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ABSTRACT 

In this paper, an Eigen Functions expansion technique was used to obtain an analytical solution of two-

dimensional contaminant flow problem with non-zero initial concentration. The equation which describes 

the two-dimensional contaminant flow model is a partial differential equation characterized by advection, 

dispersion, adsorption, first order decay and zero-order source. It was assumed that the adsorption term 

was modeled by Freudlich isotherm. The off-diagonal dispersion parameter was incorporated into the 

two-dimensional contaminant model in order to expand the scope of the analysis. The model equation 

was non-dimensionalized before the parameter expanding method was applied. The resulting equations 

were solved successively by Eigen functions expansion technique. This research establishes that the 

pollutant concentration declines with increase in distances in both directions as the off-diagonal 

dispersion coefficient, zero-order source coefficient and vertical dispersion coefficient increases. 
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1.0  Introduction 

The occurrence of dispersion of contaminant in soil, water channels, groundwater and surface water has 

been an evolving research in geology and hydro-geological centers for many years. This is not 

unconnected with the increased awareness of the effect of significant contamination of groundwater and 

surface water by industrial and human activities such as agricultural chemicals, accidental spills, landfills, 

toxic wastes and buried hazardous materials on our health.  

The flow of contaminants through surface soil, groundwater and surface water environments was modeled 

by transport equations (Bear,1997). In order to understand the flow of contaminant in the hydrological 

formation more accurately, a critical survey of contaminant flow lines are desired. The problem 

encompasses providing the solution of transport equation, the travel time of water via the flow lines and 

to predict the activities of the parameters which changes the concentration in the course of flow. 

Most researchers posit that the contaminant flow is predominantly horizontal as found in (Bear,1997), but 

in addition, others affirmed nonetheless that appreciable vertical flow components may occur in the 

domain of vertically penetrating wells, bore holes and streams (Brainard and Gelhar, 1991). In an effort to 

provide solutions to the contaminant flow problems, a lot of successes were achieved by some researchers 

but mostly on one-dimensional cases with various initial and boundary conditions. This includes the study 

of the influence of the retardation factor on the contaminant in a nonlinear contaminant flow (Okedayo 

and Aiyesimi, 2005). On the dispersion of solute, the effect of horizontal dispersion of miscible fluid flow 

in one dimension through porous media was examined (Ramakanta and Mehta, 2010). 
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In line with the desire to understand the behavior of contaminant in a flow, an analytical solution to 

temporally dependent mixing through semi-infinite homogeneous porous medium by Laplace transform 

technique (LTT) was provided (Yadav et al., 2011). Computational analyses on the effect of reactive and 

non-reactive contaminant on the flow were carried out on one-dimensional non-linear contaminant flow 

with an initial continuous point source and discovered that the concentration decreases with increase in 

time and distance from the origin for the non-reactive case by homotopy perturbation method (Yadav et 

al., 2011).   

In this research, we present the pollutant concentration regime in the flow due to variable time-dependent 

off-diagonal dispersion. The two-dimensional contaminant flow problem incorporating flow in both 

horizontal directions, off-diagonal dispersion parameters in addition to first-order decay and zero order 

sources was solved using the parameter expanding technique and Eigen functions expansion method.  

2.0  Formulation of the Problem 

An incompressible fluid flow through a finite homogeneous porous media with non-zero initial 

concentration in the transport domain is considered. It is assumed that the flow is two-dimensional and in 

the direction of x and y-axis. The concentration of the source is assumed at the origin ( i.e. at time t=0). it 

is assumed that the contaminant invades the groundwater level from point source in a finite homogeneous 

porous media. 

Following Bear (1997), Yadav et al., (2011), Suciu (2014), Lee and Kim (2012), Mahato et al. (2015), 

Singh (2015) and Jimoh et al. (2018), we introduce the off-diagonal dispersion parameter into the two 

dimensional contaminant concentration flow equation and obtained: 
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where C  is the concentration of the contaminant in the flow, S  is the concentration of the  

contaminant adsorbed to the porous media, xxD  is the dispersion in the longitudinal direction, yyD is 

the dispersion in the vertical direction, xyD  and yxD  are off-diagonal dispersion coefficients. ( )t  is the 

decay parameter, ( )t  is the source term, ( )tu  and ( )tv  are the velocities in the horizontal and vertical 

directions respectively, 

 













+
+

+
=

+
+

+
=

22

2

22

2

22

2

22

2

vu

u

vu

v
D

vu

v

vu

u
D

TL
yy

TL
xx





       (2)

 



The Pollutant Concentration Regime in a Flow due to Variable Time-Dependent Off-Diagonal Dispersion 

 
 

64 

 
Series: AIJR Proceedings 

ISSN: 2582-3922 
 
 

Proceedings DOI: 10.21467/proceedings.100 

ISBN: 978-81-942709-6-6 
 
 

,
)(

22 vu

uv
DD TL

yxxy

+

−
==


        (3) 

as in Batu (2006). 

The adsorbed contaminant is considered directly proportional to the contaminant concentration. i.e.,  

CKS d=            (4) 
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as found in Dawson (1993). 

Following the relationship (4) and (5), equation (1) may be rewritten as 
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xyD  is the initial off-diagonal dispersion component. The initial and boundary conditions are chosen as 
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We let 
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where )(th  is arbitrary function of time as used (Yadav et al. 2011and Batu, 2006). 0xD is initial 

horizontal dispersion coefficient, 0yD  is the initial vertical dispersion coefficient, 0xyD  is the initial off-

diagonal dispersion coefficient, 0v  is the initial vertical velocity, 0u is the initial horizontal velocity, 0

is the initial zero-order source coefficient and 0  is the initial first order decay coefficient. We also 

introduced a new time variable as used in Olayiwola et al. (2013): 
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By substituting the components of equations (8) and (9) in (6), the following equation is obtained: 
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where all the parameters as defined previously. 

A new special variable is introduced below as used in ( Batu, 2006):  
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Then, substituting equation (12) in equation (10), we obtain  
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where  
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2.1   Non-Dimensionalization 

Equation (13) is non-dimensionalized by using the following dimensionless variables: 
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On substituting the above dimensionless variables in equation (13), the following equation is obtained. 
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For convenience, the primes are dropped and obtained 
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where,  

LU

D
D =2           (20) 

and 1  is the new dimensionless initial zero-order source coefficient. 

The dimensionless form of equation (13) and (14) is 
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2.2 Solution of the Model 

The above problem (21) is solved by using parameter expanding method.  The parameter expanding 

method breaks the equation (21) into simpler ones which can be easily solved successively.  To achieve 

this, let 

01 a=            (22) 

in the advection term of equation (21) and 

...),(),(),( 100 ++=  CCC        (23) 

as in (He, 2006; Sweilam and Khader, 2010;  Olayiwola et al., 2013). When equation (23) is substituted 

in equation (21), the following was obtained. 
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Equating coefficients of corresponding terms on both sides of equation (24), the resulting equations are as 

given below: 
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Equations (25) and (26) are transformed to satisfy the homogeneous boundary conditions and solved 

successively using the Eigen functions expansion method. To accomplish this, a function is chosen which 

satisfies the given boundary conditions. i.e.,  

( ) ( ) ( ) ( )( ) −+=,w        (27) 
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( )

( ) 







=

−=

0

2

c

c

q

p




         (28)  

Let, 

( ) ( ) ( ) ,,, 00 wvC +=         (29) 

That is 

( ) ( ) ( ) ( )( ) qcqvC p −−+−+= 22,, 00      (30) 

By application of change of variables,  
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We substitute (32) and (35) in equation (25) to obtain 
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Then, 

),0(),0(),0( 00  wvC +=         (37) 

0),0(0 = v           (38) 

Similarly,  

),1(),1(),1( 000  wvC +=         (39) 

0),1(0 =v           (40) 

For the initial condition, 0)0,(0 =C  
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The partial differential equation (25) with the homogeneous boundary conditions (38) and (40) and the 

initial condition (42) is solved using the Eigen Function expansion method and obtain the following 

result: 

( ) ( ) ( ) mCv
m

m sin,
1

0 


=

=         (43) 

( ) ( ) ( ) wvC += ,, 00         (44) 

i.e.,  ( ) ( ) ( ) ( )


=

+=
1

0 sin,
m

m mCwC         (45) 

https://doi.org/10.21467/proceedings.100


Jimoh et al. AIJR Proceedings, pp.62-75, 2020 
 
 

 

 

 Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS-2019) 

 69 

          

( ) ( )( )

( )
( )( )( ) ( )( )( )

( )( )
( )( )

( )
















m

e

m
cm

c

m

m
cm

c

emq
mD

c

c
qC

m mD

p

i

mD

p

sin

cos
24

1cos
2

11cos
2

12,

1

0

0

13

2

0

0

2
2

2
2




= −

−















































+−

−−

+

−−−

+

+−−=

   

(46) 

Similarly, when equation (26) was solved by Eigen Functions expansion method and the following results 

was obtained: 
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(47) 

The solution of the contaminant flow equation (21) where 0ic is therefore, 

( ) ( ) ( ) ...,,, 10 ++=  CCC        (48) 

where ( ),0C  and ( ),1C  are as given in (47) and (48) respectively. 

3.0 Results and Discussion 

The semi-analytical result which was obtained in equation (48) is plotted into graphs with the help of 

input data and Maple software (Maple 16) package as presented in the following figures. 
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Figure 1: Contaminant Concentration profile  for 40 =xyD , 50 =xyD , 60 =xyD  when  10 =c , ,3.01 =

1=pc , 1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 1.00 =v  with y and x  fixed as 0.5. 

Figure1 is the graph of contaminant concentration with respect to time for varying off-diagonal dispersion 

coefficient from 4.0 to 6.0. The graph reveals that as the off-diagonal dispersion coefficient intensifies, 

there is decline in concentration as time increases. Figures 2 and 5 are the concentration profile of 

contaminant for varying vertical dispersion coefficient. From the graphs, increase in the dispersion in 

upward direction decline the concentration of the pollutant in x and y directions.  

 

 

Figure 2: Contaminant Concentration profile  for 5.10 =yD , 6.10 =yD , 7.10 =yD  when  10 =c ,

,3.01 = 1=pc , 1.00 = , ,3=q 1=xoD , 40 =xyD , 1.00 =u , 1.00 =v  with x and t  fixed as 0.5. 
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Figure 3: Contaminant Concentration profile  for 40 =xyD , 50 =xyD , 60 =xyD  when  10 =c , ,3.01 =

1=pc , 1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 1.00 =v  with y and t  fixed as 0.5. 

 

Figure 4: Contaminant Concentration profile  for 40 =xyD , 50 =xyD , 60 =xyD  when  10 =c , ,3.01 =

1=pc , 1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 1.00 =v  with x and t  fixed as 0.5. 
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Figure 5: Contaminant Concentration profile  for 5.10 =yD , 6.10 =yD , 7.10 =yD  when  10 =c ,

,3.0
1
= 1=pc , 1.00 = , ,3=q 5.1=yoD , 40 =xyD , 1.00 =u , 1.00 =v  with  y and t  fixed as 

0.5. 

 

Figure 6: Contaminant Concentration profile  for 10 =xD , 1.10 =xD , 2.10 =xD  when  10 =c ,

,3.01 = 1=pc , 1.00 = , ,3=q 5.1=yoD , 40 =xyD , 1.00 =u , 1.00 =v  with  y and t  fixed as 

0.5. 
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Figure 7: Contaminant Concentration profile  for 9.0,6.0,3.0 111 ===  , when  10 =c , 1=pc , 

1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 4.00 =xyD 1.00 =v  with y and x  fixed as 0.5. 

 

Figure 8: Contaminant Concentration profile  for ,9.0,6.0,3.0 111 ===  when  10 =c , 1=pc , 

1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 1.00 =v  with x and t  fixed as 0.5. 
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Figure 9: Contaminant Concentration profile for ,9.0,6.0,3.0 111 ===  when 10 =c , 1=pc , 

1.00 = , ,3=q 1=xoD , 5.10 =yD , 1.00 =u , 1.00 =v  with y and t  fixed as 0.5. 

The impact of off-diagonal dispersion on the contaminant concentration is illustrated by figures 3 and 4. 

These figures show that the concentration of pollutant decreases with increase in distances x and y as a 

result of rise in off-diagonal dispersion. Lastly, in figure 6, as the horizontal dispersion coefficient 

increases, the concentration of pollutant declines as the horizontal distance x increases. The results 

obtained in this study may assist the geologist in knowing the distance from the source of contaminant 

that is good for location of wells. These are the distances at which the contaminant concentration is zero. 

Figures 7, 8 and 9 show that there is a drop in contaminant concentration as the zero-order source 

coefficient increases. 

The intersection of the lines in Figures 8 and 9 only show the faster rate of concentration decline the zero-

order source coefficient increases. It has no physical implication with respect to this research article. 

4.0 Conclusion 

In this work, the effect of off-diagonal dispersion and zero-order source of contaminant on the 

concentration are studied. The two-dimensional contaminant flow problem incorporating the off-diagonal 

dispersion coefficient and zero-order source has been solved by the method of Eigen functions expansion. 

Findings from the study show that the contaminant concentration declines with increase in time and 

distances as the off-diagonal dispersion, horizontal dispersion and vertical dispersion coefficients 
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increase. The study also revealed that as the zero-order source coefficient increases, there is concentration 

drop as distance and time increases. 
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