- The IUP Journal of

IUP Publications
ivision of The ICFAI Society)
www.iupindia.in

(AD

The IUP Journal of

' INFORMATION
TECHNOLOGY

Vol. XII No. 2 June 2016
Contents
Focus ‘ ‘ 5.
Android-Based City Bus Tracking System 7

Snehal A Demapure and S V Kulkami

Mobile Learning and Evaluation:
A New Paradigm of Teaching and Learmng 13
Kirti Panwar and Raj Kamal :

E-Sign Detector: Image Steganography-Based
Employee Identification System 22
V Senthooran, M T Chathuranga and T Kartheeswaran

A Comparison of Code Maintainability in Agile Environment 33
Mary Adebola Ajiboye, Matthew Sunday Abolarin
and Johnson Adegbenga Ajiboye

The Effect of ERP System on Organizational Performance:

A Comparative Study 45
Bharti Motwani and R K Sharma

IJIT

Vol. XII No. 2

June 2014

EDITOR
E N Murthy

MANAGING EDITOR
GRK Murty

CONSULTING EDITOR
A C Ojha

EDITORIAL BOARD

A Govardhan

Professor of Computer Science & Engineering,

Member, Executive Council, INTU Hyderabad and
Director, School of IT, JNTU Hyderabad, India.

P N Girija

Professor, School of Computer and Information Science

University of Hyderabad, Hyderabad, India.

Siba K Udgata

Professor, School of Computer & Information Sciences

and Professor-in-Charge,

Center for Modelling, Simulation and Design (CMSD)

University of Hyderabad, Hyderabad, India.

EDITORIAL TEAM
S V Srirama Rao (Associate Editor)

R Venkatesan Iyengar
V Hymavathi

P Anjani Kumar

N Surya Prakashini
M Kondala Rao

Subscriptions

For subscriptions and related enquiries write to:
The Executive, Subscriptions

JUP Publications

(A Division of The ICFALI Society)

52, Nagarjuna Hills

Panjagutta, Hyderabad 500082

Telangana, India

Tel: +91 (40) 3993335152, +918498843633
E-mail: jms@iupindia.in; info@iupindia.in
Website: www.iupindia.in

ISSN 0973.289

The IUP Jowrnal of Information Technology is 5 ‘Deer.
reviewed’ journal published four times 3 year in
March, June, September and December,

© June 2016. All Rights Reserved.

« No part of this publication may be reproduced o
copied in any form by any means without prigy
written permission.

o [UP holds the copyright to all articles
contributed to its publications.

* The views expressed in this publication are
purely personal judgments of the authors and do
not reflect the views of [UR The views expressed
by external authors represent their personal views
and not necessarily the views of the
organizations they represent.

* All efforts are made to ensure that the published
information is correct. IUP is not responsible for
any errors caused due to oversight or otherwise.

Send your feedback to

The Managing Editor

IUP Publications

(A Division of The ICFAI Society)
52, Nagarjuna Hills

Panjagutta, Hyderabad 500082
Telangana, India

E-mail: info@iupindia.in

Subscription Rates
Hard Copy R
Period India Overseas (9)
% By Post w
1 year 1000 50 55
2 years 1800 70 %0
’_\
3 years 2600 110 130
4 years 3300 140 180
\
5 years 4000 160 200

Vi
Payment to be made by crossed Demand Draft dray

in favor of “ICFAI A/c IUP", Hyderabad. On!ine
remittances can be made to HDFC Bank, Banjar®
Hills Branch, A/e. No. 5020000096269, “ICEAI A%
IUP", IFSC Code for NEFT. HDFC0000521.

Published by EN Murthy on behalf of [UP Publications (A Division of The |CFAL Society), # 52, Nagarjuna Hills, Panjaguttd

Hyderabad 500082, Telangana, India, and printed at M/s,

Hyderabad 500013,

Mahathi Prine Creations, 2-3-720/A/11, Ganganagar, Amberpet

Focus

oday, we see computing outside the realm of personal computers. It has
penetrated into everyday products, enabling useful and interesting applica-
tions. It has been estimated that around 90% of the computing devices are in
embedded systems rather than personal computers, The growth rate is more than 10%
per annum. According to industry forecast, there will be over 30 billion smart devices

worldwide by 2020.

With an explosive growth of smart devices and ubiquitous computing, and a desire
to be in a connected society, the Internet of Things (IoT) has become a reality gradually.
It is an ever-growing network of computing devices, machines, vehicles, buildings,
people, animals and other physical objects with the ability to exchange data over the
Internet.

The goal of the IoT is to create smart environments that make energy, transport,
agriculture, healthcare, tourism, buildings, homes, cities and many other areas more
intelligent. Radio Frequency Identification (RFID) and Wireless Sensor Network
(WSN) technologies being the critical hardware infrastructure, the IoT system provides
remote tracking and monitoring of connected objects and thereby offers numerous
applications so as to improve the quality of human life.

While the promises of IoT are exciting, the challenges it offers are manifold. These
challenges can be both technical and social in nature and must be overcome in order
to ensure its rapid adoption and diffusion. Some of them can be interoperable hardware
and software, energy-efficient devices, efficient sensing and identification techniques,
communication protocols, quality of service, data analytics and visualization algorithms,

security and privacy issues.

Against this backdrop, the paper, “Android-Based City Bus Tracking System”, by
Snehal A Demapure and S V Kulkarni, describes an intelligent traffic information
system using the notion of IoT. The authors claim that the proposed application is
efficient, useful and cost-effective.

The second paper, “Mobile Learning and Evaluation: A New Paradigm of Teaching
and Learning”, by Kirti Panwar and Raj Kamal, presents a mobile application that
enables a user to learn a subject and test his knowledge while on the move. The
system is developed using Microsoft Technologies and claimed to be user-friendly.

The third paper, “E-Sign Detector: Image Steganography-Based Employee
Identification System”, by V Senthooran, M T Chathuranga and T Kartheeswaran,
describes a system that identifies and tracks employees in an office who try to enter
some restricted area. The authors claim that the proposed system will overcome several
problems of manual identification and tracking.

The next paper, “A Comparison of Code Maintainability in Agile Environment”, by
Mary Adebola Ajiboye, Matthew Sunday Abolarin and Johnson Adegbenga Ajiboye,
presents a rescarch study on time to maintain code in an agile software development

environment. It reveals that random pair programmers spend more time per bug o
the average, while individual experts spend less time to do so.

The Tast paper, “The Effect of ERP System on Organizational Performam;e:A
Comparative Study”, by Bharti Motwani and RK Sharma, is an impact study. It Tevegls
that Enterprise Resource Planning (ERP) systems have positive effects on many facgor,
related to organizational process.

A C Ojha
Consulting Edirg,

/
2, 2016

6 The 1UP Journal of Information Technology, Vol. XII, No-

A Comparison of Code Maintainability
in Agile Environment

Mary Adebola Ajiboye*, Matthew Sunday Abolarin**
and Johnson Adegbenga Ajiboye***

The demand for quick delivery of quality software is becoming high among software clients
due to the fast changing technology in the dynamic world. Agile software development meets
this demand and has gained appropriate and wide acceptance among software practitioners.
However, the quality of such software is greatly impacted by its maintainability. Unfortunately,
existing works focused only on the flexibility aspect of maintainability without paying attention
to timely delivery. In this work, maintainability as a function of time to correct codes was
examined among various categories of software developers. Deliberate errors, ranging from two
to nine, were introduced into sets of agile codes written in python programming language and

given to 100 programmers, each in the groups of individual junior, individual expert, random,

expert pairs, junior pairs and junior expert pairs. The results revealed that random pair

programmers spent the highest time of 21.88 min/bug on the average, while individual experts

spent the least time of 16.26 min/bug.

Keywords: XE PE ASD, DMRT, Model Metrics, Agile

Introduction

The issue of how software development should be organized with a view to delivering
faster, better and cheaper solutions has been discussed in software engineering circles.
There have been lots of suggestions for improvement. This varies from standardization
and measurement of the software process to a multitude of concrete tools, techniques
and practices (Kaushal and Anju, 2013). Most of the suggestions for improvement
have come from experienced software professionals who have individually developed

methods and practices to respond to the expected change.

In order to tackle the challenges faced in the software industry, a group of '17
software experts met in Utah in February 2001 to discuss and came up with the agile
manifesto. A collection of the different techniques and practices that share the same
values and basic principles is called the agile methods. These methods for the agile

* Research Scholar, Department of Computer Engineering, Federal University of Technology, Minna, Nigeria.

E-mail: ajiboyemary@gmail.com _ .
** Professor, Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria-

E-mail: abolarinmatthew@yahoo.com .
*** Lecturer, Department of Electrical and Electronics Engineering, Federal University of Technology,

Nigeria; and is the corresponding author. E-mail: ajiboye2003@yahoo.com

Minna,

© 2016 TUP All Rights Reserved.

~

to the traditional plan-based met,

ally a responsc lined and efficient engineering.byc P a, thl
Pty

" .t are actu
developmen Y ized, stream

focuses mainly on a ratiol

(Nerur et al., 2005).

In the traditional appro

Optimum and prcdlct:l\l:k1 t
rigorous planning, codified proc

opment, problems can be fully

oftware devel |
ach to software de ol

solutions are proffercd to every problem which in::;%
VJ vq

sses, very thorough and meticulous feuse ooy
ivi icient. On the contra) A
thereby making the development activity efﬁc;ent o edictable V:,S(V;r;gebaglle softwar%
development processes tackle the challenge 0 anS : SDYba g y focllsing 0;
people and their creativity rather than on processe ' ; 0et, 2011)

The traditional method starts with elicitation and dolctime'ntatlon of the Cliepy
sEire e d then the architectural and hlgh—leve e'51gn, developmem ’
qullrt,llan-tS an 2004) However, in the mld'lggos’ S0m ang
inspection is done (Cohen et al., :] - hases o € Softy,
experts realized that these initial software developmen Clp de Very weari
and almost impossible (Highsmith, 2002). The software in ustry an t":c.hnobgyisnm
rieid. so there is continuous change in requirements makmg the traditiong] Metheg
unfit (Highsmith et al., 2000). As a result of this, software chen-ts are not able g,
set their requirements at once, yet they expect more from their software. In reactiop
to this, lots of software experts have individually developed methods and practice to
respond to the expected change. The agile methods are a collection of differens
techniques (or practices) that share the same values and basic principles. Many o
for example, based on iterative enhancement, a technique that was introduced in the
year 1975 (Munindar, 2006).

Since 2001, a majority of organizations have adopted and implemented agile software
development because the traditional approach to software development is grossdly
inefficient and does not allow for change (Erika and Scott, 2013). In the traditiond
approach, customer’s requirements are fixed at the beginning of the project. Thereis
therefore a need to have newer approaches to software development that will be dynanic

enough to be able to handle the changing requirements (Highsmith and Cockbum,
2001).

The waterfall model, shown in Figure 1, therefore is obsolete (Spence, 2003}
Hence the need for a more flexible model that permits software engineers to chang?
_/

Figure 1: The Waterfall Softy D
vare Development Process/

Maintenance _]

Verification

Implementation

Design

Requiremems

— e —

Source: Cockbum, 2002

— " -0ckoum, 200 :
\\ /A

The IUP Journal of Information Technology Vol- XIb ™

Yy |

34

their requirements much later to reflect the chang

(Patel et al., 2012).

ing software business world

Therefore, an approach for adopting agile methods is proposed to accommodate
the flexibility that is not found in the waterfall model. The software development
industry has experienced changes lately (Petersen, 2010). This has made agile software
development popular and widely accepted. Flexibility in the development of software
is highly required due to the unpredictable nature of the current software industry.
The traditional method of software development cannot suffice due to the changing
nature of the client’s requirements.

According to Lindvall et al. (2002), agile methodologies are a group of software
development processes that are iterative, incremental, self-organizing and emergent,
as shown in Figure 2. The agile software development is an iterative development
process which gives room for change in the requirements throughout the development
cycle (Mnkandla and Dwolatzky, 2007). It also encourages and emphasizes close
coordination and relationship between the developer and software client. A software
development method that delivers faster, better and cheaper solutions is the goal of
every organization (Sohaib and Khan, 2010). The core issue in agile is the interaction

and frequent communication between the team of developers and stakeholders and
the delivery of functional products promptly.

Figure 2: Agile Methodology

Agile Methodology
v v v v
[terative Incremental Self- Emergent
Organizing

Source: Mnkandla and Dwolatzky, 2007

The major shortcoming of agile software development is in the area of quantifiable
measurement. Traditional measurement does not consider agile culture and can result
in an unwanted effect. There is, therefore, the need for a measurement approach to
ensure and strengthen the agile principles. Besides the performance measurement
which is usually done on the completed project, there is the need for a technique that
continuously assesses the improvement of a process. The study will guide managers to
make right decisions when pairing programmers, thereby improving upon the quality
of maintainability service.

The aim of this research is to perform an experiment and compare the amount of
time spent in correcting python code errors in an agile software development
environment and thereby improving upon the maintainability quality factor of software
codes. Python programming language is very useful especially for software development

A Comparison of Code Maintainability in Agile Environment 35

: e that allows pr

o s s o6 L o T
‘ ffective , : it

to work very fast to integrate systems € Python provides f

OPe:atring S;Ztems and can be used for e developmeﬂ;f o{)ject-oliiented laizzl;% .Of

most programming languages. It pres gein

a simple and powerful way.

ents most features

2. Materials and Methods

i< one of the most important factors that impacts greatly o,
ty rmined by using software metrics whic,

designers with a tendency of inﬂuencing
coding, architecture and specificatiop
d to acquire the data for this research,

Software maintainabili
the quality of any kind of software and is dete

gives important and useful feedback to software
the decisions that are made during design,
phases. Here, the methods and procedures use
are described.

An experiment was carried out with codes written in python language. Deliberate
errors were introduced into these sets of codes and given to software developers in the
agile environment to debug in order to study and evaluate maintainability issues. The
expertise of the professionals was put into consideration based on their number of
years of experience and all are knowledgeable in python programming. The choice of
python is based on the fact that it is an agile, robust, fully object-oriented and scalable
programming language. Those above five years of experience were categorized as experts,
while juniors are those with five years of experience or below. They were further
grouped to work as pairs, where two programmers work together on a task and
individuals. The pairing was based on their knowledge of pair programming and their
years of experience. The grouping is shown in Table 1.

Table 1: Grouping of Software Programmers

Grouping Remark
Random Pairs Irrespective of their years of experience in pair programming
Expert Pairs Both have more than five years of experience in pair programming
Expert-Junior Combination of programmers, of which one has more than five years of

experience and the other less in pair programming
Junior-Junior Both have less than five years of experience in pair programming |
Individual Expert | More than five years of experience in agile programming —
Individual Junior | Less than five years of experience in agile programming I

2.1 Samples of Codes with Errors and Outputs

Figure 3 shows a sample of python codes wi i
with seven erro e codes 18
shown in Figure 4. rs. The output of th

36
The UP Journal of Information Technology, Vol. XII, No- 7, 2016

Figure 3: Python Codes with Seven Errors Introduced

s

-
" _. c DU‘!"""’}”'

1528 408 et 1y mar BRIV 1Ty] ot g e 1 s R A K g e i g7 e

Car qupnts o Gk Piy 4 48 24 94 2047 "

iy
v B ”w’lm"ﬂﬂ PR Sl VA YRR A PR R L KT Gty 18181227
appaseR] RACTRY IS HEMIEN Y B G IR et SRR R R, G e T, N s G R b et AT T A P
t L o 1ot
erern locals WVissirg Pacarmntor
1% g i 3 whrg Par P
" wonuret rest f410) et
't dof get 1A u)har gen ()1 rigsog regrTon
ICH i onpuwnk viow = gener Lo Juon’
" Aef BATLY: Botrm) wbenlreg fom me P esep—
Tty 41 tehlerome «= “rey tharged’s ® errori rmriss - h
™ rofne MITP(401, Jaom. duwps ({‘ressspe’ SMisd tacuest’)))
19° Ve Vs o pou_thar ged seenew sum(} Por B9 A chifert wizaing,
1 Venal o Bolabit ov s b god. mensest 5) MoVoct (bt alvard, First(J[tetalinr] Bmrors id wopect T3 ot mwrerm
o) shar borrum veckowrars var {abla o ar
ey return dicr(toraltota) Fecrorh tets vaable n 0 a—/‘e 1ok arisnin mot Boumd
=ty rotwen Tewal() » w i lewal unribale por Framd
i .‘&3 foeal v eriatie ren 95 4md
Foiote CUTENDY Raved OF reverl W DTEARUS verelon

4 de Ty T Gk 0T e s T T s e T w T @ iy ¢7 [.‘m

Jhees aw gy

5 cmwx omr O
ey

-
o g i md
E - " ad

B

Error ticket for "smartrevAPIv14"
Ticket ID

197 211 52 73 20150801 181572 PABBIR7-0e 1LY S CACRATEA
<lype ‘exceptions NameError’> global name 'local’ is not defined

Version

wab2py ™ Yerson 2.11.2-stablestimestamp 2015 05 30 16 33 24
Python Pymon 2.7.6: NUMCAYDINUWS (prefc /usi)

Traceback

1. Tracebach (st recest call last):
2. FLLR " rane /w00 et 1py/ EOR 651750188 £y, Line 117, 1A restricted
et ccode dn envirenment
FALe *jrone/wmen-0rtn/wet 1py/ seplications/seartreaho L6/ contrell trs/apt .£7*, Mine 23,
G FALe "Jrome v 8B ek iy el gs 5. ppy 1ine 412, 1N (Lashdin
2 WM. saller o Lastada f 1()

1n a0k le>

1o FALR jrome/vas-Bate ek gy g/ §L0k0 5. py"y 1100 07D, AN F

" rest_pction w _pction().grt (netivd, mane)

9. FALe Jrome/as Ausvet gy spli oINS SRart kP IvIG antrall traidp.py”, Nine 1, 1n getTctaliharges
1. returs local() serrory Lorsl varibele not found

M. wmetrrors Ploval neme ‘i)' I3 ot defined

s T P
LJ ndolmwmru.n :.J

4 icads.

A Comparison of Code Maintainability in Agile Environment

37

2.2 Statistical Tools

Analysis of Variance (Anova) provides different types of varianee a
The Analysis of Vart

p . . Nalye:
. arametric data which ¥
ole analysis of variance On parametric d is drawn from, ks i
ki Slfl p1 e or more samples. In this work, one-way ANOyA Wag
ati or three O '
population

: s
: . » time spen Uge
re the average time spent on e (mdl thLl'ff ntp t o cach o the Drdto
paads . hetween the different pair pr 0j
containing different numbers of bugs bLtWCI;? lt' le Range "Ir")est FD(;\irammers andJ:h‘t
different individual programmers. Duncan Mu'tip RT) g, O¢

DMRT is sensitive and used for separation of Megp :ﬁdhto
1t i
h

compx

separate significant means.
the range of 3 and 10 samples. |

A widely used procedure for comparing all Pra.irs Olf me::];;:s the mu_ltiple tan
developed by Duncan. The application 9(DMR m'\fifo ves : omputation ofy,
boundaries that allow for the classification of the di erence ctween any two (reatmg,
means as significant or non-significant. DMRT requires computation of g gy, ;
values, each corresponding to a specific set of pair comparlsons. It primarily depe &
on the standard error of the mean difference. This can easily be worked out Using
estimate of variance of an estimated elementary treatment contrast through the desig,
Application of DMRT ranks all the treatment means in decreasing or increasing orde
based on the preference of the character under study.

Umeyj

2.3 Correlation Coefficient

The correlation coefficient is a measure of the extent to which two measurement,
say, X and Y vary together. Correlation analysis examines each pair of measuremens
to determine whether the two tend to move together. The correlation coefficient can
assume any value between —1 and +1. Positive correlation is obtained when larg
values of one variable tend to be associated with large values of the other. Negative
correlation results when small values of one variable tend to be associated with large
values of the other and a correlation near O (zero) is obtained when values of both
variables tend to be unrelated. Bivariate correlation given in Equation (1) was used
to check the relationships between the number of bugs in projects and the time spert
to correct the errors. Bivariate shows relationship between two variables.

Correl(X,Y) = Z(X—E)(y—y)

\/Z(X‘E)ZZ@—?)Z

3. Results and Discussion

3.1 Average Time Spent on One Error
ffesent

The average time spent in correcting an error in a system software by the di ;
YS[e.

programmer expertise and the difference in the time spent in correcting o
software error from that of individual programmers (junior and expert) i sho
Table 2 and graphical presentation is shown in Figure 5.

olf

.
0. &
The IUP Journal of Information Technology: Vol. XIh N

Yy

38

rfTablc 2: Average Time Spent on Debugging System Software Error

Average Time Spent Difference from Individual (%)
Pair Group on Error (min/error) Individual Individual

(Junior) (Expert)

Random Pairs 21.88 £ 737 32.05 43.38

Expert Pairs 15.5 £ 3.91" -6.46 1.57

m and Junior Pairs 16.07 + 4.39b -3.02 5.31

Junior Pairs 16.59 + 4.23b 0.12 8.72
ndividual Expert 15.26 +3.30°
Individual Junior 16.57 = 3.36

Note: * Means standard deviation on the same column with different superscripts are significantly different
(p < 0.05); Negative figure indicates that less time was spent than individual (Junior).

Figure 5: Average Duration of Time Spent in Debugging Software Errors
by Different Level of Programmer Expertise

B Individual (Junior)
B Individual (Expert)

Difference from Individual (%)
[y o)
S

-10 i f i

Random Pairs Expert Pairs Expert and Junior Pairs
Junior Pairs

Pair Combinations

The average time spent by the programmers on an error showed some level of
significant difference (p < 0.05). The randomly paired programmers spent the highest
average time (21.88 min) on correcting an error which was significantly higher than
other paired and individual programmers. The junior pair, individual junior, expert
and junior, expert pair and individual expert programmers spent statistically comparable
average time on correcting a system software error. The average time spent in decreasing
order was random pair > junior pair > individual junior > expert and junior > expert

A Comparison of Code Maintainability in Agile Environment 39

Y

: in time between juni it inds .
. e e e h differences in tim Junior pair, indjy;
pair > individual expert, althoug d individual expert prog
C C) 1n lv
junior, expert, and junior, expert pair an
insignificant,

dy
a
rAMmmers Werel

Comparing the average time spent on an error bcslf ?ﬁztp:ﬁei Erogirjfgmers With ¢
two different individual programmers, it was foun he individual ix N DI‘Ogrammers
spent more time debugging an error compared Fo the m1 e psrt Programy,
random pair spent 43.38% more time, expert pait spent 8 ok © tme, ex
junior pair spent 5.31% more time and junior pair spg,nt - (£70 MOTeE time, C
to individual programmer, random pair spent 32.05% mote Sme Ol An er
junior pair spent 0.12% more time; expert pair and e.xpert -]um(zr pair spent
compared to individual junior programmer; expert pair spent 6.46% and exper
pair spent 3.02% less than the time individual junior programmer spent op

pert an(i
OMpareq
or, whﬂe
less tip
€~ junioy
an error,
3.2 Time Spent on Each Project

The time spent by the programmers on each project containing different numper of
bugs (errors) is shown in Table 3 and the graphical representation is shown ip
Figure 6. The difference in time spent on each project by pair programmers relatiye
from the individual programmers (junior and expert) is shown in Table 4. The correlatiop
coefficient showing the relationship between the n

umber of bugs in a project and the
time spent on the project is shown in Table 5.

There were no significant differences (p > 0.05) in the average time on system
software with 2 and 8 errors between t

he different programmer expertise but by
observation, the decreasing order in the time spent on 2 errors was random > junior
pair = expert pair > junior — junior pair > individual junior > individual expert
while that of 8 errors in a System software was random > junior pair = individual
junior > expert and junior pair > individual eXpert > expert pair.

Table :i;f;k)vel:ﬁge_'rinée Sg:nt by Different Skil Level of Pair Programmer
ebuggi :
gg rwumber of Bugs in a System Software -
)
B | ndon B | B0t [Janior: | individust | Tdidet
Xpert Junior Junior Junior Expert
2 60 0| s T—— 3
— = 500 :
4 e P —
T | & 67 67 ol
3 1132 79 \SZE’\\T‘ ’—-’—78”/
) | b
6 119 82b ‘?—\L 84 /@/
7 141" , 5 88
T —
8 136 100 ? 111 ‘_‘__,,“3/
5 7 T —— s ug | A
Note: Means on the same mwm“’*\l:}r 145° }
SUperseys], O A
CISCripts are 51gnificantly different (b < 0.09).
40 s

Figure 6: Effect of Pair Programming on Duration of Correcting Different Number

of Bugs in System Software by Different Level of Programmer Expertise

Difference from Individual (%)

80
70
60
50
40
30
20
10
0-
-10-
-20

Junior

Individual (Junior)

Random Expert- Expert- Junior-

Expert Junior

Random Expert- Expert- Junior-
Expert Junior Junior

Individual-Expert

02 Bugs
®3 Bugs
84 Bugs
@5 Bugs
o6 Bugs
07 Bugs
o8 Bugs
o9 Bugs

Table 4: Percentage Difference in the Time Spent by Pair Programmer
and Individual Programmer on Different Number of Errors in a Project

——

case may be.

Number Individual (Junior) Individual (Expert)
of
Burs|Random | e | Soree | | Random | b | ert | Jover
2 33 11 0 11 71 43 29 43
3 43 =7) 2 63 6 16 16
& 33 -4 -6 0 41 2 0 6
5 35 -6 =7 —4 45 1 5 4
6 35 -7 -1 8 43 -1 5 14
7 27 12 -12 -12 42 | -1 -1
8 15 -8 -3 0 23 -2 4 6
9 18 -9 -3 -2 23 -5 1 2
Note: Negative figure indicates that less time was spent than individual (Junior) or individual (expert) as the

A Comparison of Code Maintainability in Agile Environment

. :nts of the Number of Bugs in a Project
jon Coefficients g Debugging the Errors Debugged

: Jati
Table 52 Corret the%
——F—.—a’”‘/ M
PairGrowp 069" i
m

0.779** x

0.870%* T

Junior-Junior

| Junior-Jumio”
Individual (Junior)
L 0.850** \
Individual (Expert)
—

Note: ** Correlation is significant at 19% level.
There were significant differences (b < 0.05) . the average time spent op g,
average time random pair spentin de, e
88

software with 3,4,5,6, 7 and 9 errors. The
ficantly higher than those of expert pg
AL,

software with 3,4, 5, 6, 7 and 9 bugs was signl
junior pair, expert — junior paih individual expert and individual junior. The aye,
ge

time spent on system software with 4, 5, 6, 7 and 9 bugs by expert pair, junior py;
expert — junior pai, individual expert and individual junior was not significantly diﬁeI,):ln
nt

from each other. The time spent On debugging the bugs in the decreasing order y,
random > junior pair = expert — junior pair > individual junior > expert paira:
individual expert for system software with three bugs, Random > junior pair = ex

—~ -junior pair = individual junior > expert pair > individual expert for system sofnfert
with four bugs, random > individual junior > expert — junior pair > junior o
expert pair > individual expert for system software with five bugs, random >P.3"'>
pair > individual junior > expert — junior pair > individual exper’t > expert Jl'mlfor
system so.ftware with 6 bugs, random > individual junior > junior pair p=re§;;rrtor
]r‘;?lg nfair ind:;dpz;tl ;:)jrllrioj >m'dw‘1dual expert for system software with seven bugs
> expert pair for system softwa]rznvlv(z:hpzli;: bi}:sjert ~Fon e = weh e

The ¢ i = ,
o lhe conslcn coefftets dowing the telacontip berween ine ek
Fblo 5 were highly s nei;io bugs in the projects for all the programmers shown in
which implied that thg tin(l:: rslit)e(ilzy were significant at 1% level), strong and posit®
. n proj i Y
bugs in the project increased for all tEeOJE;Cts increased significantly as the number 0
programmer expertise.

Conclusion

This research identified t i
required in software mail:lttafrfiéllﬁom tbe issue of dynamism and flexibility that 8¢
function of time spent in corre - delivery time is a great factor. This is also
debugging different error com Citm-g-COde errors. The results of several ‘ex eriments
varying levels of expertise revz;letles by different combinati ; P mmers wi
ed that random pair Speni :ﬁ:sh? }I,)mtg?me i 8
ighes

The IU
P Journal of Information Technology, Vol. XIL, No. 2 ot

42

min/bug on an average. This was significantly different compared to other
categorization, while individual expert spent the least time of 15.26 min/bug and this
is closely followed by expert-expert pair 15.5 min/bug. The correlation between the
number of bugs and time of debugging was highly significant, strong and positive. This
revealed that the time spent in correcting system software errors increased significantly
as the number of bugs increased. @

References

.

10.

11.

Cockburn A (2002), Agile Software Development, pp. 304, Addison Wesley
Longman.

Cohen D, Lindvall M and Costa P (2004), “An Introduction to Agile Methods”,
Advances in Computers, Vol. 62, pp. 1-66.

Dyba T (2000), “Improvisation in Small Software Organizations”, IEEE Software,
Vol. 17, No. 5, pp. 82-87.

Erika S M and Scott] H (2013), “Scientific Software Process Improvement
Decisions: A Proposed Research Strategy”, 5" International Workshop on
Software Engineering for Computational Science and Engineering (SE-CSE),
San Francisco, May 18, 2013, San Francisco, CA, USA.

Highsmith] (2002), Agile Software Development Ecosystems, Addison-Wesley,
Boston, MA.

Highsmith] and Cockburn A (2001), “Agile Software Development”, The Business
of Innovation Computer, Vol. 34, No. 9, pp. 120-127.

Highsmith], Orr K and Cockburn A (2000), “Extreme Programming in E-Business
Application Delivery”, pp. 4-17, available at http://www.cutter.com/freestuff/
ead0002.pdf

Kaushal P and Anju S (2013), “Review of Agile Software Development
Methodologies”, International Journal of Advanced Research in Computer Science
and Software Engineering, Vol. 3, No. 2, Research Paper available at
www.ijarcsse.com

Lindvall M, Basili V R, Boehm B (2002), “Empirical Findings in Agile Methods”,
Proceedings of Extreme Programming and Agile Methods - XP/agile Universe,

pp. 197-207.
Lutz M (2006), Programming Python, 3% Edition, Ebook, Safari Books Online,
O'Reilly Media.

Mnkandla E and Dwolatzky B (2007), “Agile Methodologies Toolbox”, Proceeding
of the 2 International Conference on Software Engineering Advances - ICSEA,

Cap Esterel.

A Comparison of Code Maintainability in Agile Environment

43

Munindar P S (2000), The Practical Handbook of Internet Computing Chagy

" wnd Hall/CRC Computer and Information Science Series, Boca Raggy, Loin(;an
New Y ' o
New York Washington DC.) | |

) laraj G (2005), Challenges of Ml)

) srur S, Mahapatra R and Manga' ‘ Slatyy,
;]X:virllgMcthodologics", Communications of the ACM, May, pp. 72-78. ~ 810
4. Patel A, Seyfi A, Taghavi M et al gonn, iompsa r?twe Study of oo

* Component-Based, Aspect-Oriented and Mi?sufwo e Developme;'

Methods”, Technical Gazette, Vol. 19, No. 1, pp: ' t
« 1o and Agile Lean? A Comparison beg,

15. Petersen K (2010), “Is Lean Agile an o een g,
dZveloLplnetlt Paradigms”, Modern Software Engineering Concepts and PTaCticgso.
Advanced Approaches. X

16, Rao K N, Naidu G K and Chakka P (2011), “A.StUC_lv of the Agile Softyy,
Development Methods, Applicability and Implications in Industry”, In.] Sofy
Eng. Appl., Vol. 5, No. 2, pp- 35-45. /

17. Sohaib O and Khan K (2010), “The Role of Soft\yare Qual'%ty in Agile Softyy,
Development Methodologies”, Journal of Engineering and Sciences, pp. .18,

18. Spence] W (2005), “There Has to Be a Better Way!”, Agile Conference, 2005
Proceedings, July, pp. 272-278.

Reference # 35]-2016-06-04.0]
44

The I T A
OP Journal of Information Technology, Vol. X1l No. =7

