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Focus

oday, we see computing outside the realm of personal computers. It has
penetrated into everyday products, enabling useful and interesting applica-
tions. It has been estimated that around 90% of the computing devices are in
embedded systems rather than personal computers, The growth rate is more than 10%
per annum. According to industry forecast, there will be over 30 billion smart devices

worldwide by 2020.

With an explosive growth of smart devices and ubiquitous computing, and a desire
to be in a connected society, the Internet of Things (IoT) has become a reality gradually.
It is an ever-growing network of computing devices, machines, vehicles, buildings,
people, animals and other physical objects with the ability to exchange data over the
Internet.

The goal of the IoT is to create smart environments that make energy, transport,
agriculture, healthcare, tourism, buildings, homes, cities and many other areas more
intelligent. Radio Frequency Identification (RFID) and Wireless Sensor Network
(WSN) technologies being the critical hardware infrastructure, the IoT system provides
remote tracking and monitoring of connected objects and thereby offers numerous
applications so as to improve the quality of human life.

While the promises of IoT are exciting, the challenges it offers are manifold. These
challenges can be both technical and social in nature and must be overcome in order
to ensure its rapid adoption and diffusion. Some of them can be interoperable hardware
and software, energy-efficient devices, efficient sensing and identification techniques,
communication protocols, quality of service, data analytics and visualization algorithms,

security and privacy issues.

Against this backdrop, the paper, “Android-Based City Bus Tracking System”, by
Snehal A Demapure and S V Kulkarni, describes an intelligent traffic information
system using the notion of IoT. The authors claim that the proposed application is
efficient, useful and cost-effective.

The second paper, “Mobile Learning and Evaluation: A New Paradigm of Teaching
and Learning”, by Kirti Panwar and Raj Kamal, presents a mobile application that
enables a user to learn a subject and test his knowledge while on the move. The
system is developed using Microsoft Technologies and claimed to be user-friendly.

The third paper, “E-Sign Detector: Image Steganography-Based Employee
Identification System”, by V Senthooran, M T Chathuranga and T Kartheeswaran,
describes a system that identifies and tracks employees in an office who try to enter
some restricted area. The authors claim that the proposed system will overcome several
problems of manual identification and tracking.

The next paper, “A Comparison of Code Maintainability in Agile Environment”, by
Mary Adebola Ajiboye, Matthew Sunday Abolarin and Johnson Adegbenga Ajiboye,
presents a rescarch study on time to maintain code in an agile software development




environment. It reveals that random pair programmers spend more time per bug o
the average, while individual experts spend less time to do so.

The Tast paper, “The Effect of ERP System on Organizational Performam;e:A
Comparative Study”, by Bharti Motwani and RK Sharma, is an impact study. It Tevegls
that Enterprise Resource Planning (ERP) systems have positive effects on many facgor,
related to organizational process.

A C Ojha
Consulting Edirg,

/
2, 2016
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A Comparison of Code Maintainability
in Agile Environment

Mary Adebola Ajiboye*, Matthew Sunday Abolarin**
and Johnson Adegbenga Ajiboye***

The demand for quick delivery of quality software is becoming high among software clients
due to the fast changing technology in the dynamic world. Agile software development meets
this demand and has gained appropriate and wide acceptance among software practitioners.
However, the quality of such software is greatly impacted by its maintainability. Unfortunately,
existing works focused only on the flexibility aspect of maintainability without paying attention
to timely delivery. In this work, maintainability as a function of time to correct codes was
examined among various categories of software developers. Deliberate errors, ranging from two
to nine, were introduced into sets of agile codes written in python programming language and

given to 100 programmers, each in the groups of individual junior, individual expert, random,

expert pairs, junior pairs and junior expert pairs. The results revealed that random pair

programmers spent the highest time of 21.88 min/bug on the average, while individual experts

spent the least time of 16.26 min/bug.

Keywords: XE PE ASD, DMRT, Model Metrics, Agile

Introduction

The issue of how software development should be organized with a view to delivering
faster, better and cheaper solutions has been discussed in software engineering circles.
There have been lots of suggestions for improvement. This varies from standardization
and measurement of the software process to a multitude of concrete tools, techniques
and practices (Kaushal and Anju, 2013). Most of the suggestions for improvement
have come from experienced software professionals who have individually developed

methods and practices to respond to the expected change.

In order to tackle the challenges faced in the software industry, a group of '17
software experts met in Utah in February 2001 to discuss and came up with the agile
manifesto. A collection of the different techniques and practices that share the same
values and basic principles is called the agile methods. These methods for the agile

*  Research Scholar, Department of Computer Engineering, Federal University of Technology, Minna, Nigeria.

E-mail: ajiboyemary@gmail.com _ .
**  Professor, Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria-

E-mail: abolarinmatthew@yahoo.com .
*** Lecturer, Department of Electrical and Electronics Engineering, Federal University of Technology,

Nigeria; and is the corresponding author. E-mail: ajiboye2003@yahoo.com

Minna,

© 2016 TUP All Rights Reserved.
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set their requirements at once, yet they expect more from their software. In reactiop
to this, lots of software experts have individually developed methods and practice to
respond to the expected change. The agile methods are a collection of differens
techniques (or practices) that share the same values and basic principles. Many o
for example, based on iterative enhancement, a technique that was introduced in the
year 1975 (Munindar, 2006).

Since 2001, a majority of organizations have adopted and implemented agile software
development because the traditional approach to software development is grossdly
inefficient and does not allow for change (Erika and Scott, 2013). In the traditiond
approach, customer’s requirements are fixed at the beginning of the project. Thereis
therefore a need to have newer approaches to software development that will be dynanic

enough to be able to handle the changing requirements (Highsmith and Cockbum,
2001).

The waterfall model, shown in Figure 1, therefore is obsolete (Spence, 2003}
Hence the need for a more flexible model that permits software engineers to chang?
_/
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their requirements much later to reflect the chang

(Patel et al., 2012).

ing software business world

Therefore, an approach for adopting agile methods is proposed to accommodate
the flexibility that is not found in the waterfall model. The software development
industry has experienced changes lately (Petersen, 2010). This has made agile software
development popular and widely accepted. Flexibility in the development of software
is highly required due to the unpredictable nature of the current software industry.
The traditional method of software development cannot suffice due to the changing
nature of the client’s requirements.

According to Lindvall et al. (2002), agile methodologies are a group of software
development processes that are iterative, incremental, self-organizing and emergent,
as shown in Figure 2. The agile software development is an iterative development
process which gives room for change in the requirements throughout the development
cycle (Mnkandla and Dwolatzky, 2007). It also encourages and emphasizes close
coordination and relationship between the developer and software client. A software
development method that delivers faster, better and cheaper solutions is the goal of
every organization (Sohaib and Khan, 2010). The core issue in agile is the interaction

and frequent communication between the team of developers and stakeholders and
the delivery of functional products promptly.

Figure 2: Agile Methodology

Agile Methodology
v v v v
[terative Incremental Self- Emergent
Organizing

Source: Mnkandla and Dwolatzky, 2007

The major shortcoming of agile software development is in the area of quantifiable
measurement. Traditional measurement does not consider agile culture and can result
in an unwanted effect. There is, therefore, the need for a measurement approach to
ensure and strengthen the agile principles. Besides the performance measurement
which is usually done on the completed project, there is the need for a technique that
continuously assesses the improvement of a process. The study will guide managers to
make right decisions when pairing programmers, thereby improving upon the quality
of maintainability service.

The aim of this research is to perform an experiment and compare the amount of
time spent in correcting python code errors in an agile software development
environment and thereby improving upon the maintainability quality factor of software
codes. Python programming language is very useful especially for software development

A Comparison of Code Maintainability in Agile Environment 35
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are described.

An experiment was carried out with codes written in python language. Deliberate
errors were introduced into these sets of codes and given to software developers in the
agile environment to debug in order to study and evaluate maintainability issues. The
expertise of the professionals was put into consideration based on their number of
years of experience and all are knowledgeable in python programming. The choice of
python is based on the fact that it is an agile, robust, fully object-oriented and scalable
programming language. Those above five years of experience were categorized as experts,
while juniors are those with five years of experience or below. They were further
grouped to work as pairs, where two programmers work together on a task and
individuals. The pairing was based on their knowledge of pair programming and their
years of experience. The grouping is shown in Table 1.

Table 1: Grouping of Software Programmers

Grouping Remark
Random Pairs Irrespective of their years of experience in pair programming
Expert Pairs Both have more than five years of experience in pair programming
Expert-Junior Combination of programmers, of which one has more than five years of

experience and the other less in pair programming
Junior-Junior Both have less than five years of experience in pair programming |
Individual Expert | More than five years of experience in agile programming —
Individual Junior | Less than five years of experience in agile programming I

2.1 Samples of Codes with Errors and Outputs

Figure 3 shows a sample of python codes wi i
with seven erro e codes 18
shown in Figure 4. rs. The output of th

36
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Figure 3: Python Codes with Seven Errors Introduced
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2.2 Statistical Tools

Analysis of Variance (Anova) provides different types of varianee a
The Analysis of Vart
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values, each corresponding to a specific set of pair comparlsons. It primarily depe &
on the standard error of the mean difference. This can easily be worked out Using
estimate of variance of an estimated elementary treatment contrast through the desig,
Application of DMRT ranks all the treatment means in decreasing or increasing orde
based on the preference of the character under study.

Umeyj

2.3 Correlation Coefficient

The correlation coefficient is a measure of the extent to which two measurement,
say, X and Y vary together. Correlation analysis examines each pair of measuremens
to determine whether the two tend to move together. The correlation coefficient can
assume any value between —1 and +1. Positive correlation is obtained when larg
values of one variable tend to be associated with large values of the other. Negative
correlation results when small values of one variable tend to be associated with large
values of the other and a correlation near O (zero) is obtained when values of both
variables tend to be unrelated. Bivariate correlation given in Equation (1) was used
to check the relationships between the number of bugs in projects and the time spert
to correct the errors. Bivariate shows relationship between two variables.

Correl(X,Y) = Z(X—E)(y—y)

\/Z(X‘E)ZZ@—?)Z

3. Results and Discussion

3.1 Average Time Spent on One Error
ffesent

The average time spent in correcting an error in a system software by the di ;
YS[e.

programmer expertise and the difference in the time spent in correcting o
software error from that of individual programmers (junior and expert) i sho
Table 2 and graphical presentation is shown in Figure 5.

olf

.
0. &
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rfTablc 2: Average Time Spent on Debugging System Software Error

Average Time Spent Difference from Individual (%)
Pair Group on Error (min/error) Individual Individual

(Junior) (Expert)

Random Pairs 21.88 £ 737 32.05 43.38

Expert Pairs 15.5 £ 3.91" -6.46 1.57

m and Junior Pairs 16.07 + 4.39b -3.02 5.31

Junior Pairs 16.59 + 4.23b 0.12 8.72
ndividual Expert 15.26 +3.30°
Individual Junior 16.57 = 3.36

Note: * Means standard deviation on the same column with different superscripts are significantly different
(p < 0.05); Negative figure indicates that less time was spent than individual (Junior).

Figure 5: Average Duration of Time Spent in Debugging Software Errors
by Different Level of Programmer Expertise

B Individual (Junior)
B Individual (Expert)

Difference from Individual (%)
[y o)
S

-10 i f i

Random Pairs Expert Pairs Expert and Junior Pairs
Junior Pairs

Pair Combinations

The average time spent by the programmers on an error showed some level of
significant difference (p < 0.05). The randomly paired programmers spent the highest
average time (21.88 min) on correcting an error which was significantly higher than
other paired and individual programmers. The junior pair, individual junior, expert
and junior, expert pair and individual expert programmers spent statistically comparable
average time on correcting a system software error. The average time spent in decreasing
order was random pair > junior pair > individual junior > expert and junior > expert

A Comparison of Code Maintainability in Agile Environment 39
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3.2 Time Spent on Each Project

The time spent by the programmers on each project containing different numper of
bugs (errors) is shown in Table 3 and the graphical representation is shown ip
Figure 6. The difference in time spent on each project by pair programmers relatiye
from the individual programmers (junior and expert) is shown in Table 4. The correlatiop
coefficient showing the relationship between the n

umber of bugs in a project and the
time spent on the project is shown in Table 5.

There were no significant differences (p > 0.05) in the average time on system
software with 2 and 8 errors between t

he different programmer expertise but by
observation, the decreasing order in the time spent on 2 errors was random > junior
pair = expert pair > junior — junior pair > individual junior > individual expert
while that of 8 errors in a System software was random > junior pair = individual
junior > expert and junior pair > individual eXpert > expert pair.

Table :i;f;k)vel:ﬁge_'rinée Sg:nt by Different Skil Level of Pair Programmer
ebuggi :
gg rwumber of Bugs in a System Software -
)
B | ndon B | B0t [ Janior: | individust | Tdidet
Xpert Junior Junior Junior Expert
2 60 0| s T—— 3
— = 500 :
4 e P —
T | & 67 67 ol
3 1132 79 \SZE’\\T‘ ’—-’—78”/
) | b
6 119 82b ‘?—\L 84 /@/
7 141" , 5 88
T —
8 136 100 ? 111 ‘_‘__,,“3/
5 7 T —— s ug | A
Note: Means on the same mwm“’*\l:}r 145° }
SUperseys ], O A
CISCripts are 51gnificantly different (b < 0.09).
40 s



Figure 6: Effect of Pair Programming on Duration of Correcting Different Number

of Bugs in System Software by Different Level of Programmer Expertise

Difference from Individual (%)

80
70
60
50
40
30
20
10
0-
-10-
-20

Junior

Individual (Junior)

Random Expert- Expert- Junior-

Expert Junior

Random Expert- Expert- Junior-
Expert Junior Junior

Individual-Expert

02 Bugs
®3 Bugs
84 Bugs
@5 Bugs
o6 Bugs
07 Bugs
o8 Bugs
o9 Bugs

Table 4: Percentage Difference in the Time Spent by Pair Programmer
and Individual Programmer on Different Number of Errors in a Project

——

case may be.

Number Individual (Junior) Individual (Expert)
of
Burs|Random | e | Soree | | Random | b | ert | Jover
2 33 11 0 11 71 43 29 43
3 43 =7 ) 2 63 6 16 16
& 33 -4 -6 0 41 2 0 6
5 35 -6 =7 —4 45 1 5 4
6 35 -7 -1 8 43 -1 5 14
7 27 12 -12 -12 42 | -1 -1
8 15 -8 -3 0 23 -2 4 6
9 18 -9 -3 -2 23 -5 1 2
Note: Negative figure indicates that less time was spent than individual (Junior) or individual (expert) as the

A Comparison of Code Maintainability in Agile Environment
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Note: ** Correlation is significant at 19% level.
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from each other. The time spent On debugging the bugs in the decreasing order y,
random > junior pair = expert — junior pair > individual junior > expert paira:
individual expert for system software with three bugs, Random > junior pair = ex

—~ -junior pair = individual junior > expert pair > individual expert for system sofnfert
with four bugs, random > individual junior > expert — junior pair > junior o
expert pair > individual expert for system software with five bugs, random >P.3"'>
pair > individual junior > expert — junior pair > individual exper’t > expert Jl'mlfor
system so.ftware with 6 bugs, random > individual junior > junior pair p=re§;;rrtor
]r‘;?lg nfair ind:;dpz;tl ;:)jrllrioj >m'dw‘1dual expert for system software with seven bugs
> expert pair for system softwa]rznvlv(z:hpzli;: bi}:sjert ~Fon e = weh e

The ¢ i = ,
o lhe conslcn coefftets dowing the telacontip berween ine ek
Fblo 5 were highly s nei;io bugs in the projects for all the programmers shown in
which implied that thg tin(l:: rslit)e(ilzy were significant at 1% level), strong and posit®
. n proj i Y
bugs in the project increased for all tEeOJE;Cts increased significantly as the number 0
programmer expertise.

Conclusion

This research identified t i
required in software mail:lttafrfiéllﬁom tbe issue of dynamism and flexibility that 8¢
function of time spent in corre - delivery time is a great factor. This is also
debugging different error com Citm-g-COde errors. The results of several ‘ex eriments
varying levels of expertise revz;letles by different combinati ; P mmers wi
ed that random pair Speni :ﬁ:sh? }I,)mtg?me i 8
ighes
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min/bug on an average. This was significantly different compared to other
categorization, while individual expert spent the least time of 15.26 min/bug and this
is closely followed by expert-expert pair 15.5 min/bug. The correlation between the
number of bugs and time of debugging was highly significant, strong and positive. This
revealed that the time spent in correcting system software errors increased significantly
as the number of bugs increased. @
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