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ABSTRACT 
 
In this paper we proposed a SIR model for 
general infectious disease dynamics. The 
analytical solution is obtained using the Homotopy 
Perturbation Method (HPM). We used the 
MATLAB computer software package to obtain 
the graphical profiles of the three compartments 
while varying some salient parameters. The 
analysis revealed that the efforts at eradication or 
reduction of disease prevalence must always 
match or even supersede the infection rate.  
 

(Keywords: SIR infectious disease, Homotopy 
Perturbation Method, HPM) 

 
 
INTRODUCTION 
 
Standard convention labels the three 
compartments; S (for susceptible), I (for 
infectious) and R (for recovered). Therefore, the 
model is called the SIR model. 
 
The letters also represent the number of people in 
each compartment at a particular time. To indicate 
that the numbers might vary over time (even if the 
total population size remains constant), we make 
the precise numbers a function of t (time): S(t), I(t) 
and R(t). For a specific disease in a specific 
population, these functions may be estimated in 
order to predict possible outbreaks and bring them 
under control. 
  
Kermack and McKendrick, (1927), proposed a 
model in which they considered a fixed population 
with only three compartments, susceptible: S(t), 
infected, I(t), and recovered, R(t).The 
compartments used for this model consist of three 
classes: 

S(t) is used to represent the number of 
individuals not yet infected with the disease at 
time t, or those susceptible to the disease; I(t) 
denotes the number of individuals who have 
been infected with the disease and are capable 
of spreading the disease to those in the 
susceptible category; R(t) is the compartment 
used for those individuals who have been 
infected and then recovered from the disease. 
Those in this category are not able to be infected 
again or to transmit the infection to others. 
 
As implied by the variable function of t, the model 
is dynamic in that the numbers in each 
compartment may fluctuate over time. The 
importance of this dynamic aspect is most 
obvious in an endemic disease with a short 
infectious period, such as measles. Such 
diseases tend to occur in cycles of outbreaks due 
to the variation in number of susceptibles (S(t)) 
over time. During an epidemic, the number of 
susceptible individuals falls rapidly as more of 
them are infected and thus enter the infectious 
and recovered compartments. The disease 
cannot break out again until the number of 
susceptible has built back up as a result of 
babies being born into the susceptible 
compartment. 
 
Each member of the population typically 
progresses from susceptible to infectious to 
recovered. This can be shown as a flow diagram 
in which the boxes represent the different 
compartments and the arrows the transition 
between compartments. 
 
Biazar  and Aminikhah  (2009) Solving nonlinear 
differential equations is an important issue in 
sciences because many physical phenomena are 
modeled using such equations. One of the most 
powerful methods to approximately solve 
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nonlinear differential equations is the homotopy 
perturbation method (HPM). The HPM method is 
based in the use of a power series, which 
transforms the original nonlinear differential 
equation into a series of linear differential 
equations. Two continuous functions from one 
topological space to another are called homotopic 
if one can be “continuously deformed" into the 
other, such a deformation being called a 
homotopy between the two functions. The 
Homotopy Perturbation Method (HPM), which 
provides analytical approximate solution, is 
applied to various linear and non-linear equations. 
He (1999). The homotopy perturbation method 
(HPM) is a series expansion method used in the 
solution of nonlinear partial differential equations. 
Jiya (2010). The method employs a homotopy 
transform to generate a convergent series solution 
of differential equations. 
 
 
MATERIALS AND METHODS 
 
The SIR Model 
 

(1.0)                S 
dt

dS
  SIN   

        

  (1.1)           ISI
dt

dI
    

      

(1.2)                            RI
dt

dR
    

      
  
Where  
β= Natural Birth rate 
α= contact rate     
μ = Natural death rate  
S = Susceptible Compartment    
γ = Recovery rate 
I = Infected Compartment    
δ = Death rate due to disease   
R = Immune/ Recovered Compartment 

  R  I  S  N  
 
In this work we set, N=1 , i.e. assuming a closed 
population for a given period of time. 
 
 
 
 
 

Approximate Solution of the Model  
 
Consider the system: 
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dt

dS
  SSI  

       

  (1.4)         0
dt

dI
 ISI   

      

(1.5)                          0
dt

dR
 IR   

       
   
With the initial conditions S(0) = S0 , I(0) = I0 and 
R(0) = R0 
 
Let 
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Applying HPM to (1.3) we have: 
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Substituting (1.6a) and (1.6b) into (1.7) and 
expanding we have: 
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Collecting the coefficients of powers of p  we 

have 
 

0: 0 xp o      

     (1.8) 
 

0: 0001

1   xyxxp    

      (1.9) 
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  0: 101102
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      (1.10) 
 
Applying HPM to (1.4) we have: 
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Substituting (1.6a) and (1.6b) into (1.11) and 
expanding we have: 
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Collecting the coefficients of powers of p  we 

have: 
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Applying HPM to (1.5) we have: 
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Substituting (1.6b) and (1.6c) into (1.15) and 
expanding we have: 
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Collecting the coefficients of powers of p  we 

have: 
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Solving (1.8), (1.9) and (1.10) we have: 
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Solving (1.12), (1.13) and (1.14) we have: 
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Solving (1.16), (1.17) and (1.18) we have: 
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Equations (1.19), (1.20) and (1.21) are the 
general solutions of (1.0), (1.1) and (1.2) 
respectively. 
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RESULTS AND DISCUSSION 
 
Tabular and Graphical Presentation of the 
Model Using MATLAB 
 
This section shows the tables and graphs 
generated from the general solution of our Model 
(i.e. equation (1.19), (1.20) and (1.21) using the 
MATLAB software. 
 
We use hypothetical values to generate the tables 
and graphs for low contracting rate and high 
contracting rate, respectively. 
 
 

Table 1: Low Contracting Rate and High 
Recovery Rate (α= 0.001 and γ = 0.15). 

 
t S(t) I(t) R(t) 

0 60.0000 25.0000 
 

15.0000 

1 57.9303 22.2628 18.2829 

2 56.1212 19.8012 21.0816 

3 54.5727 17.6152 23.3961 

4 53.2848 15.7048 25.2264 
 5 52.2575 

 
14.0700 26.5725 

6 51.4908 12.7108 27.4344 

7 50.9847 11.6272 27.8121 

8 50.7392 10.8192 27.7056 

9 50.7543 10.2868 
 

27.1149 
 10 51.0300 

 
10.0300 

 
26.0400 

 Simulated result for β= 0.2, α= 0.001, δ= 0.01, µ= 
0.015, γ = 0.15, S0= 60, I0= 25, R0 = 15. 
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Figure 1: Graphical Profile for Low Contracting 

Rate and High Recovery Rate  
(α= 0.001 and γ = 0.15). 

Table 2: High Contracting Rate and High 
Recovery Rate (α= 0.002 and γ = 0.15). 

 
t S(t) I(t) R(t) 

0 60.0000 25.0000 15.0000 

1 56.5028 23.5964 18.3954 
 2 53.4112 22.1357 21.5316 

3 50.7252 20.6179 24.4086 

4 48.4448 
 

19.0429 27.0264 

5 46.5700 17.4108 29.3850 

6 45.1008 15.7215 31.4844 

7 44.0372 13.9751 33.3246 

8 43.3792 12.1715 34.9056 
 9 43.1268 10.3108 36.2274 

10 43.2800 8.3930 37.2900 
  

Simulated result for β= 0.2, α= 0.002, δ= 0.01, µ= 
0.015, γ = 0.15, S0= 60, I0= 25, R0 = 15. 
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Figure 2: Graphical Profile for High Contracting 
Rate and High Recovery Rate (α= 0.002 and γ = 

0.15). 
 
 
DISCUSSION OF RESULTS 
 
Table 1 and Figure 1 are for low contracting rate, 
α= 0.001 and high recovery rate, γ = 0.15.This 
shows that the population of susceptible and 
infected were decreasing, while the population of 
recovered was increasing, and this shows that as 
disease break out efforts are made to tackle the 
epidemics and over time the infected class will 
move to recovered class. 
 
 
 



The Pacific Journal of Science and Technology               –167– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 14.  Number 2.  November 2013 (Fall) 

 

Table 3: Low Contracting Rate and Low Recovery 
Rate (α= 0.001 and γ = 0.1). 

 
t S(t) I(t) R(t) 

0 60.0000 25.0000 15.0000 

1 57.8927 23.4003 17.1767 

2 55.9710 21.8512 19.1568 

3 54.2347 20.3528 20.9402 

4 52.6840 
 

18.9050 
 

22.5270 
 5 51.3188 17.5078 23.9172 

6 50.1390 16.1612 25.1108 

7 49.1448 14.8652 26.1078 

8 48.3360 13.6198 26.9082 

9 47.7128 
 

12.4251 
 

27.5119 
 10 47.2750 

 
11.2810 

 
27.9190 

  
Simulated result for β= 0.2, α= 0.001, δ= 0.01, µ= 

0.015, γ = 0.1, S0= 60, I0= 25, R0 = 15. 
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Figure 3: Graphical Profile for Low Contracting 
Rate and Low Recovery Rate (α= 0.001 and γ = 

0.1). 
 
 
Table 2 and Figure 2 are for the high contracting 
rate, α= 0.002 and high recovery rate, γ = 0.15. 
We can see from the graph that the susceptible 
and the infected population decreased more than 
when the contracting rate was low, but the 
population of recovered increased. The more 
people are infected the lesser the susceptible 
population and the more effort are required to 
eradicate the disease from the population. 
 

 
 
 

Table 4: High Contracting Rate and Low 
Recovery Rate (α= 0.002 and γ = 0.1) 

. 
t S(t) I(t) R(t) 

0 60.0000 25.0000 15.0000 

1 56.4278 24.8661 17.2517 

2 53.1112 24.7142 19.4568 

3 50.0502 24.5446 21.6152 

4 47.2448 
 

24.3570 23.7270 

5 44.6950 24.1516 25.7922 

6 42.4008 23.9282 27.8108 

7 40.3622 23.6870 29.7828 

8 38.5792 23.4280 31.7082 

9 37.0518 
 

23.1510 33.5869 
 10 35.7800 

 
22.8562 35.4190 

  
Simulated result for β= 0.2, α= 0.002, δ= 0.01, µ= 

0.015, γ = 0.1, S0= 60, I0= 25, R0 = 15. 
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Figure 4: Graphical Profile for High Contracting 
Rate and Low Recovery rate (α= 0.002 and γ = 

0.1). 
 
 
Table 3 and Figure 3 are for the low contracting 
rate, α= 0.001 and low recovery rate, γ = 0.1. The 
graph show us that the population of recovered is 
not as high as when the contracting rate is high. 
This shows that when the disease is not much in 
population people are relaxed to combat the 
epidemics.  
 
Table 4 and Figure 4 are for the high contracting 
rate, α= 0.002 and low recovery rate, γ = 0.1. The 
decrease in infected population was gradual 
compare to other results. This means people will 
suffer the disease for a long time before they are 
recovered.  
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CONCLUSION 
 
The use of Homotopy Perturbation Method (HPM) 
had enabled us to get the approximate solution of 
the each compartment of the Model. The 
approximate solution was use to present the 
Model graphically, which gives us the better 
understanding of the infectious disease dynamics. 
It is obvious from our result that whether high or 
low contracting rate, the recovered population 
increases; though it increase more with high 
recovery rate. The number of recovered 
population depends on the contracting rate. It is 
clear that once the disease breakout, efforts are 
made to eradicate the disease from the society.     
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