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Abstract— Signals from collaborative beamforming (CB) 

nodes are always arriving out of phase at the intended receiver 

due to unsynchronized clock frequencies of different oscillators 

of these nodes. Beamforming nodes have to synchronize their 

carrier frequencies in order to eliminate any phase offset of the 

received signal. To do this, estimation, correction and 

prediction of phase offsets due largely to these drifts needs be 

carried out on Software Defined-Radio (SDR) while employing 

non-linear filters like the Extended Kalman Filter (EKF) so as 

to obtain a near zero (0) phase offset. This paper presents a 

method of computing the NI USRP-2920 process noise 

parameters of the phase noise (dBc/Hz) data obtained with 

keysight N9320B spectrum analyzer (SA). The effects of phase 

offset measurements at various offset frequencies of the carrier 

are shown. Power-law noise model is applied to compute the 

Allan variance and later the process noise parameters that will 

be applied with the EKF. It will be noticed that the Allan 

variance curve truly depicts the standard slope characteristics 

of white frequency and random walk frequency noises which 

are special considerations when dealing with USRP’s 

oscillators.   

Keywords—beamforming; wireless sensor networks (WSN); 

phase noise, usrp. 

I. INTRODUCTION 

When two or more antennas that assume virtual array 
arrangement transmits a common message signal 
collectively/jointly to an intended receiver, then they are 
said to have beam formed their signals otherwise known as 
CB [1]. CB has the advantages of longer transmission range 
coverage that is directional with total transmission energy 
being shared among the beamforming nodes.  

Frequency and phase synchronization of sensor nodes 
for distributed beamforming experimentally have been in 
the forefront of research for the past decade. Practical 
implementation of CB for wireless sensor network (WSN) 
by synchronizing the low signal sine waves of the local 
oscillators of each node was carried out in wired form [2, 3] 
and wireless form [4-7] using closed-loop 1-bit feedback 
control.  

Frequency stability of USRP devices is important as it is 
expected that they should produce the same frequency level 
for a given time period but, due to the difference in phase 
noise experienced by the local oscillators (LOs) in the 

equipment, this is always not the case.  Phase noise from 
USRP transmitters limits the performance of the received 
signals and produces frequency drifts and phase offsets in 
CB nodes [8]. To improve the performance of these devices, 
a non-linear filter should be used to linearize the frequency 
drift of the beamforming nodes and the EKF is one of such. 
The process and measurement noise parameters of the CB 
nodes’ LO needs to be calculated so that the filters will 
correctly predict and correct the frequency and phase offsets 
of the received signals.   

The short-term frequency stability measure in the 
frequency domain, that is phase noise, is looked at in this 
paper. This phase noise is needed for the calculation of the 
process noise covariance matrix, �, of the EKF so as to 
obtain a near zero (0) phase offset of received signal. The 
single side band (SSB) phase noise (dBc/Hz) measurements 
offset from a specific carrier frequency which is taken for 
various offset values is used to obtain the process noise 
parameters through the Allan variance of the power-law 
noise model. 

II. PHASE NOISE MODEL 

Consider an ideal frequency oscillator that produces the 
signal: ���� = � sin�2�
���   (1) 

where � is the signal amplitude and 
� the oscillator carrier 
frequency (Hz). The signal that comes out of the real 
oscillator is express by [9] as;   

���� = � sin�2�
�� + ∅����  (2) 

where ∅��� is the phase noise of the signal. If 

���� = � sin�2�
�� + �����  (3) 

where x�t� = ∅������� is the time fluctuation due to phase noise, 

then the frequency deviation due to this time fluctuation is y�t� = �����
�∅�����  

A. Allan Variance 

The equation for the SSB (the ratio of the power density 
at a desired offset frequency from a known carrier to the total 
power of the carrier signal) phase noise in logarithmical 
scale (dBc/Hz) is: 
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L�f� = 10"#$%&�'�() *
    (4) 

The spectral density of the fractional frequency 
fluctuation (1/Hz) of the SSB phase noise is;  

S,�f� = �-�.�/0
��0      (5) 

where 2L�f� = S∅�f� is the spectral density of phase 
fluctuations ( rad2/Hz). 

The Allan variance (σ,��τ�) in the time domain can now 
be calculated since the S,�f� value at all frequency offset is 
known.  

σ,��τ� = 2 3 S,�f� 4567��8.���8.�0 df.:;    (6) 

The measuring system higher cutoff frequency, f<, is 
required for the noise to be finite. 

A combination of the power-law noises whose spectral 
density of the fractional frequency fluctuation is directly 
proportional to the side band offset frequency can be 
modeled to represent the instability of frequency sources 
[10]. Equation (7) gives the Allan variance in the frequency 
domain for the power-law noises while (8) is that of the 
noises considered in this paper representing a model for the 
instability of the NI USRP-2920 (white frequency noise and 
random walk frequency noise) LO. These variances will be 
use in computing the process noise parameters that will be 
used in the EKF process noise covariance matrix. 

σ,��τ� = =.:>0���8�0 + ?1.038 + 3ln�2πτf<�E >(���8�0 + >)�8 +
2ln�2�hG� + ����0>H08I     (7) 

σ,��τ� = >)�8 + ����0>H08I     (8) 

 

where h�, h�, h;, hG� and hG� are the white phase noise, 
flicker phase noise, white frequency noise, flicker frequency 
noise and random walk frequency noise, respectively.  

III. EXTENDED KALMAN FILTER  

The Kalman filter is a set of mathematical equation (that 
is recursive) that estimates the state of a linear system, that 
is, it can estimate the past, present and future states of a 
system at every time step �. But when the process in question 
is of the non-linear type as is the case with the USRP LOs’ 
drifting over time even after being synchronized during cases 
like applications in collaborative beamforming, then a non-
linear filter is required.  

The EKF (a non-linear filter) is a filter that linearizes a 
non-linear system about its current mean and covariance 
[11]. Detail work on the EKF is given in [12, 13]. A 
comparison of the EKF and unscented kalman filter (UKF) 
for virtual reality application was analyzed by [14] based on 
performance and computational overhead. The two filters 
were found to deliver the same performance scale with the 
EKF having lesser computational overhead. Contrary to [14], 

the UKF showed better performance in the four different 
simulation cases in [15]. This is to say that the performance 
and computational overhead of these two filters depends on 
the application they are being used on. 

Consider a non-linear system described by a set of 
stochastic difference and measurement equations for the CB 
nodes’ offsets; xKL� = F�xK� + wK    (9) zK = h�xK� + vK    (10) 

 F�xK� and h�xK� are the process and observation non-
linear functions with k being the previous time step in the 
process function. wK is the process noise vector that is 
assumed to be drawn from the zero mean multivariate 
normal distribution with covariance Q; wK~ U�0, Q�. vK is 
the measurement noise vector assumed to be zero mean 
Gaussian white noise with covariance R;  vK~ U�0, R�. xKL� and zK are the State and Observation vector. 

The process noise and measurement noise are 
uncorrelated with their initial state vector (say x;) as well as 
the random noise themselves, that is; E?wKX;ZE = 0    for ∀ k   (11) E?vKX;ZE = 0    for ∀ k   (12) E^wKv_Z` = 0    for ∀ �k and j�  (13) 

The phase and frequency offsets of each of the CB nodes 
as a model by [4] is xK = ?∅K, ωKEZ with ωK as 2πfK. The 
feedback rate, T, in the transition matrix can either be fixed 
or varied indicating stationary or mobile nodes and as such 
might change in the course of the filter performance, that is, F = d1 T0 1e.  Haven used Taylors series to expand the F�xK� 

and h�xK� functions based on the two-state model of [16] , 
the forecast State and forecast Error Covariance of the 
system called the Time update (predict equations) are; xKL�|K = F�xK|K�              (14) 

PKL�|K = FPK|KFZ + Q              (15) 

The measurement updates (Kalman gain, state and error 
covariance) are thus; 

KK = PK|KG�HKZ�HKPK|KG�HKZ + R�G�
  (16) 

xK|K = xK|KG� + KK jzK − h�xK|KG��l  (17) 

PK|K = �I − KKHK�PK|KG�   (18) 

with the Jacobian of the measurement function h being H = n>nopK, �HKPK|KG�HKZ + R� the innovation covariance and 

jzK − h�xK|KG��l the innovation or measurement residual. 

One of the major setbacks of the EKF is that prediction 
equations provide a very poor estimate of the true mean and 
Covariance matrix due to non-linearity. This paper tries to 
calculate the optimum process noise parameters that will be 
used in the process noise covariance matrix and as such 
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direct spectrum method is used to measure the SSB phase 
noise (dBc/Hz) of the oscillator.  

IV. EXPERIMENTAL RESULTS 

Average values for the process noise of the NI USRP-
2920 device was used due to differences in their aging, 
temperature and other manufacturers’ device tolerance. Allan 
variance was employed to characterize the frequency 
stability of the USRP’s oscillator [17] under the presence of 
different noise type. White frequency noise and random walk 
frequency noise parameters were calculated from Allan 
variance values haven measured the phase noise data for the 
USRP using the direct spectrum method. Figure 1 shows the 
experimental setup used in acquiring the phase noise data. 
The values of the phase noise at offset frequencies of 1kHz 
to 1 MHz range were taken using Keysight N9320B [18] SA.  

 

 

 

 

 

Fig. 1. Phase noise experimental setup 

 

A pilot tone signal was generated at 100 MHz from the 
NI USRP-2920 to the SA using GNU-radio toolkit v. 3.7.1 
[19]. The signal was sampled at 500 kHz and the gain of the 
USRP sink is set at 0dB to avoid damaging the SA as can be 
seen in Figure 2. 

 

 

 

Fig. 2. Pilot tone signal using GNU-radio toolkit 

The Keysight N9320N SA allows measurement of phase 
noise values in dBc/Hz at different frequency offset setting. 
The SA was allowed to warm-up for a minimum period of 30 
minutes and all calibrations were done according to 
manufacturer’s guide before readings were taken. Detail 
phase noise values at offsets of 1 kHz, 10 kHz, 100 kHz and 
1 MHz are shown in Figure 3. Phase noise values in Figure 3 
at all frequency offset except at 1 MHz is found to be lower 
when compared to those of N210 and B100 USRP used with 
WBX daughterboard [20] (see Table I for additional 
information).  

(a)  

(b)  

(c)  

(d)  
Fig. 3. Phase noise values at various frequency offset 

(a) -85.88 dBc/Hz at 1 kHz        (b) -86.33 dBc/Hz at 10 kHz 
(c)  -104.6 dBc/Hz at 100 kHz   (d) -124.2 dBc/Hz at 1 MHz 

 

PC 
GNU-radio transmitter blocks 

Keysight N9320B 
Spectrum Analyzer 

30dB 
Attenuator 

NI USRP 2920 
Transmitter Hardware 
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Each phase noise values is the difference between the 
carrier power (1R) and the specific noise level (1) as can be 
seen in Figure 3. The four (4) selected offset frequencies 
were based on standard auto scale (10a Hz; where a = 0,1,2, 
….6) of the keysight N9320B SA where significant 
differences in phase noise values was not noticed for a= 
0,1,2 and 3, and as such only the 1 kHz was choosen along 
side the 10 kHz, 100 KHz, and 1 MHz for easier comparison 
with [20].  The summary of the graphs in Figure 3 is shown 
in Figure 4 with phase noise values in the vertical axis and 
their corresponding offset values on the horizontal axis.  

The Allan variance curve was obtained by calculating the 
variance at different tau (q) values using (8). The variance 
was averaged over the four (4) measurements. It can be 
observed from the curve of Figure 5 that it truly depicts the 
standard slope characteristics of white frequency and random 
walk frequency noises as seen in [9].  

 

 

Fig. 4. Phase noise Vs frequency offset 

TABLE I.  NI USRP-2920 PROCESS NOISE PARAMETERS 

Offset frequency 

Phase Noise (dBc/Hz) 

NI 2920 

Experimental 

N210, B100 

[20] 

1 kHz -85.88 - 

10 kHz -86.33 -80 

100 kHz -104.60 -100 

1 MHz -124.20 -137 

 

 

 

 
Fig. 5. Allan variance curve at various tau values 

 

Table II shows the parameter values calculated from the 

averaged Allan variance, the white frequency noise jq� =>)� l and random walk frequency noise jq� = ����0>H0� l from 

(8). These values can directly be used in the Q matrix of (15) 
for the correction and prediction of the optimum Kalman 
filter state measurement matrix (17).  

TABLE II.  NI USRP-2920 PROCESS NOISE PARAMETERS 

Units Parameters Symbol Value 

sec White frequency noise s� 3.80 t 10G�u 

Hz Random walk frequency noise s� 1.50 t 10G�w 

 
The equation for the Q matrix of (15) is; 
 

��x� = yz�x {s� + s� |0
= s� |�s� |� s� }   (19) 

 
where x is the sampling period and yzthe angular frequency 
of the carrier. 

CONCLUSION 

This paper has successfully obtained the process noise 
parameters of the NI USRP-2920 USRP device using a 
combination of the white frequency noise �s�� and random 
walk frequency noise �s�� of the power-law noise model. 
Allan variance values in the frequency domain were 
computed and later the process noise parameters that will be 
applied with the EKF. It was noticed that the Allan variance 
curve truly depicts the usual slope features of white 
frequency and random walk frequency noises which are 
special considerations when dealing with USRP’s LOs. 
These process noise parameters are critical for CB in WSN 
as they are used in the EKF for carrier frequency and phase 
offset recovery. 
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