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Abstract

In this age of Electronic connectivity, the Issue of daty
security is becoming more and more of great concern. The
growth in computer systems and their interconnections via
increased ‘the several

networks has dependence  of

.
organizations and individuals on information stored and

communlcalcd using these systems. Hence, there is need for
data and resources to be well protected to guarantee its
authenucny and to protect systems from network-based
attacks. Cryptography and network security have matured,
leading to the dévelopment of practical, readily available
applications to enforce network security. This work covered a
review of the concept of randomness with the stringent
randomness requirement in data security sysums giving
particular attention to the Blum-Blum- Shub random number

generator.

I INTROD_UGTION

ca

The requiremeits of information security within an
: ¢

Organization have undergone two major changes in the last
several decades. Before thc; wide spreal use of data
processing €quipment, the security of information felt to be
valuable to an organization was provided prlm'lrlly by
physical and administrative means.

With the introduction of the computer, the need for
automated tools for protecting files and other information
stored on the computer become evident. This is especially
the case of a ehared system, such as a time- sharing system,
and the need is cvcn more acute for systems that can be
assessed over a public telephone or ‘data network. The
generic name for collection of tools designed to protect data

and to thwart hackers is computer security [Williams, 1995],

I & Computer I} ingineering,
yof lenmlnyy. Minna, '

The second nlujor change that affected security i
the introduction of distfibuted systems and the use of
network and communication facilitics for carrying data
between terminal user and computer, and hetween computer
and  computer, Clearly, sccurity is required in any
environment where information, data or items are not tended
to be freely available to all during their transmission,

Today, scecurity systems are built on increasingly
strong cryptographic algorithms that foil pattern analysis
attempts. However, at the hCZ.lfl of all cryptographic systems,
is the gencration of secret, Unpredictable (i.c. random)
[Willinms,. 1995]. In

cryptography requires goqd random numbers. For example,

numbers other  words — good
»

random number generators  are required 1o generate
public/private  key pairs far asymmetric  (public  key)
algorithms including the Rivest-Shamir-Adelman. (RSA),
Digital signature  Algorithm (DSA‘) and  Diffie-FHellman
[www.SSH-Tech-corner- cryptographic-Algorithins.htm and
1982

cryptosystems are also gencrated randomly.

and  hybrid

Knuth, Keys for symmetric

Random number ‘generators are easily over looked
dnd can thus hecome the weakest point of a cryptosysten,
For any chain is only as strong as its weakest link
[www‘SSH-chh-corncr-cryplogruphic-/\lgurithms‘lnm].

' '

Even a strong confusion génerator can he made irrelevant i’
the system supports only a small number of keys. since
simply trying all the keys (a key search attack). would be
sufficient to penctrate such a cipher. Thus any real system
hased on keys must support enough keys to prevent this

attack and that is an issue for the random number generator,
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find  frequent

Actually Random  nambers

applications in several other fields of life. Researchers use
random numbers for tackling a wide range of problems
1996, Knuth,1982, and Thierry,1997].

modeling molecular behavior and sampling opinion to

[Ivars, From
solving certain equations and testing the efficiency of
algorithms. Such numbers also play crucial roles in a wide
variety of games, including eleclronic.: versions of slot
machines, lotteries, and other forms of gambling. [Ivars,
1996, Knuth, 1982, and Thierry,1997] . Both Ivars, 1996 and
Knuth,1982 present good materials on the History and
advancement of such random numbers. But of spécial
interest in this study is the random numbers suitable for
cryptographic application.

Since  security - protocols rely .on. .the
unpredictability of the ke;'s they use, random numbers for
cryptographic - applications. - must - -~meet. - stringent

requirements. The most important rehuirement is . that
attackers, including those who know the random number
generator design, must not be able to make'any meaningful
predictions about the random number- generator-outputs. D.
Eastlake etal, 1994 makes a good recommendation of other
stringent requirements.

Unfortunately, there are so many random number
generator designs and so many claims for them, that.it is
difficult even to compare the claims, let alone the des'igns.
The most common approach is to compute random numbers
by means of an algbrithm or a-formula . These normally.
result in what is commonly named pseudo-random numbers.
As a matter of fact, in the past, the Random number
generation was mostly done by software mostly based on
those algorithms. The resulting sequences. from such
systems typically don’t meet all the criteria that establish
randomness. Patterns often still remain jn the sequence.

After all, the computer simply follows a set procedure to

senerate the numbers, and restarting the process produces .

the same sequence. Moreover, the sequences eventually

begin by repeating themselves of course.
0w

However, as digital Systenls; becomes faster, ap,
denser, it is possible, and sometimes necessary, . to
implement the generator directly in Hardware. Serious
research is carried out in '_increasing measure dn a truly (real)
random source of data for random (unpredictable) numbers,
such as values based on radioactive decay, atmospheric
noise, thermal electrical noise and a fast, free running
oscillator cte, et

*Today, some c.omputers> ‘have a hardware
comboné'n't‘“t'ha‘t"func'ti'ons as real random value generator.
However, most computers still ‘don’t have a hardware that

generates random numbers that is sufficiently random that

. an adversary cannot predict.

P

11 RANDOMNESS DEFINED.
~ The Dictionary meaning of the terfii'tandom is that
‘which is” dome, chosen, etc without method or conscious

choice*This points to haphazardness i.e that which is pattern

-

‘less. ]

_ ‘

5 According  to Thierry, 1997 - there - are many
subjecti% perceptions abdut the term “randomness” but the
exact . definition has been debated dependiﬂg on the
application. Actually, it appears there can never be a
straightforward definition of a random process. This is
because, if ‘a finite set of random events could be defined,
then at least in principle, it could be built (or chosen) such
as to’ comply with the definition. If so, it would not be
random, becatse-it would obey a certaif riile used to build
it. T'hcr'e‘foie."‘the definition of randomness is intrinsically
'Yiot posable: '
' ‘In bra';:lice. this result in pseudo-definitions which
all suffer from various hidden logical and functional defects.
Some of these are circular, that is they use the term

“random” or something pgreeptive equivalent or similar in
order to define the term ““randomness™, For example Ritter,
1991 define randomness as “an attribute of the process -

which generates or selects “random’™ number rather than the

i




QF AN Atatintioal PROPRTEY OT B randonn e,

A Classiw! @ \\.\:\.‘:a\r.‘.* Bergrive of Nandommany

Bom the perspective of classical probability, any
saquene of N:mn‘\ prodable events iy egually likely and
thus agualiy “andom™ {David, 1991 and Kuuth, 1982), The
saguence 1T and 0N or 1111 are équ;\lly probable with
the probability of any of four bit outcome being 1716,

\ ‘L\\ wse there 1y 1o possible combinations Samelyy (0000,
0001 QQI0, ==, 1L111). Thus if origin in a p!\\\\‘\luli\\(i\ ovent
were m:z@e the solg criterion of tandomness, then both series
would have to be considerad random; and indeed so would
all others, since the same mechanism generate all possible

series.

The classical definition .1bo\c allows one to speak of a
process, such as the tossing of coin as being 1.uulmn It does
nat allow one to call a parmular outcome *m string or
sequence of outcome like obtaining ten heads in a row with
z\}pmy tosses of a fair coin, random. Ashis:il.2092 gives the

assical frmbabilitv notious of randqmness }v;|§cnl on

Shannon’s cancept of entropy. ’

. -Deviating a_ little from_ this. ulasswal prob.lblhty
definition of randomness, a more sensible dgﬁn;tl‘o.n. \yl1|cll
focused on the individual outcomes; rather th:'m on the
generating process of string; is considered. It established
_hierarchy of degrees of randpmness. The limitation that the
definition cannot help to determine, except in a very special
cases whether or not a given sequence is random is closely
related to Kurt Godel’s incompleteness theorem ddvised and
proved in 1931 [Ashi,2002, Gregory, 1975 and Ritter,

1991].
B..Algorithmic Perspective.

o This new def'nmon of mndomness has its heritage

in mformatlon theory datm«y black to World War II
, [Gregory,l975]. More often situations arise of providing as
input a program, or string of instructions to a computer so

that it produces a desired string as output. Such ihstructions

-

WEVRIL Y COIPRY TR et il e it
I TR Conpehemd e il o iy P ot the
LVPERTIINN (e,

The pun'\\wfuy ob et oduniliney by
COmpressing such e siime Wil mean a s RIIETINY
CHIESRIVR AN eade o reptodiee e oigial stimg, ol
078 and Axhis, 2002, Pl

example of comprossible amd meomprossdhle data 1o he

Uregory, MOVEdey
transmitted o a fiend i another galaxy. A resultof this

the canonfeal  definition of  tandomness bised  on
incompressibility, which was proposed independently abou
1965 by AN Kolmogoroy of the Avademy ot setenve of the
USSR and G Chadtdn :‘muul thus

Mseries of number s rndon A e snalle
algorithm capable of specitylng 110w computer has about
the same number of bits of information ws the serles fvell™
It iy on the basis ol this detinition that the two serles ol
digits presented below are exunined;
1010101010101010
01100010011001110010 ' .
whereas based on the olussical probabilistie notions the two
series can be considered “random”, it is observed that the
first sequence consist of patterns of 10 repeated ten times
and' as such could be specified o a computer by & very
simple algorithm, such as “Print 10 ten times™ extending the
series by fnll()wmg the same p.lllun might just chanpe the
programmer (o say, "l’um 10 a thousand  times." The
number of bits in such an increased dlgorithim s a sl

fraction of the number of bits in the series it specifics, and

~as the series graws larger the size of the program increases

at a slower rate. .

The second series of binary digits generated by
flipping a coin 20 times and writing a "1 when the outcome
was heads and a “0" when it was tails appears pattern less,
There is no shortcut to reproduce it, as the shortest most
economical algorithm for in‘lroducing the series o a
éompulcr would be “print 0110001001 1001110010 Which

means necessarily the algorithm has to he cxpanded (o the
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oresptuting eze of s pch Hongey patterp less series This

iecinpriesaihiliny j4 a propeny of bl gaiidom Bitimlers

[ACT 2002, sl €44 Fey, 11075]
I AT BB 1 MO g,
Most " sanidom IEMEL eopipg g actually wtiljze 4
Foriidis Ry Sy € Tty fl"’”’l} APIENG s i
algonirhngg w SOt il W oy Miat Ve fhye sole s
'lll

FERCmon o eappegerd by e P& i poy inge ey
CORCEEnt doting el Sep There 4y anstonmition of
the i INTOEiation, ad e generno OUIEts i fxed g e
Bt stning e EEnetaton seed s sniply e il stae
iitormistion Iy OIhEr words i js 4 de

erministic algorithm

which, given toly-gandon hinary SCUHENCe

of lengtli 1,
Heanence of length kiny « i whicl nppenrs
Ao, k() being g polyiiominl,

bufpne i tun;uy

10 et g

With any PRNG, ARG sufficient number of sleps,

the genetator comes back 1o some sequence of gtates (hat
wat alteady visited befose (neyele), Then, the perlod of the
FERCTAonr 16 the number of steps required o do one full

cycle touph the  visited tates, The  actun) entropy

tunpredictability) of thie outputcan never be grenter than the
cnttopy of the seed,

At etil, 2000 referenced o lntge hody of literature

on-the design and properties of PRNGS, K, 1982 hits 0
classie exposition on preudo-rundom numbers, Applications
[iee

mentions anclode stmulation of natiral phenomenn,

sanpling, and - nimericeal

analysine testing  computes
progms decision niking desthetics and recreation, None
of thewe hive the same ('lml{l('l('l‘i!.fi('!. iy the sort of seeurity
veetomecryprtography, Only i the Tast thiee could there be
an adversary trying 1o find the randon (uantity in use,
Thierry 1097 elassified random number generitors
bavsed on then applications to imelide;
Thetoy genetptons it are provided hy s Progrmming
lanpraipes and miny soltware pages, which he siaid, ore 1o be

constdered suspieions for most serious npplication;

e serions gonerators, that is generators with inlemal_gtm

¢ ‘o
information uging at least 64 bits and with empirical and/or

'

thieateticnl jmn‘iu';m:m and,
e uuly ranienn penerators Le. electronic® citcuits that

employ measurements of 4 natural phenutnenon te provide

(otally wypredictable draws,

A close exnmination of a few mos popular pseudo-random

nmber generators 15 whar follows,

A Linewy Congruential Generators (Ley). ‘

B

The Linenr Congruential Genteator (LCG) is by far

the maost widely 1564

technique  for randomn  number
Lenerntion, “Ihe 1,¢'¢; Is one of the oldest, and stil) the 'mml

common Aype of RNG

impleniented for programming
Inngungpe commands

(o, the standard rand () function for C
nd-ANSEC ysed by VAX.C, RANDU introduced by IBM

1963, MTHSRANDOM used by VAXFOTRAN, and
VAX Basic etc), These are all built of I'JCG algorithm,
David, 1991 presents a £ooll description of techniques for
nnalyzing outputs of such KNG,

“The LCG algorithn i parameterized with four numbers, as
follows:

mthe modulus 1 =0
5 /
athe multiplier 0 =4 m
¢ the hfcrement 0 =¢ <m
! . '

‘ .
Vo the starting valueor seed 0 < Vo < m

[t s a potular arithmetic where the (n +°1) th value is

obtained via the following iterative equation:

Vi | I = Vi 4+ ¢ mod  m

'

g s DT i RS o (n
IEme oo and VO e integers, then this technique will
produce a sequence of integers with cach integer in range 0
= Vo <m, ' '
The selection of values for , ¢ and m s critical in
developing o pood LCG random pumber generator. or

sximple with m = ¢ = 1 the sequence producet is obviously

.
not satisfactory!




M

Now witha=7,c=0, m=32and Vo = 1, this generates the
sequence (1,7,17,23,1,7,etc), which is also unsatisfactory.
The reason is that of ¢he 32 possible valfies only four is
used; thus the sequence is said to have a period of 4.

A change in the value of “a” to 5, result in the. following
sequence, (1, 5 25 29 17 21,9, 13,1,5,...), WhICh Increases the
period to 8. : :
A larger m results in an incréascd potential for
producmg a long series of dlstmcl ‘Tandom numbers., A
*common cntenon is that m is nearly equal to the maximum
representable nonnegative integer for a given computer
‘[David, 1991 and Honmtz and Hill, 1989, ThIS valuc of m
“THEAr 10" or equal to 2! lS typlcally chosen. The strength of
s ‘thelmear-congruennal algonthm is that if the muluphcr and

“modulus. are- 'prbperly chpsen, the resultmg 'sequence of

____~numbers“will - bé - -stausucally*xndtsnngmshable'“from a

isequence. drawu -at. random (but Without replacerient)- from

the setl 2.......'..., m:=1: but there is really nothing random

“atall about the algorithm, apart from the chofce of the initial

value VO, once that value is chosen, the remaining numbers

in the sequence %ollow deterministically. This of course has
impli'cation for cryptanalysis.

The real problem with most L CG« ;s their, tiny

amount of mternal state, simple slcp mrmulu .md mmplete

exposure. If an enemy knows that LOG is heing used. and if
‘the p.lmmelen are kn()wl(e @) 4 = 1024, ¢ J 0, m= 2",
: then once«a sm"le number.in lh(.‘s(,rlcs is discovered.. all
subsequent numbers:are-knawn . Even-if a few-values from
the-sequence becomes availahle-for unulysis,.'thd formula
(i.c the parameters of the algorithm) can.be dcducgd. the

sequence seproduced.  and the cervptosystem  penetrated

[Ritter. 1991
To  make

S0 lhu( the hnow ledge of part of lln: sequence

used  “non-

the actual  sequence

rcpr()duuhk
on the partofanopponciw N msumucm 1o determine future

172

generators,

elements of the sequence. Bright and Enison, 1979 Suggest
using an internal system clock to modify the randosn
number stream. One way t6 use the clock would be Lo restan
the sequence after every N numbers, using the current clocy,
values (mod m) as the new seed. Another way would be 1o
simply add'the current clock value to each random number

(mod m) [Williams, 1995].

But dcsngnlng such portable application code 15
generate unpredictable numbers based on such system
clocks is particularly challenging because the system
designer does not always know the properties of the system
clocks that the code wil'l execute on. So if the code is to be
employed across a variety of computer platforms and
systems. It becomes a problem. Thus, because it is difficult
to find a good set of LCG parameters, LCGs are normally

difficult to customize — Not only have linear congruential

generators been broken, but all polynomial congruent
such as quadratic generators and cubic

generators, have also been broken [Eastlake etal, 1994).

8 Linear Feedback Shift Register (Lfsr).

A feedback shift register consist of an ordinary

shift register made u;; of m flip-flops and a logic circuit that

are interconnected to form a multiloop feedback circuit. The
flip-flops in the shift register are synchronously clocked. At

cach hulse of the clock, the state of each flip-flop is shifted

0 the next-one down the line. With each clock pulse that

logic circuit computes a Boolean function of the states of
the flip-flops: The result is thereby feedback as the input o
the first flip-flop, there by preventing the shift register from
emptying. The sequence so generated is determined by the
length m of the shift register, its internal state, and the feed
hack logic [Simon,1994]. With a total of m flip-flops, the

number of possible state of the shift register is at most 2m.
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A feedback shift register is said to be linear when

the: feedback logic consists entirely of modulo — 2 adders.

(Modulp—z addition is explained in [Ritter,1995-2003]. In
such a tase the zero state (e.g. the state for which all the
flip-flops are in state 0) is not permitted. (The all zero's
state will lock up in a degenerate cycle). As a result a
maximum-length’ sequence of‘ 2m -
LFSR!

is produced by a

Maximal-length sequences - have many of the
properties possessed by a truly random binary sequence. But
a maximal length sequence will occur if the shift-register
.“taps"‘ from a polynomial that is primitive [Ritger, 1991]. (A
primitiveis a special kind of irreducible prir{w of a given
finite field). The statistical perfor.mancc-o.f an LFSR with a
primitive feedback polynomial really is quiter interesting.
Observation of bits produced by the feedback presented by
Horwitz and Hill, 1989 shows that; -

i. In each period of a sequence, the number of Is is always
one more than the number of Os, which implies Is or Os are
almost equally likely. -

ii. Among the runs of Is and of Os in each period of a
sequence, one half the runs of each kind are of length one.

one-fourth are of length two. onc-cight are of length three.

Sand so on as deng as these fracnons represent meaningtul |

numbers of runs. By g run”

identical symbols (1 or Os) within one periad of - the
sequence. The leneth of this subsequence is the Tength of the
ran. So each of these sequence s also equally Jikely: and.
iii. There is only o period of length (2m-1) steps. The all -
zeros stite s an isolated and degenerate cycle.

With This understanding. the design of @ maximal-length
sequence generators reduces 1o findimg the feedhack logic
for a desired period The task s made parnicufarly easy by
virtue of the extensive rables ol the necessary feedhack
connection for v yttaegister leneth tyt have heen

[ Horw itz and Thil, 1989 and

»

Simon. 1994]. ‘ ‘ .

computed” in the hieradare

we niean a subsequence of |

As the length of shift register m, or cquivalently,
the period of the maximal sequence is increased, Iln‘b
sequence becomes increasingly similar to the random binary
sequence [Simon, 1994]. Indeed in the limit. the fwo
sequences become identical when m is made infinitely large.
However, the price paid for making m large is an increasing
storage requirement, which imposes a practical limit on how
large m can actually be made. But of course, the LFSR can
be made arbitrarily latge (and thus more difficult 10 solve),
and is also easily custom.ized. Yet Ritter.1991 recommends
additional isolation in cryptographic use.

The mathematical basis for these sequence was
described by Tauworthe and is cited by Ritter,1991 as heing
a “linear recursion relation™. -
a(k) =c (1) %a (k-1) + ¢ (2) ¥a (k-2) +

(mod 2) where a(k) is the latest bit in the sequence, ¢ the

¢ (m)* alk-m)

coefficients or binary numerical factors a mod 2 polynomial,
and m the degree of the -polynomial and thus the required
number of storage elements. This formula is particularly

interesting, for relatively minor generalization of the same

formula produced the Generalized Feedback Shift Register

(GFSR) and additive génefators described in [Ritter,1991].
C Cryptographycally Generated Random Numbers.

For CIypmoraphlc applications, it makes sense (o
L |kc ‘ul\dnmoe of the encryptions logic available 1o produce
random numbers. A number of means have heen used, and a

few representative examples are considered below.
D Cvyelic Encryption.

Figure 3.1. Illustrajes an approach suggested

. [Meyer and Matyas, 1982]. In this case. the procedure is

used to generate session keys from a master key. A counter
with period N provides input to the encryption logic. For
example, if 56-hit DES keys are to be produced. then
counter with period 256 is used. After cach key is produced.
the counter is incremented by one. Thus the pseudo-random

numbers produced by this scheme cyele tnough o full




period: Each output Vo, Viyeoveievis Vy. is based on a
different counter value, and therefore Vo # Vi# oo #
Vi

Since the Master key is protected, 1t s not

computationally feasible to deduce any of the secret keys

through knowledge of one carlier key.

C+1

v

Encryption
Algorithm .

v

V|=Ekm

Master Key

Kin

“igure 3.1: pseudorandom number generation from a counter.

A further way to strengthen the algorithm will be to

ake the input from the output of & full period pseudorandom

wmber generator, rather than a simple counter.
z Des Output Feedback Mode.

During 1968 - [975. IBM developed a
ryptogaphic pﬁ)ccdurc that enciphers a 64
slaintext into a 64 bit block ol cipher text under the
ontrol of a 56-bit Kev.. ‘The Natonal Burcau ol Standards

now the National Insutute of standards and - Technology

NISTY accepred dus algornhm as a Federal Tntormation

rocessing Standard 46 (HIPS PUB H60) and it became
flectve on Juls. 13 1997 718 1y,
. ’
The aleonthm for this mostawadely used enervption

cheme: the Data Bneryption Standard «DE S cs deserthed i

i oA Toand Ty St i~ peesents the

clanl
ermutation table torthe soncan Fhe tome operation maodes
clined for difterent apphoanons o DES ares Electrome
odehook (EBC) Cipher Block chamig 1¢BC). Cipher

sedback (CFB) and the output feedback tOFB ) modes.

it block of

The output feedback (OFB) mode of DES
illustrated in Figure 3.2 below can be* used for key
generation a8 well as for stream encryption. In the figure, it
is assunjed that the unit of transmission is n bits; a common

value is n =+8 [Ritter, 1995). The input to the encryption

 function is a 64-bit shift register that is initially set to some

initializawon vector (IV). .«

Itis seen that the output of each stage of operation
is a 64-bit value, of which the n leftmost bits are fed back
for encryption. Successive 64-bit outputs constitute a
sequence of pseudo-random numbers with good'sm(islicnl
properties [Ritter, 1995 and Simon. l_994]‘ Here also, the
use of a protected master key protects the generated session
keys. ' .

A particular implementation of the cipher feedback
(CFB) mode recommended by the national® bureau of
standards for the ‘generation of cryptographic bit stream is
shown in [Ritter, 1995]. David, 1991 claims the
implementation of this scheme in software is too slow.

(Cl is the result of X) Ring th.c left most (most significant) n
bit of the output of the encryption with the first unit of

plaintext.)
F ANSIX9.17 Pseudo-Random Number Generator.

Specified in the ANSI financial -institution key
management smndaéd ANSI X9.17, is one of the strongest
(cryptographically — speaking)  pseudo-random  number
gcncrum; (Eastlake, 1994]. A number of applications

employ this  technique, including financial security

'uppliculim}s and Pretty Good , Privacy (PGP).‘ PGP is the

effort of Phil Zimmer man described in [Williams, 1995).
Frigure 3.3 illustrates the algorithm, which makes use of
triple DES for encryption. The scheme involves:

-Input: Two pseadorandom inputs that drive the generator.
One iy a 64-bit representation of the current date and time,
which is updated on each number generation. The other is a

04-bit seed value. This is initialized to some arbitrary value

“and is updated during the generation process.



@) = 7
.
-

- i’ & 1 2
f ceys: The generatdr makes use of thrge triple DES

encryplion modules. All the three make use of thessame pair
of 56-bit keys. which must be kept secret and are used only
for pscudo—rapdom number genération.
-Outputs: The output consists of a 64-bit pseudorandom
number and a 64-bit seed value. P
By definition:
DT! is the Date & Time value at the beginning of ith
generation stage: ’
Vi is the seed.value at the beginning of ith generation stage;
Ri the pseudorandom number produced by’ the ith
generation stage; .
K1i K2 are the DES keys used for each s’Lage.
Therefore;
Ri =EDEkI, K (EDEkl,K2 (DTI) © V1) ’
Vi+l = EDEk1,k2 (EDEkL,k2 (DT1) € RI)

The éfyplo:graphic strength of this method depends
on scver;l factors. The technique involves a 112-bit key and
3 Encrypt-Decrypt-Encrypt (EDE) encryptions for 2 total of
9 DES encryptions [Horwitz and Hill, 1989]. Thescheme is
driven by 2 pseudo-random inputs, the Date and time value,
and a seed produced by thes generator that is diétinct from
the pseudo;andom number produced by the generator
because an additional EDE operation is used«to produce the
Vi+1 the knewledge of Ri is still-not enough to produce the
Vi+! from Ri. Thus [hc': amount of material that must be
compromised-by an opponent is overwhelming.

What follows is the design and implementation of
the Blum. Blum Shub RNG which is claimed to be suimhl.c

for most cryptographic applications,

4.0 THE-BLUM. BLUM SHUB RANDOM NUMBIER
GENERATOR "~ '

The Blun Blum Shuly «(BBSy eenerator s a

random number gencrator named Latter s mventors. which

is based on quadratic residues. The initial seed for the .
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geserator S (0) and the method for calculating subsequent
values zre based on the following iterations:

S(0)=(X) mod N

S(i+1)=S @)’ mod N

Where N is the product of two large primes. X is chosen at
random to be relatively prime to N and the output is the
least significant bis o‘f S (i) or the parity of S(i). Or. the
output can be several of the least significant bits of S (1) up
to log: (log> N) bits [Edstlake.1994, Riticr. 1991 and
Wikipedia free encyclopedia). .

This generator seems uniqgue in that it is claimed to

- be “polynomial-time unpredictable™ and cryptographically

strong though not suitable for use in simulations because of
1991

encyclopedia ]. The BBS generator is not a permutation

its slow nature ([Ritter, and Wikipedia free

generator like some digital computer RNGs discussed
earlier.

All digial computer. RNGs including the BBS
n'ccessarily repeat eventually, and may well include many
short or degenerate cycles. Thus the generator requires some
fairly-complex design procedures, which are apparently
intended to assure long cycle operation. It has an unusually
strong security proof. which relates the quality of the
generator to the difficulty of integer factorization
(Eastlake.1994,- Ritter. 1991 and Wikipedia free
encyclopedia J. .

Given two large prime numbers, it is casy 1o
multiply them together. However, given their product. it
appears to be difficult to find the nontrivial factors of a large
integer. This is relevant for many modern systems n
cryptography. If a fast method were found for solving the
integer factorization problem, then several important
cryptographic systems would be broken. including the RSA

public-key algorithm. and the Blum Blum Shub random

_number generator.

Although fast factoring is one way to bresk these
systems. there may be other ways to break them that don’t

involve factoring. So it is possible that the integer
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factonzation problem s truly hard. yer these systems can
still be broken quickly A rare exception 18 the Blum Blum
Shub generator It hat been proved [Pascal, 1999) 1) he
exactly as hard a¢ mteper facionzation. There 15 no way to
break 11 without alen solving integer factorization quickly.

It a larpe, n-by number 18 the product of two

primes that are foughly the came iz, then no algonithm is

known that can factor the number iy polynomsal ime. When

the primes are chosen 2ppropriately and care is taken that

only a few lowest order bits of cach § (1) are output, then in
the limit as N Erows larpe, dvstinguishing the output bits

from random will be g lcast’as difficuly as factoring N

A Design Requiremenys For The Bbs Generator

The basic BBS requirement for N = p Qis that P
and Q each be primes congruent to 3 mod 4 (this guarantees
that each quadratic residue has one square root which is alsg
@ Quadratic residue) [Wekipedia free encyclopedia). This
looks exceeding easy. But to guarantee 2 particular cycle
length, there are two more conditions:

Condition | defines that 2 prime P is “special” if:
P=2Pl +] and .
Pl =2*P2 4| where P‘I and P2 are odd primes. Both P
and Q are required to be “special”. '
The original BBS paper as cited by Ritter, 1991 gives 2879,
1439. 719,179, and &9 as examples of special primes (but
179 and 89 appear not to be special while 167, 47 and 23
should be). Namely;
If P =179 from the above condition .
179=2+*P] + 1
thus P1 = 178/2 = 89
89 =27P2+ L hence P2 = 88/2 = 44 Thus whereas §9
is an odd prime, 44 is not.
Similarly for P = 89 = 2¢ PI + I implies P1 = 8872 = 44
which 1s not an odd primé. .

Appendix two contains a module that generate primes that

meet these requirements of P and Q being primes congruent '

0 3 mod 4 and being “special” primes. Figure 4.0 is the

result of running the program.

PN
Condstion 2 says that, only one of P1. O =z

- )
2 a8 2 quadratic revsdue (P1, Ol zre e imermediz= o

computed during the “special

mtermedizte

values of both specual primes have 2 s 2
Quadratic residye.

Each of te special conditions pevaides addieiomat Fractere

i the gencrator, which presumsbiy was sezded for some

B

- L ¥,

2ipect of mathemaeg proof. Curreatly. it s faongle Tz
the BBS specia) Prmes construction is sufficiens provided
X is chosen nee 08 2 depenerate cycle, whick

T, WEach m oexce
» P . . .
checked. On whether 2 s0enis) PUITES uammmiss thpe e

RNG will not have short cycles. Rimer, 2001 POEES O S

with public key size special primes, the “sihoer cvties =il

either be “long enough™ 1o LSS, o Sepzomrze 1 ginsds _
cycle loops).

.Asanill';s:r:j:‘:.:‘:-:BB'S}? P=23 Q=
47 (N=1081) is considered, 2 system g=icn 2 3w
Ritter, 1991 was specifically gives 2s =

f

prescribed form™in the original BBS paper. Sterwins mic ¥
=46} .
$(0) = (46)’ mod 1021 = 1035

$ (1) = (1035)" mod 1031 = 1035 ... 2 depenerae oyt
With X = 47, 47 i5 repeated which 1 2ko 2 depenerze
cycle. ‘

Starting with X = 48, the Syclz begzin o Tepear rfer e
tenth cycle. - i A

Because BBS zenerators senen2lly define maultiple ovdlas
with various numbers of stztas, the minal vales X mos be
specially selected 2s well. According 1o Edstlske ecal 1021
1t must be relatively pnme 10 N.

The random bit returnad is obrzinad as:

F (So = @ Z. ... 2,

(i=0,1.2..1) )

W IIT

whare 7Za = S§ MOD 2

5.0 CONCLUSION. -

3 W1 mommprTar limeneag
Typical RNG’s found in most compuzer libren =

TREesaT

are not sufficiently strong for security purposss. Wheress

G’ duce trulv { ) random numbers, they
hardware RNG’s produce truly (rezl) rar

Py -



A NOY casy 1o come DY S0 most applications. Psewdo
andom numder generators are used.

A desenphion N what randomnes ’\\ entariy s ey
and the stingent t.mdmmw\\ EQIIEMEm i cnvprography

explored. A few random number [CNTTATOTS Were reviewad

and a particular attention was fven o Blum Blum Shub
LENSTAOT,

The BRY construction is not a manimal tength

RNG, but instead defines & system with multiple eyveles,

ncluding degenerate, short and long u\‘k\‘ With large

integer factors, state values on short eweles are very rare, but

do exist, Short eyeles are dangerous with any RNG, because
when 2 RNG sequende begins o re

predictable,

Peat, 1t has just become
despite  any  theorems 0 the

Conscqixemlv if the BBS is ke

contrary.
vad by choosing X at
random, unknm\ ingly asshort eyele (a week key) may be
selected, which would make the ;c‘quence predict

OOH‘:!S t

able as
vele stans to repeat. That of course 1s a direct
*ontradunon W the idea that BBS js proven to be
universally secure. Just knowing the lenﬂh of a cycle (by
rmdmt"cequen\e repetition) should be enough to expose the
fau.ors. This is evidence that the assumption that factoring is
hard is not universally true. Of course. factoring is not hard
when the factors are given aw ay. With the :peual prime’s

construction, apparently all “short™ (but not degenerate)
cycles are “long eno-ush“ for use. The BBS is very slow in
companson to other RNG's. thus sclccunt7 BBS RNG

clearly lmplxcs a decision to pay a heavv price with the
expectation of oclnnv an RNG which is pmven secure” in

practice.-
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