist wideband sensing.

Disadvantages Energy cost is high due to high sampling rate [108]. It requires multiple sampling channels due to sensing at sub-Nyquist
rate.

Development of optimization technique can be very complex due to
complexity of hardware requirement [109].

It is sensitive to design imperfections [110].

Table 8
Comparison between wavelet and other wideband sensing techniques.

Technique Sampling scheme Implementation complexity

Wavelet detection Nyquist [107] Low
Multiband joint detection Nyquist [105] High
Filter bank detection Nyquist [111] High
Distributed compressive sensing Sub-Nyquist [106,112] High
Eigenvector Sub-Nyquist [113] Depends on rank of matrix used for signal representation.
Sparse fast Fourier transform Sub-Nyquist [114] Low

discrete wavelet packet transform through the instantaneous fre-
quency spread derived from the Hilbert transform. The application
of the Hilbert transform to the discrete packet wavelet transform
does not add any significant complexity for the application at hand
because the Hilbert transform does not require a change of domain
for its operation.

10. Research challenges in wavelet-based spectrum sensing

Wavelets, like other spectrum sensing techniques has its own
unique challenges in its application to spectrum sensing. In [122],
edge detection in spectrum sensing using wavelet multiscale sums
have been shown to have difficulty in the precise location of the
points of singularity.
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Another research challenge in wavelet based spectrum sensing
is the choice of filters used in the generation of the wavelet bases
in a transmission. This is a very delicate task as there are no
clear guidelines, and stringent constraints must be applied for the
application at hand [100].

The use of continuous wavelet transform in spectrum sensing
is another area of research challenge. This is because continuous
wavelet adds excessive redundancy in communication system de-
sign, and it is also computationally intensive thereby making its
implementation prohibitive due to cost [123].

11. Conclusion

In this paper, a survey was carried out on the wavelet trans-
form and its applications. Different fields of endeavor in which
the wavelet transform is applied were highlighted. Properties of
different mother wavelets were briefly described, they were also
classified according to areas of application. Specific applications of
the wavelet transform in spectrum sensing was discussed in some
detail, which included the continuous wavelet transform, discrete
wavelet transform, and the discrete wavelet packet transform. The
mathematical formulations for different applications of wavelets
in spectrum sensing were highlighted. Comparative analysis of
wavelet application in spectrum sensing and other spectrum sens-
ing techniques was presented. Wavelet as a wideband sensing
technique was also compared with other wideband sensing tech-
niques. Current research trends and challenges in wavelet-based
spectrum sensing were also discussed. This survey paper provides
some necessary information and serve as a pointer to relevant
references for researchers seeking information about wavelets and
their applications in various areas of research and specifically in
spectrum sensing for cognitive radio.
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