CHEMICAL COMPOSITION OF WATER RESOURCES OF PART OF GWAGWALADA AREA CENTRAL NIGERIA

BY

ABDULYEKEEN, Shafiu Olutade M.TECH/S S SE/2009/2157

DEPARTMENT OF GEOLOGY FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGERIA

JULY, 2012

ABSTRACT

This research study is aimed at determining the chemical composition of both surface and groundwater in part of Gwagwalada town that falls between longitude 7⁰3'00"E and $7^{0}6'00''E$ and latitude $8^{0}56'00''N$ and $8^{0}57'00''N$. Geological studies were undertaken using a topography map of the area on a scale of 1:25,000 enlarged from Abuja Topo Map (sheet 207 Kuje NW). Geological mapping was conducted using the traverse method. A Compass Clinometer was employed for the exercise as well as a Global Positioning System (GPS). Twenty-seven (27) water samples were collected from wells, boreholes and rivers. The sampling was designed to cover the entire area using a systematic random sampling method. Physical parameter of Temperature, pH, Conductivity, Turbidity and Salinity were determined in situ. Laboratory method employed for analyses were turbidimetric, phenanthroline, Flame Photometer, Argentometric, and Cadmium Reduction methods. The results were interpreted using various methods mostly Microsoft Excel for Graphs and Charts, Surfer 8 for contouring and Piper and Stiff plots for hydrochemical interpretations. The area is basically underlain by granite Gneiss Rock. The mean Temperature, Conductivity, Dissolved Oxygen, Salinity and Turbidity of the Water are 30.95°C, 797.29pscm⁻¹, 5.46mg/l, 515.9mg/l and 8.68NTU respectively. The parameters with the highest concentration are Chloride and Calcium ions whose mean values are 123.22mg/l and 49.15mg/l respectively. The water generally, classifies as Calcium Magnesium Sulphate Chloride Water with the Piper plot interpretation while the Stiff plot indicated water fall within Group I whose primary cation is Calcium and Magnesium and anion are Chloride, Sulphate and Bicarbonates. The concentrations of sample from boreholes compare with Nigerian Quality Standard for Drinking Water (NIS 554:2007) falls within limits.

TABLE OF CONTENTS

Page

Decla	ration	iii
Certif	ication	iv
Dedic	ation	v
Ackno	owledgement	vi
Abstra	act	vii
Table	of Contents	viii
List of	f Figures	xiii
List of	f Plates	XV
List of	f Tables	xvi
CHA	PTER ONE	1
1.0	INTRODUCTION	1
1.1	Background	1
1.2	Aim and Objectives of the Study	2
1.3	Location, Population and Accessibility of the Study Area	3
1.4	Climate and Vegetation	3
1.4.1	Climate of Gwagwalada	6
1.4.2	Vegetation of Gwagwalada	14

1.4.3 Relief and Drainage of Gwagwalada

1.5 Scope of Work and Limitation	17
CHAPTER TWO	
2.0 LITERATURE REVIEW	18
2.1 General Geology of Nigeria	18
2.1.1 Sedimentary Basins	18
2.1.1.1 The Benue Trough	20
2.1.1.2 The Niger Delta	20
2.1.1.3 Bida Basin	21
2.1.1.4 Sokoto Basin	21
2.1.1.5 Chad Basin	22
2.1.1.6 Dahomey Basin	22
2.1.1.7 Anambra Basin	23
2.1.2 The Younger Intrusives	23
2.1.3 Migmatite-Gneiss Complex	24
2.1.4 The Volcanic Rocks	25
2.1.5 Geology of Gwagwalada	26
2.1.6 Hydrogeology	28
2.1.6.1 General Hydrogeology of Nigeria	28
2.1.6.2 Groundwater	29

2.1.6.3 Ground Water Quality

	34
2.1.6.4 Physical Quality2.1.6.5 Chemical Quality	34
2.1.6.6 Biological Quality	35
2.1.6.7 Hydrology	35
CHAPTER THREE	36
3.0 METHODOLOGY	36
3.1 Geologi cal Mapping	36
3.2 Hydrological Mapping	36
3.2.1 Water Sampling	36
3.2.2 Water Level Measurement	36
3.2.2.1 Sample Collection	
3.3 Parameters	37
3.3.1 Temperature	37
3.3.2 pH Measurement	38
3.3.3 pH Determination	39
3.3.4 Conductivity	
3.3.5 Turbidity	41
3.3.6 Hardness	
3.3.7 Dissolved Oxygen	
3.4 Laboratory Analysis	44

3.4.1	Cations and Anions	44
3.4.2	Total Coliforms and Escherichia Coli by Membrane Filtration Technique	59
3.5 So	ftware Application	62
CHAI	PTER FOUR	67
4.0	RESULTS AND DISCUSSION	67
4.1	Presentation of Result	67
4.1.1	Geology	67
4.2	Interpretation of Result	75
4.2.1	Geology	75
4.2.2	Physical Parameters	75
4.2.2.	Surface Water	75
4.2.2.2	2 Wells	76
4.2.2.3	3 Boreholes	81
4.2.1	Chemical and Biological Parameters	81
4.2.3.	Surface Water	81
4.2.3.2	2 Wells	84
4.2.3.3	3 Boreholes	87
4.3.1	Piper Diagrams	87
4.3.1.1	Wells	90

4.3.1.2	Boreholes

4.3.1.3	Surface Water	93
4.3.2	Stiff Diagrams	95
4.4.1	Hydrogeology	101
4.4.1.1	Water Level	101
4.5	Hydrology	103
4.6	Discussion	103
4.6.1	Geology	103
4.6.2	Hydrogeology	103
4.6.3	Hydrology	104
CHAPTER FIVE 10		
5.0	CONCLUSION AND RECOMMENDATIONS	105
5.1	Conclusion	105
5.2	Recommendation	105
REFEI	RENCE	106
APPE	APPENDICES	

LIST OF FIGURES

Figure		Page
1.1:	Digitized topographic map of study area	4

1.2:	Monthly Rainfalls (mm) - 2010	10
1.3:	Monthly Rel. Humidity (%) - 2010	10
1.4:	Monthly Tmax & Tmin (°C) - 2010	11
1.5:	2001 to 2010 Rainfall Mean Values	11
1.6:	2001 to 2010 Rel. Humidity (%) Mean Value	12
1.7:	Monthly Rel. Humidity (%) - 2010	12
1.8:	2001 to 2010 Tmax & Tmin (0c) Mean Values	13
1.9:	2001 to 2010 Mean Values of Rainfall, Rel. Humidity, Tmax and Tmin 13	
1.10:	Topographic map of study area (Source: Office of the Surveyor	
	General of the Federation)	16
2.1:	Geological map of Nigeria (Source: NGSA 2006)	19
2.2:	Geological Map of FCT (Abuja), Nigeria (Etu-Efeotor, 1998)	27
2.3:	Hydrological Areas of Nigeria (from NIHSA).	30
3.1:	Surfer 8 Data Input Window	64
3.2:	Rockwork 2006 Data Input Window	65
3.3:	Microsoft Excel Window	66
4.1:	Geological Map/Section of the Study Area	68

4.5:	Mean Values of Physical Parameters of Wells (Handdug)	78
4.6:	Conductivity/Salinity Curves	79
4.7:	Physical Parameters of the Samples	80
4.8:	Mean Values of Physical Parameters of Boreholes	82
4.9:	Concentration Mean Values for Rivers	83
4.10:	Concentration Mean Values Well (Hand dug)	85
4.11:	Concentration Mean Values Boreholes	86
4.12:	Piper Plot of Groundwater Characterization (modified after Piper, 1944)	89
4.13:	Piper Diagram of Hand dug Wells Concentrations	91
4.14:	Piper Diagram of Boreholes Concentrations	92
4.15:	Piper Plot Diagram of River Water Samples	94
4.16:	Stiff diagrams of Hand dug Wells	97
4.17:	Stiff diagrams of Hand dug Wells Contd	98
4.18:	Stiff diagrams of Boreholes	99
4.19:	Stiff diagrams of Rivers	100
4.20:	Water Level Contour Map of the Study Area	102

LIST OF TABLES

Table			Page
1.1:	Monthly R	ainfall Distribution for Ten Years	8
1.2:	Monthly R	elative Humidity Distribution for Ten Years	8
1.3:	Maximum	and Minimum Temperature	9
4.1:	Physical te	st result of groundwater samples (wells and boreholes)	69
4.2:	Physical te	st result of surface water samples (Rivers)	70
4.3:	Chemical	and Biological tests result of groundwater samples	72
4.4:	Chemical	and Biological tests result of groundwater samples contd	73
4.5:	Chemical	and Biological tests result of Surface Waters samples	74
4.6:	Stiff Diagra	am Water Groups	96

LIST OF PLATES

Plate		Page
I:	Measuring Turbidity of a well water sample	109
II:	pH Measuring tool (pHScan3+)	110
III:	Conductivity tool - Wagtech H1 98311	110
IV:	River Usman showing turbidity of Water	111
V:	Turbidity Measuring Tool	111
VI:	Kit used to measure dissolved oxygen and temperature	112
VII:	Exposure of weathered granite	112
VIII:	Exposure of boulders of Granite in the study area	113