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Abstract  The solution to the problem of laminar fluid flow in an inclined parallel walls resulting from the movement of 
the lower wall while the upper wall remain stationary (Coette flow) in a nanofluid with thermal convection, Soret and Dufour 
effects with radiation has been obtained using the Modified Adomian Decomposition Method for the first time. The model 
used for the nanofluid was presented in its rectangular coordinate system and incorporates the effect of Brownian motion, and 
thermophoresis parameter. A similarity solution is presented which depends on the Prandtl number rP , Lewis number Le ,

Brownian motion bN , thermophoresis number tN , Soret (Sr) number, Dufour (DU) number, and Grashof numbers GrT, 

Grc. It is found that increase in Soret number leads to reduction in temperature and nanofraction profiles while increase in 
Dufour number enhances the temperature and nanofracion profiles. A comparative analysis of present study was carried out 
with the numerical on Table 1, and it was observed the two method are in good agreement. 
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1. Introduction
From energy saving perspective, improvement of heat 

transfer performance in systems is very necessary. Low 
thermal conductivity of conventional heat transfer fluids 
such as water and oils is a primary limitation in enhancing 
the performance and the compactness of systems. Solids 
typically have a higher thermal conductivity than liquids. 
For example, copper (Cu) has a thermal conductivity 700 
times greater than water and 3000 times greater than engine 
oil. An innovative and novel technique to enhance heat 
transfer is to use solid particles in the base fluid (i.e. 
nanofluids) in the range of sizes 10–50 nm. Abu-Nada et al. 
[1] investigated natural convection heat transfer 
enhancement in horizontal concentric annuli field by 
nanofluid. They found that for low Rayleigh numbers, 
nanoparticles with higher thermal conductivity produce 
more enhancements in heat transfer. Ellahi [2] studied 
magnetohydrodynamic (MHD) flow of non-Newtonian 
nanofluid in a pipe and observed that the MHD parameter 
decreases the fluid motion and the velocity profile is larger 
than that of the temperature profile even in the presence of 
variable viscosities. Free convection heat transfer in a  
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concentric annulus between a cold square and heated 
elliptic cylinders in the presence of a magnetic field was 
investigated by Sheikholeslami et al. [3]. They found that 
enhancement in heat transfer increases as the Hartmann 
number increases but it decreases with increase of Rayleigh 
number. Rashidi et al. [4] considered the analysis of the 
second law of thermodynamics applied to an electrically 
conducting incompressible nanofluid fluid flowing over a 
porous rotating disk. They concluded that magnetic rotating 
disk drives have important applications in heat transfer 
enhancement in renewable energy systems. Sheikholeslami 
et al. [5] used heatline analysis to simulate two phase 
simulation of nanofluid flow and heat transfer. Their results 
indicated that the average Nusselt number decreases as the 
buoyancy ratio number increases until it reaches a minimum 
value and then starts increasing. Sheikholeslami et al. [6] 
studied the magnetic field effect on CuO–water nanofluid 
flow and heat transfer in an enclosure which is heated from 
below. They found that effect of Hartmann number and heat 
source length is more pronounced at high Rayleigh number. 
Effect of nanofluid on heat transfer enhancement has been 
investigated by different authors [7]. Aiyesimi et al [8] 
considers Hydromagnetic Boudary-Layer Flow of a 
Nanofluid Past a Stretching Sheet Embedded in a Darcian 
Porous Medium with Radiation and it was found out that at 
lower values of Prandtl number, heat able to diffuse more 
rapidly out of the system. 

In a recent paper Aiyesimi et al [9] extended the model of 

javascript:openWin('/WorldClient.dll?Session=EJOAEXH&View=Compose&To=yusuf.abdulhakeem@futminna.edu.ng&New=Yes','Compose',800,600,'yes');


58 Yusuf A. et al.:  Analysis of Couette Flow of a Nanofluid in an Inclined Channel with Soret and Dufour Effects 

Khan and Pop [10] to analyse and investigate the 
convective boundary-layer flow of a nanofluid past a 
stretching sheet with radiation. It was observed that thermal 
buoyancy and nanofraction buoyancy enhances the fluid 
velocity, temperature, and nanofraction. It is appropriate to 
channelize the work of Aiyesimi et al [10] over an inclined 
channel with Soret and Dufour effects and use the Adomian 
Decomposition Method (ADM) to obtain the analytical 
solution of the model.  

This work is a new development in the literature in which 
an analytical solution of a convective boundary-layer flow 
of a nanofluid past a stretching channel with Soret and 
Dufour effects is proposed using the Adomian 
Decomposition Method.  

2. Problem Formulation
A steady, two dimensional boundary layer flow of a 

nanofluid in an inclined channel at angle Θ  is considered. 
It is assumed that the wall located at 0y =  stretches with a 

velocity ( , ) axu x y
h

=  (couette flow), while the other wall 

at y h=  (h= is the width of the channel) remain stationary 
throughout the flow, where a is constant and x  is the
coordinate measured along the stretching wall. The 
temperature T  and the nanoparticle fraction C  have 

constants values 0T  and 0C  at 0y =  and hT  and hC
at y h=  respectively. For this application, we will adopt 
the natural convection with Soret, Dufour, and Radiation 
effects for the formulation of Khan and Pop [10] and it is 
governed by the following equations: 
Continuity equation: 
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Nanofraction equation:- 
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Subject to the boundary conditions: 

0 : axy u
h

= = 0v = 0T T= , 0C C=

: 0,y h u= = hT T= hC C=    (5) 

where u  and v  are the velocity components along the x
and y  axes respectively, p  is the fluid pressure, fρ  is 
the density of the base fluid, α  is the thermal diffusivity,
υ  is the kinematic viscousity, *k  is the thermal
conductivity, pC  is the specific heat capacity at constant

pressure, a is a positive constant, BD  is the Brownian 

diffusion coefficient, TD  is the thermopheric diffusion 

coefficient and 
( )
( )

p

f

c
c

ρ
τ

ρ
=  is the ratio between the 

effective heat capacity of the fluid with ρ  being the 
density, c  is the volumetric volume expansion coefficient
and Pρ  is the density of the particles g is the acceleration

due to gravity, β  is the volumetric coefficient of thermal 

expansion, rq  is the radiative heat flux MT  is the mean 

fluid temperature, Tk  is the thermal diffusion ratio, MD
is the diffusion ratio, SC  is concentration susceptibility. 

Following Roseland approximation we have 
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∂
, where *σ  and δ  are the 

Stefan-Boltzmann constant and the mean absorption 
coefficient respectively. The temperature differences within 
the fluid is assumed sufficiently small such that 4T  may be 
expressed as a linear function of Temperature. Expanding 

4T  in Taylor’s series about hT  and neglecting higher order 
terms, we get 
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therefore, 
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Sheikholeslami [11] :- 
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where η , ( )f η , ( )θ η , ( )χ η  are the dimensionless 
fluid distance, velocity profile, temperature profile, and 
nanoparticle concentration. 

Neglecting the pressure gradient equations (1) to (6) 
reduces to the following local similarity solution:-  
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with corresponding boundary conditions: 
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local Thermal Grashof number, local concentration Grashof 
number, Renold number, Gravitational parameter, Radiation, 
Prandtl number, Lewis number, Brownian motion parameter, 
thermophoresis parameter, Dufour number, Soret number, 
and Schmidt number, respectively. For the momentum 
equation to have a similarity solution, the parameters TxGr  

and CxGr  most be constant and not functions of x . This 
can be met if volumetric coefficient of thermal expansion 
β  is proportional to x . We therefore assume  

0 xβ β=                  (12) 

The nonlinear coupled differential equations in (8) to (10) 
with boundary conditions in (11) was solved using the 
Modified Adomian Decomposition as described by Ebaid 
and Al-Armani [12]. 

Table 1.  Comparison of Result for ( )θ η  with the present work for 

0.1rP = , 0TGr = , 0DU =  and 0CGr =  

η Numerical Present Work 

0.0 0.9999 1.0000 

0.1 0.8988 0.8976 

0.2 0.7977 0.7953 

0.3 0.6967 0.6931 

0.4 0.5960 0.5913 

0.5 0.4956 0.4898 

0.6 0.3956 0.3889 

0.7 0.2960 0.2891 

0.8 0.1969 0.1907 

0.9 0.0982 0.0941 

1 0.0000 0.0000 

3. Results and Discussion 
The nonlinear coupled differential equations (8) to (10) 

with boundary conditions (11) are solved using the Modfied 
Adomian Decomposition Methods. In order to assess the 
accuracy of the present method, we have compared our 
solution for ( )θ η  for different values of η  at 0TGr =  

and 0cGr =  with the Numerical method as shown in 
Table 1. It was observed that the present method is in good 
agreement with the Numerical-Method. 

 

Figure 2.  Effect of TxGr  on Velocity Profile 
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Figure 3.  Effect of TxGr  on Temperature Profile 

 

Figure 4.  Effect of TxGr  on Nanofraction Profile 

 

Figure 5.  Effect of CxGr  on Velocity Profile 

 

Figure 6.  Effect of CxGr  on Temperature Profile 

 

Figure 7.  Effect of CxGr  on Nanofraction Profile 

 

Figure 8.  Effect of Pr number on Temperature Profile 
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Figure 9.  Effect of Pr number on Nanofraction Profile 

 

Figure 10.  Effect of DU on Temperature Profile 

 

Figure 11.  Effect of DU on Nanofraction Profile 

 

Figure 12.  Effect of Ra on Temperature Profile 

 

Figure 13.  Effect of Ra on Nanofraction Profile 

  

Figure 14.  Effect of Le on Temperature Profile 
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Figure 15.  Effect of Le on Nanofraction Profile 

 

Figure 16.  Effect of the Sr on Temperature Profile 

 

Figure 17.  Effect of the Sr on Nanofraction Profile 

 

Figure 18.  Effect of Nb on Temperature Profile 

 

Figure 19.  Effect of Nb on Nanofraction Profile 

 

Figure 20.  Effect of Nt on Temperature Profile 
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Figure 21.  Effect of Nt on Nanofraction Profile 

Figures 2 to 4 shows the effect of thermal Grashof number 
(Gr )Tx  on the velocity profile, temperature and 
concentration profile and nanofraction profile. It is observed 
that the thermal Grashof number enhances the velocity 
profile and the nanofraction profile while the temperature 
profile reduces as the thermal Grashof number increases.  

Figure 5 to 7 presents the effect of Concentration Grashof 
number (Gr )Cx . On the velocity profile, temperature and 
Nanofraction profile. It is observed that the thermal Grashof 
number enhances the velocity profile at the lower wall 
(moving wall), where the fluid velocity is maximum and 
decreases the velocity profile faster for higher values of 
Concentration profile at the upper wall (stationary wall), 
where the flow velocity is minimum. The temperature profile 
and the nanofraction profiles are enhanced. This leads to 
increase in the boundary layers as shown in the graph. 

Figures 8 to 9 displays the effect of Prandtl number (Pr) 
on the temperature profile and the concentration profile. The 
thermal boundary thickness decreases for both temperature 
and concentration profile as the Prandtl number decreases. 
The reason is that higher values of Prandtl number are 
equivalent to increase in the thermal conductivity of the fluid 
and therefore heat is able to diffuse away from the heated 
surface more rapidly for lower values of Prandtl number. 
Hence there is a reduction in temperature with decrease in 
the Prandtl number. 

Figures 10 to 11 depict the effect of Dufour number on 
temperature and concentration profiles. It is observed that 
increase in the Dufour number leads to increase in the 
thermal boundary layer and the concentration boundary layer 
thickness.  

Figures 12 to 13 show that the fluid temperature and 
concentration respectively attains their maximum value at 
the moving plate surface and decreases monotonically to free 
stream zero value away from the plate satisfying the 
boundary conditions. It is observe that increase in radiation 
(Ra) causes both the temperature and concentration profiles 
to increase.  

Figures 14 to 15 present the effect of Lewis number (Le) 
on both the temperature and the concentration profiles 
respectively. It is observe that increase in Lewis number 
causes the both the temperature and concentration profiles to 
reduce. 

Figures 16 to 17 display the effect of Soret number (Sr), 
and it is observe that, increase in the Soret number causes the 
temperature and nanofraction boundary thickness to reduce. 

Figures 18 to 19 shows that Brownian motion ( bN ) 
causes the temperature profile and the nanofraction profile to 
be enhance. 

Figures 20 to 21 shows that increase in Thermophoresis 
parameter ( tN ) causes the temperature profile to be enhance 
while the concentration profile reduces. 

4. Conclusions 
The solution to the problem of laminar fluid flow in an 

inclined parallel walls resulting from the movement of the 
lower wall while the upper wall remain stationary (Coette 
flow) in a nanofluid with thermal convection, Soret and 
Dufour effects with radiation has been obtained using the 
Modified Adomian Decomposition Method for the first time. 
The model used for the nanofluid was presented in its 
rectangular coordinate system and incorporates the effect of 
Brownian motion, and thermophoresis parameter. A 
similarity solution was presented which depends on the 
Prandtl number rP , Lewis number Le , Brownian motion 

bN , thermophoresis number tN , Soret (Sr) number, 

Dufour (DU) number, Schimidt number Sc , and Grashof 
numbers GrT, Grc . It was found that:-  

1. All the graphs presented in this work satisfy the 
boundary conditions. 

2. It is an established that Soret and Dufour are opposite of 
one another and this work shows that increase in Soret 
number leads to reduction in temperature and 
nanofraction profiles while increase in Dufour number 
enhances the temperature and nanofracion profiles.  

3. The results obtained in this work are in good agreement 
with the Numerical Methods as shown in Table 1 which 
proves the efficiency of the method.  

4. Larger values of Prandtl number are equivalent to 
increase in the thermal conductivity of the fluid and 
therefore heat is able to diffuse away from the heated 
surface more rapidly for smaller values of Prandtl 
number. Hence there is a reduction in temperature with 
decrease in the Prandtl number. 

5. It is generally observed from the graphs, that the 
velocity, temperature and nanofraction profile are at the 
maximum on the lower channel (moving wall) while 
they are at minimum on the upper channel (stationary 
wall). These clearly represent the idea of the authors 
from the model formulation (realistic).  

6. It is also observed in Figure 5 that the higher the 
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Nanofraction Grashof number, the higher the velocity 
of the fluid at the lower channel; But falls quickly to 
zero as it approaches the upper wall than for smaller 
values of nanofraction Grashof number.  

7. It should be noted that as a particular quantity is varied, 
all others are kept constant.  
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