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Abstract
In this paper, we develop a new mathematical model based on the Atangana Baleanu Caputo
(ABC) derivative to investigate meningitis dynamics. We explain why fractional calculus is
useful for modeling real-world problems. The model contains all of the possible interactions
that cause disease to spread in the population.We startwith classical differential equations and
extended them into fractional-order using ABC. Both local and global asymptotic stability
conditions for meningitis-free and endemic equilibria are determined. It is shown that the
model undergoes backward bifurcation, where the locally stable disease-free equilibrium
coexists with an endemic equilibrium. We also find conditions under which the model’s
disease-free equilibrium is globally asymptotically stable. The approach of fractional order
calculus is quite new for such a biological phenomenon. The effects of vaccination and
treatment on transmission dynamics of meningitis are examined. These findings are based on
various fractional parameter values and serve as a control parameter for identifying important
disease-control techniques. Finally, the acquired results are graphically displayed to support
our findings.
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Introduction

Meningitis is one of the deadly infectious diseases that has caused an increase in the mor-
tality rate of the populace. It is the inflammation of the meninges which are the protective
membrane that covers the spinal cord and the brain [1, 2]. Meningitis can be caused by a
variety of microorganisms, as well as non-infectious causes like cancer, injury in the head,
and through the use of certain medications [3]. Bacterial meningitis has been identified to be
the highest global burden among others, because of its widespread morbidity and mortality
[2, 4]. Haemophilus influenzae, Streptococcus pneumoniae, Listeria monocytogenes, Group
B Streptococcus, and Neisseria meningitidis are some of the bacteria that can cause it. In this
study, we focus on Neisseria meningitidis which is responsible for causing meningococcal
diseases [5, 6].

Although, meningococcal diseases are found globally; however, the highest-burden is in
the sub-Saharan African meningitis belt. This region has the countries between Senegal and
Ethiopia which include but is not limited to countries like Guinea, Gambia, Burkina Faso,
Central African Republic, Togo, Ghana, Kenya, Mali, Niger, Uganda, and Nigeria which is
the focus country in this study [6, 7]. In this region, an increase in meningitis incidence has
been associated with the beginning of the dry season known as the harmattan season (from
November to March). The season is characterized by a dry wind blowing south from the
Sahara desert to the Gulf of Guinea [2, 5, 6].

Neisseria meningitidis is a human infection that can be passed from person to person via
throat secretion or droplets of respiratory from a carrier of an infected individual. In addition,
a close or prolonged personal contact with such individuals through kissing, sneezing, or
sharing eating or drinking utensils with a susceptible person can facilitate the transmission
of the disease. The incubation period of this disease varies between 2 and 10 days, thus,
following contact with an infected individual, the symptoms characterized with meningitis
are expected to start showing [2, 6]. These symptoms include high fever, severe headaches,
the appearance of rashes, and some other flu-like symptoms. Complications from this disease
can cause permanent disabilities such as deafness, brain damage, epilepsy, hearing loss, and
individual can die in the absence of early diagnosis or proper treatment [1].

Treatment of infected individuals and the use of preventivemeasures for susceptible people
are the primary ways to reduce the incidence of meningitis in the population. In areas with
inadequate health infrastructure and resources, an infected individual can be treated with
antibiotic medications after effective contact with the deadly disease [1]. Antibiotics and
fluids can be given directly into a patient’s veins to prevent dehydration, and oxygen can
be given through a face mask if there are complications or breathing difficulties. Another
treatment option for meningitis is to use steroid medication to help reduce any swelling
around the brain in any patient who has a brain complication [8]. Treatment care is mainly
administered for meningitis-infected people, however, this disease can be mainly prevented
by vaccination.Mass vaccination of the susceptible population and early detection of infected
individuals have contributed to the mitigation of the meningitis epidemic [9]. Just like many
other diseases, vaccination has been shown to reduce the outbreak of meningitis in many
regions [10, 11]. Particularly, the administration of vaccines has been shown to prevent
the disease in both children and adults. Conjugate and polysaccharide vaccines are the two
types of vaccines that are currently used in Sub-Saharan Africa during routine immunization
schedules, preventive campaigns, and response to the epidemic. These types of vaccines
include monovalent A, C, and tetravalent A, C, Y, W. Conjugate vaccines provide long-time
immunity and confer herd immunity. Polysaccharide vaccines can be bivalent (protecting
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against serogroups A and C), trivalent (protecting against serogroups A, C, and W), or
tetravalent (protecting against serogroups A, C, Y, and W) [1, 12]. They have been available
and in use, since the 1970s [13] with limited efficacy [9, 14], and they do not yield herd
immunity [9, 15].

Mathematical models have become an effective useful tool that has been used by many
researchers to understand the epidemiology of diseases in each population.Manymodels have
been developed and analyzed using different methods to provide a better understanding of the
transmission dynamics and control of the disease. Examples of these studies include [16–25].
More specifically, some studies have been carried out to provide a better understanding of
the transmission of meningitis (see [1, 26–28]), and few of these studies focus on the effect
of vaccination in controlling meningitis outbreaks in Nigeria [2, 6].

In this study, we employ the use of a fractional-order mathematical model to investigate
the effect of vaccination and treatment on the control of meningitis in Nigeria. Numerous
researchers have used fractional-order models to study the dynamics of different diseases
(see [29–35] and references therein). Studies have shown that fractional-order models are
more advantageous in characterizingmemory of biological and epidemiological systems than
the classical integral-order models [36, 37]. Other related studies via different modelling
approach can be found in [38–47]. In addition, fractional-order models have been used in
research to answer arising problems in different fields of study. Particularly, Atagana-Baleanu
fractional operator has been used by many researchers to answer different questions. For
examples of these studies, see [48–51] and the references therein. The memory properties of
this operator allow the integration of more information from the past, to increase the accuracy
of the model predictions. In the light of this advantage, we employ the use of a fractional-
order model to study the effect of vaccination and treatment on the burden of meningitis
in Nigeria. To the best of our knowledge, this is the first study to use a fractional-order
model in investigating the dynamics of meningitis in the population. Another novelty of this
study is the use of the explicit Euler fractional method to numerically simulate the effect of
treatment and vaccination parameters on the dynamical behavior of a meningitis model. We
first discuss the proposed model in detail in the integer case, then use the ABC derivative to
extend the model into fractional-order and obtain the required findings. The rest of the article
is organized as follows: Section two deals with the formulation of the model, section three
deals with the analysis of the model in the integer-order and we extend it to the fractional-
order model in section four. Section 5 discusses numerical simulations and a description of
the fractional-order model. Finally, we concluded by summarizing our work in section six.

Formulation of Mathematical Model

To understand the transmission dynamics of meningitis, we formulate a deterministic model
with six compartments based on the epidemiological status of individuals. The compartments
are susceptible S(t), Vaccinated V (t), Exposed E(t), Infected I (t) hospitalized Q(t) and
Recovered R(t). We assume that the population of the susceptible class is increased either
by immigration or by birth at a constant rate θ , the vaccinated population loses immunity at
a rate τ . Movement from susceptible class to vaccinated class is at a rate α. Movement rate
between exposed to infected class is at a rate ε. We assume a natural recovery rate for infected
individuals at a rate γ or after receiving treatment from the hospital at a rate φ. Recovered
individuals lose immunity and become susceptible upon recovery at a rate σ , natural death
occurs in all the classes at a rateμwhilemeningitis induced death is at a rate δ. The population
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Fig. 1 Schematic Diagram of the Meningitis Model

of the susceptible individuals is reduced through interaction with an individual in the infected

class at a rate λ(t). Where λ(t) = ψ{ρE(t) + I (t)}
N (t)

.

The effective transmission probability per contact with the infected individuals is denoted
by ψ and the parameters ρ ≤ 1 is a modification parameter that indicates the infectivity of
individuals in the exposed class. The effectiveness of the vaccine is about 86-90% but not
completely effective, therefore, we assume that vaccinated class decreases due to infection
at the rates (1−ω)λ(t) where 0 ≤ ω ≤ 1. ω determines the effectiveness of the vaccine. For
instance, if ω = 1 in this case, the vaccine is assumed to be 100% effective. Thus, the above
descriptions can be represented by a set of differential equations in (2.1), the compartmental
diagram in Fig. 1 also illustrates the above descriptions.

dS

dt
=θ − (μ + λ(t))S + σ R + τV − αS

dV

dt
=αS − (1 − ω)λ(t)V − (τ + μ)V

dE

dt
=λ(t)S − (ε + μ)E + (1 − ω)λ(t)V

d I

dt
=εE − (δ + β + γ + μ)I

dQ

dt
=β I − (φ + δ + μ)Q

dR

dt
=γ I + φQ − (σ + μ)R

(2.1)

Analysis of theModel

This section comprises the study of positivity and boundedness of the solutions, invariant
region, condition of existence of equilibrium points, and basic reproduction number (R0) of
the meningitis model.
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Table 1 Details Definition of
Variables and Parameters

Variable Description

S(t) Susceptible class

V (t) Vaccinated class

E(t) Exposed

I (t) Infected class

Q(t) Hospitalized class

R(t) Recovered

Parameter Description

θ Recruitment rate into susceptible class

μ Natural death rate

δ Meningitis induced death rate

α Vaccination rate

ω Vaccine efficacy

σ Loss of immunity

τ Wanning rate of vaccine

φ Recovery rate after due to treatment

γ Natural recovery rate

ψ Transmission probability

β Treatment rate

ρ Infection modification parameter

Positivity of the Solution

Considering the positivity solution of the meningitis in equation (2.1) with all positive initial
conditions.

Theorem 1 If S(0), V (0), E(0), I (0), Q(0), R(0), be positive, then we can say that the solu-
tions (S(t), V (t), E(t), I (t), Q(t), R(t), ) in equation (2.1) are positive ∀ t > 0.

Proof Let t∗ = sup{t > 0 : S(t) > 0, V (t) > 0, E(t) > 0, I (t) > 0, Q(t) > 0, R(t) > 0},
so that t∗ > 0. From the equation (2.1), considering the first equation that is

dS

dt
= θ − μS − λ(t)S + σ R + τV − αS ≥ θ − λ(t)S − (μ + α)S (3.1)

Using integrating factor and multiplying it with equation (3.1) to obtain(
e
∫ t∗
0 λ(η)dη+(μ+α)t

)
dS

dt
+ (μ+λ(t)+α)

(
e
∫ t∗
0 λ(η)dη+(μ+α)t

)
S ≥ θ

(
e
∫ t∗
0 λ(η)dη+(μ+α)t

)

Integrating both sides from t = 0 to t = t∗ and making S(t∗) subject of the formula, we
obtain

S(t∗)≥ S(0)

(
e− ∫ t∗0 λ(η)dη+(μ+α)t

)
+
(
e− ∫ t∗0 λ(η)dη+(μ+α)t

)∫ t∗

0
θ
(
e
∫ x
0 λ(η)dη+(μ+α)x

)
>0

From the above result, it is clearly showed that S(t∗) is ≥ to the sum of positive terms which
is positive. Similarly, following the same argument, we can show that E(t) ≥ 0, I (t) ≥
0, Q(t) ≥ 0, R(t) ≥ 0, V (t) ≥ 0, ∀ t∗ > 0. ��
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Boundedness of the Solution

Theorem 2 All solutions S(0), V (0), E(0), I (0), Q(0), R(0) of the meningitis model(2.1)
are bounded. This means that, if

lim
t→∞ sup Nh(t) ≤ θ

μ

then N (t) = S(t) + V (t) + E(t) + I (t) + Q(t) + R(t).

Proof It is important to know that 0 < I (t) ≤ N (t). Adding all the six equations of the
meningitis model (2.1), we can say that

dN

dt
=θ − μN − δ(I + Q) (3.2)

This can be seen that all solutions of meningitis model (2.1) are bounded. Therefore, equation
(3.2) can be written as

θ − (μ + δ) N (t) ≤ dN (t)

dt
≤ θ − μN (t)

and we have
θ

(μ + δ)
≤ lim

t→∞ inf N (t) ≤ lim
t→∞ sup N (t) ≤ θ

μ
(3.3)

��

Invariant Region of Meningitis Model

Theorem 3 The region � ⊂ R
6+ is non-negatively invariant of the meningitis model (2.1)

with positive initial conditions R
6+.

Proof To proof, Let � stand for feasible region of the meningitis model (2.1), this can now
be written as

� ⊂ R
6+

with

� =
{
(S, V , E, I , Q, R) ∈ R

6+ : S + V + E + I + Q + R ≤ θ

μ

}
.

The conditions that are required to show the positive invariance of � i.e. the solution in �

still remains in � ∀ t > 0. This is obtained by adding equations of the meningitis model
(2.1)

dN (t)

dt
≤ θ − μN (t)

Using the standard comparison theorem [52], we can say that

N (t) ≤ N (0)e−μt + θ

μ

(
1 − e−μt ) (3.4)

Particularly, N (t) ≤ θ

μ
if N (0) ≤ θ

μ
. Therefore, the region � is non-negative invariant. ��
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Existence of Equilibrium Point of Meningitis Model

In this section, it is necessary to discuss the existence of equilibrium points of the meningitis
model. This can be divided intoMeningitis free equilibrium (MFE) and Endemic equilibrium
(EE) points. Considering the existence of meningitis free equilibrium point (MFEP), by
equating the right-hand side of all the equations in (2.1) as well as setting E, I , Q and R to
be zero, to obtain

E0 = (S0, V0, E0, I0, Q0, R0)

E0 =
(

θ(τ + μ)

μ(α + τ + μ)
,

θα

μ(α + τ + μ)
, 0, 0, 0, 0

)
(3.5)

Also, considering the existence of endemic equilibrium point (EEP) if I is non-zero and all
the equations on the right hand side of model (2.1) are equating to be zero then by substituting
S = S∗, V = V ∗, E = E∗, I = I ∗, Q = Q∗ and R = R∗ into model (2.1), we have

S∗ = θ + σ R∗ + τV ∗

α + λ∗(t) + μ

V ∗ = αS∗

(1 − ω)λ∗(t) + (τ + μ)

E∗ = λ∗(t)S∗ + (1 − ω)λ∗(t)V ∗

ε + μ

I ∗ = εE∗

δ + β + γ + μ

Q∗ = β I ∗

φ + δ + μ

R∗ = γ I ∗ + φQ∗

σ + μ

(3.6)

Simplifying further gives

S∗ =a3 a4 a5 a6 θ ((1 + ω) λ (t) + a2)

b1 (λ (t))2 + b2 λ (t) + a3

V ∗ = a3 a4 a5 a6 θ α

b1 (λ (t))2 + b2 λ (t) + a3

E∗ =a4 a5 a6 θ ((1 − ω) (α + λ (t)) + a2) λ (t)

b1 (λ (t))2 + b2 λ (t) + a3

I ∗ =a5 a6 θε ((1 + ω) (α + λ (t)) + a2) λ (t)

b1 (λ (t))2 + b2 λ (t) + a3

Q∗ =ε β a6 θ ((1 − ω) (α + λ (t)) + a2) λ (t)

b1 (λ (t))2 + b2 λ (t) + a3

R∗ =εθ (a5 γ + β φ) ((1 − ω) (α + λ (t)) + a2) λ (t)

b1 (λ (t))2 + b2 λ (t) + a3

(3.7)

where λ∗(t) = ψ{ρE∗ + I ∗}
N∗ , a1 = α +μ, a2 = τ +μ, a3 = ε +μ, a4 = (δ +β + γ +μ),

a5 = (φ + δ + μ), a6 = σ + μ, b1 = (1 − ω) (a3 a4 a5 a6 − a5 γ σ ε − β φ σ ε), b2 =
(1 − ω) (a1 a3 a4 a5 a6 − a5 α γ σ ε − α β φ σ ε) and b3 = a3 a4 a5 a6 (a1 a2 − α τ)
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From Eqs. (3.5) and (3.7), it has showed clearly that model (2.1) exists and has two
equilibriums in the non-negative of R

6+.

Basic Reproduction Number (R0) of Meningitis Model

In this section, we shall consider basic reproduction number (R0) in order to determine the
nature of the meningitis disease. To this end, we will use next generation matrix method to
find basic reproduction number (R0). Therefore, meningitis model (2.1) can be written as

F(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

λ(t)S + (1 − ω)λ(t)V
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.8)

and

V(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μS + αS − θ − σ R − τV
(τ + μ)V − αS

(ε + μ)E
(δ + β + γ + μ)I − εE

(φ + δ + μ)Q − β I
(σ + μ)R − γ I − φQ

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.9)

Using Jacobian Matrix to solve equations (3.8) and (3.9), we respectively obtain equations
(3.10) and (3.11).

F =

⎛
⎜⎜⎝

ψρS0 + (1 − ω)ψρV0
S0 + V0

ψS0 + (1 − ω)ψV0
S0 + V0

0

0 0 0
0 0 0

⎞
⎟⎟⎠ (3.10)

and

V =
⎛
⎝ (ε + μ) 0 0

−ε (δ + β + γ + μ) 0
0 −β (φ + δ + μ)

⎞
⎠ (3.11)

According to [53] basic reproduction number is the obtained as the spectral radius of FV−1.
Therefore,

R0 = ψ ((δ + β + γ + μ) ρ + ε) (S0 + (1 − ω) V0)

(S0 + V0) (ε + μ) (δ + β + γ + μ)

R0 = ψ ((δ + β + γ + μ) ρ + ε) (τ + μ + (1 − ω) α)

(δ + β + γ + μ) (ε + μ) (α + τ + μ)

(3.12)

Local stability of Disease-Free Equilibrium (DFE)

The following theorem establishes the local stability of disease-free equilibrium.

Theorem 4 When R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable,
otherwise it is unstable.
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Proof The Jacobian matrix of the system 2.1 at disease-free equilibrium point E0 is obtained
as follows:

J0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ + α) τ −ψρ(τ+μ)
α+τ+μ

−ψ(τ+μ)
α+τ+μ

0 σ

α −(τ + μ) − (1−ω)ψρα
α+τ+μ

− (1−ω)ψα
α+τ+μ

0 0

0 0 −(ε + μ) + (τ+μ+α+ωα)
α+τ+μ

ψ
(
τ+μ+α+αω

)
α+τ+μ

0 0

0 0 ε −(δ + β + γ + μ) 0 0

0 0 0 β −(φ + δ + μ) 0

0 0 0 γ φ −(σ + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, four of the six eigenvalues of the Jacobian matrix J0 can be easily obtained as
−μ,−(μ + σ),−(α + μ + τ) and −(δ + φ + μ). The other two eigenvalues can be given
as:

ζ −√ζ 2 − 4κ

2(α + μ + τ)
(3.13)

and
ζ +√ζ 2 − 4κ

2(α + μ + τ)
(3.14)

where

ζ = −αβ − αγ − αδ − αε − 2αμ − βμ − γμ − δμ − εμ − 2μ2 − βτ − γ τ − δτ−
ετ − 2μτ + ψρ + μψρ + τψρ + ψρω

κ = α(β + γ + δ + μ)
(
α(ε + μ) + 2μτ

)+ μ2
(
2α(β + γ + δ + ε) + ε(β + γ + δ)

)
+μ3(2α + β + γ + δ + ε) + μ4 + (β + γ + δ)

(
(2α + 2μ + τ)ετ + 2αμε

)+ 2μ2τ(

α + β + γ + δ + ε + μ) + μτ 2(β + γ + δ + ε + μ) − εψ
(
α
(
α + αω + (μ + τ)(2 + ω)

)

+μ2 + μ(2μ + τ)
)

− ψρ
(
α(β + μ + γ + δ) + βμ(1 + α) + μ

(
(1 + α)(γ + δ)

)−
μ2(1 + α + β + γ + δ + μ) − (β + γ + δ + μ)

(
τ(1 + α + 2μ) + (τ 2 + (α + μ + τ)ω)

))

Now Consider R0 < 1, which implies

ψ ((δ + β + γ + μ) ρ + ε) (τ + μ + (1 − ω) α) < (δ + β + γ + μ) (ε + μ) (α + τ + μ)

(3.15)
which further implies:

ψρ
(
τ + μ + (1 − ω)α

)
< (ε + μ)(α + τ + μ)

�⇒ ψρ

α

( τ

α
+ μ

α
+ (1 − ω)

)
< (ε + μ)(α + τ + μ)

�⇒ ψρ
(
τ + μ + 1 − ω

)
< (ε + μ)(α + τ + μ)

(
∵ α ∈ (0, 1)

)
�⇒ ψρτ + ψρμ + ψρ + ψρω < εα + ετ + εμ + μα + μτ + μ2

i .e. ψρτ + ψρμ + ψρ + ψρω < αβ + αγ + αδ + αε + 2αμ + βμ + γμ + δμ+
εμ + 2μ2 + βτ + γ τ + δτετ + 2μτ

(3.16)
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which implies ζ < 0.Now it can be easily verified that all the eigenvalues of J0 have a negative
real part. Hence Meningitis free equilibrium Point (MFEP) is locally asymptotically stable
provided R0 < 1, and unstable when R0 > 1. ��

Global Stability of Disease-Free Equilibrium (DFE)

In order to derive the conditions for the global stability of E0, wewill use themethod provided
in [54]. Here is the brief overview of the technique. If we have a model system in the below
form.

dU

dt
= F(U , V )

dV

dt
= G (U , V ) , G (U , 0) = 0

where U ∈ Rm represents the uninfected individuals whereas V ∈ Rn is the infected
population. Now, if R0 < 1 then the two criteria given below establish the global stability
of the disease-free equilibria. (N1) For dU

dt = F(U , 0), U0 is globally asymptotically stable.

(N2) G (U , V ) = BV − Ĝ (U , V ), where Ĝ (U , V ) ≥ 0 for (U , V ) ∈ �. Here, B =
DVG (U0, 0) represents an M-matrix (M-matrix is a matrix whose non-diagonal elements
are non-negative) and � is the region where the model makes biological sense. Now, using
this result, we can provide the following theorem:

Theorem 5 If R0 < 1, the disease-free equilibrium is globally asymptotically stable and
unstable for R0 > 1.

Proof With respect to the notations of the method described above, the meningitis free equi-
librium (MFE) can be given by Q0 = (U0, 0). In order to prove this theorem we need to
prove conditions (N1) and (N2). We begin by showing (N1). Consider

dU

dt
= F(U , 0)

Here,

F(U , 0) =
⎡
⎣θ − (μ + α)S + τV + σ R

αS − (τ + μ)V
−(σ + μ)R

⎤
⎦

and the corresponding Jacobian matrix can be given as:

JF(U ,0) =
⎡
⎣−(μ + α) τ σ

α −(τ + μ) 0
0 0 −(σ + μ)

⎤
⎦

The characteristics polynomial of the above system is

(λ + μ + σ)(λ2 + λ(2μ + α + τ) + μ(μ + α + τ))
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We can clearly see that, one eigenvalue is −(μ + σ) and other two eigenvalues are either
-ve or have -ve real part. HenceU0 is globally asymptotically stable. Hence (N1) is satisfied.
Now we will show (N2) as follows: We have,

G (U , V ) = BV − Ĝ (U , V )

=
⎡
⎣

ψρ
N (t) S0 − (ε + μ) + (1−ω)ψρ

N (t) V0
ψ

N (t) S0 + (1−ω)ψ
N (t) V0 0

ε −(δ + β + γ + μ) 0
0 0 −(φ + δ + μ)

⎤
⎦
⎡
⎣EI
Q

⎤
⎦

−
⎡
⎣

ψρ
N (t) ((s0 − S) + (1 − ω)(V0 − V )) E + ψ

N (t) ((s0 − S) + (1 − ω)(V0 − V )) I
0
0

⎤
⎦

Clearly, B is M-Matrix and Ĝ (U , V ) ≥ 0 which implies (N2) holds for the system. Hence,
we have shown that both (N1) and (N2) holds for the system, which also completes the proof
of the theorem. ��

Stability of Endemic Equilibrium

We will use the Routh-Hurwitz stability criterion to derive the conditions under which the
endemic equilibrium point (EEP) is locally stable. The Jacobian matrix of the model system
2.1 at endemic equilibrium point (3.7) can be given as:

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(μ + λ∗) − α τ − S∗ψρ
N∗ − S∗ψ

N∗ 0 σ

α −(1 + ω)λ∗ − (τ + μ) − (1+ω)V ∗ψρ
N∗ − (1+ω)V ∗ψ

N∗ 0 0

λ∗ (1 + ω)λ∗ ψρS∗
N∗ − (ε + μ) + (1+ω)V ∗ψρ

N∗
S∗ψ
N∗ + (1+ω)V ∗ψ

N∗ 0 0

0 0 ε −(δ + β + γ + μ) 0 0

0 0 0 β −(φ + δ + μ) 0

0 0 0 γ φ −(σ + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In order to avoid further complication, we will write the matrix J0 equivalent to

J ∗
0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 τ a13 a14 0 σ

α a22 a23 a24 0 0
λ∗ a32 a33 a34 0 0
0 0 ε a44 0 0
0 0 0 β a55 0
0 0 0 γ φ a66

⎤
⎥⎥⎥⎥⎥⎥⎦

Here, ai,J where i = 1, 2...6 and j = 1, 2...6 are the corresponding entries. Now, the
characteristic equation of the matrix J ∗

0 can be given as:

−εσ (xγ + βφ − γ a55) (αa32 + (x − a22) λ∗) + (−x + a55) (−x + a66) ((−x + a44)(
(αa13 + (x − a11) a23) a32 + (x2 − ατ − xa22 + a11 (−x + a22)

)
(−x + a33)

+ (a13 (x − a22) + τa23) λ∗) − ε(
(
x2 − ατ − xa22 + a11 (−x + a22)

)
a34 + a24((x

−a11)a32 + τλ∗) + a14 (αa32 + (x − a22) λ∗))) = 0
(3.17)
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Now, the above equation [3.17] is further written in form of a polynomial equation as

x6 + A1x
5 + A2x4 + A3x

3 + A4x
2 + A5x + A6 = 0

The values of Ais : i = 1, 2...6 are provided in Appendix (See: Section 7).
Now, the endemic equilibrium point (8) will be locally stable provided the following four

conditions hold:

(i) Ai > 0 ∀ i = 1, 2, ...6.
(ii) A1A2 > A3, A1A2A3 + A1A5 > A2

1A4 + A2
3.

(iii) A1A4(A2A3+2A5)+ A2(A2
1A6+ A3A6) > A1(A1A2

4+ A2
2A5+ A3A6)+ A2

3A4+ A2
5.

(iv) A2A3A2
5 + A3

3A6 > A2
3A4A5 + A3

5 + A3
1A

2
6 + A2

1(A
2
4A5 − A3A4A6 − 2A2A5A6) +

A1(A2
2A

2
5 + A2A3(−A4A5 + A3A6) + A5(−2A4A5 + 3A3A6)).

Bifurcation Analysis

The presence of endemic equilibrium suggests that backward bifurcation is exist. We will use
the “Center Manifold based theorem" present in [55], to validate the existence of backward
bifurcation.

The estimate expression for R0 in 3.12 is

R0 = ψ ((δ + β + γ + μ) ρ + ε) (τ + μ + (1 − ω) α)

(δ + β + γ + μ) (ε + μ) (α + τ + μ)

which gives ψ : effective transmission probability as the bifurcation parameter and ψ∗ as
the critical point of bifurcation. Setting R0 = 1, we obtain

ψ∗ = (δ + β + γ + μ) (ε + μ) (α + τ + μ)

((δ + β + γ + μ) ρ + ε) (τ + μ + (1 − ω) α)
(3.18)

At ψ = ψ∗, the jacobian of the model system at Meningitis free equilibrium point (MFEP)
is

J0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ + α) τ −ψ∗ρ(τ+μ)
α+τ+μ

−ψ∗(τ+μ)
α+τ+μ

0 σ

α −(τ + μ) − (1−ω)ψ∗ρα
α+τ+μ

− (1−ω)ψ∗α
α+τ+μ

0 0

0 0 −(ε + μ) + (τ+μ+α+ωα)
α+τ+μ

ψ∗(τ+μ+α+αω
)

α+τ+μ
0 0

0 0 ε −(δ + β + γ + μ) 0 0

0 0 0 β −(φ + δ + μ) 0

0 0 0 γ φ −(σ + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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It can be easily verified that zero is one eigenvalue of J0. Now the associated right eigenvector
W = (w1, w2, w3, w4, w5, w6) corresponding to eigenvalue zero and matrix J0 can be
obtained by solving the following system of equations:

−(μ + α)w1 + τw2 − P(τ + μ)w3 − P
(τ + μ)

ρ
w4 + σw6 = 0

αw1 − (τ + μ)w2 − P(1 − ω)αw3 − P
(1 − ω)α

ρ
w4 = 0

(−(ε + μ) + (α(1 − ω) + τ + μ)P)w3 + (α(1 − ω) + τ + μ)P

ρ
w4 = 0

εw3 − (δ + β = γ = μ)w4 = 0

βw4 − (φ + δ + μ)w5 = 0

γw4 + φw5 − (σ + μ)w6 = 0

(3.19)

Here P = ψρ

α + τ + μ
.

On solving system of equations 3.19, we get

(w1, w2, w3, w4, w5, w6)
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− P
(
ατ(1−ω)+(τ+μ)2

)
μ(α+τ+μ)

(
1 + ε

ρ(δ+β+γ+μ)

)

Pα
μ+τ

(
1 + ε

ρ(δ+β+γ+μ)

) (
(1 − ω) − ατ(1−ω)+(τ+μ)2

μ(α+τ+μ)

)

1

ε
δ+β+γ+μ

βε
(φ+δ+μ)(δ+β+γ+μ)

γ ε(φ+δ+μ)+φβε
(σ+μ)(φ+δ+μ)(δ+β+γ+μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.20)
Also the left eigenvector V = (v1, v2, v3, v4, v5, v6) and satisfying W.V = 1 can be

obtained by solving:

−(μ + α)v1 + αv2 = 0

τv1 − (τ + μ)v2 = 0

−P(τ + μ)v1−P(1+ω)αv2+(−(ε+μ)+(α(1+ω) + τ + μ) P) v3 + εv4 = 0

−P
(τ +μ)

ρ
v1−P

(1−ω)α

ρ
v2+ (α(1−ω)+τ +μ) P

ρ
v3−(δ+β+γ +μ)v4+βv5+γ v6 = 0

−(φ + δ + μ)v5 + φv6 = 0

σv1 − (σ + μ)v6 = 0
(3.21)

Further calculations leads us to

V=
(
0, 0,

δ + β + γ + μ

δ + β + γ + μ − 1
,
(δ + β + γ + μ) ((ε + μ)−[α(1−ω + τ + mu])

μ(δ + β + γ + μ − 1)
, 0, 0

)T
(3.22)
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Using Theorem 2 of article [55] the coefficients a and b can be computed as:

a =
6∑

k,i, j=1

vkwiw j
∂2 fk(E0, ψ

∗)
∂xi∂x j

and b =
6∑

k,i=1

vkwi
∂2 fk(E0, ψ

∗)
∂xi∂ψ

(3.23)

Further calculations lead to:

∂2 f3
∂x3∂x1

= ψρμ

θ
= ∂2 f3

∂x1∂x3

∂2 f3
∂x4∂x1

= ψμ

θ
= ∂2 f3

∂x1∂x4
∂2 f3

∂x3∂x2
= (1 + ω)ψρμ

θ
= ∂2 f3

∂x2∂x3

∂2 f3
∂x4∂x2

= (1 + ω)ψμ

θ
= ∂2 f3

∂x2∂x4
∂2 f3

∂x3∂ψ
= μρ(τ + μ + (1 − ω)α)

α + τ + μ

∂2 f3
∂x4∂ψ

= μ(τ + μ + (1 + ω)α)

α + τ + μ

Substituting these values in expressions of a and b i.e. expression 3.23, we obtain:

a = 2μ

θ

(δ + β + γ + μ)

(δ + β + γ + μ − 1)
ψ∗
[
P

(
1 + ε

ρ(δ + β + γ + μ)

)(−
(
ατ(1 + ω) + (τ + μ)2

)
μ(α + τ + μ)

(
1 + (1 + ω)α

μ + τ

)
+ (1 − ω)2α

μ + τ

)]
×
(

ρ + ε

δ + β + γ + μ

)
(3.24)

b = μ(δ + β + γ + μ)(τ + μ + (1 − ω)α)

θ(δ + β + γ + μ − 1)(α + τ + μ)

(
ρ + ε

(δ + β + γ + μ)

)
(3.25)

Now from the derived expressions of a and b i.e. equations 3.24 and 3.25 it is clear that
our proposed model will exhibit backward bifurcation only if(

ατ(1 − ω) + (τ + μ)2
)
(μ + τ + (1 + ω)α) > (1 − ω)2α(α + τ + μ).

Analysis of Fractional Order Meningitis Model

In this section, we present some properties of Atangana-BaleanuOperator. [29, 56–59] which
will be used in the analysis of the fractional order meningitis model 4.7.

Definition 1 Let a function φ1 ∈ F1(a, b) such that a < b and p ∈ [0, 1] represent the
fractional order, then the Atangana-Baleanu (AB) operator can be expressed as

ABC
a Dp

t φ1(t) = M(p)

1 − p

∫ t

a
φ

′
1(X)Gp

[−p(t − X)p

1 − p

]
dX (4.1)

Definition 2 If φ1 ∈ F1(a, b) such that b > a and p ∈ [0, 1], then we have the form ABC
in the Riemann- Liouville sense (ABR) expressed as

ABR
a Dp

t φ1(t) = 1 − p

M(p)
φ1(t) + p

M(p)Γ (p)

∫ t

a
φ1(X)(t − X)p−1dX . (4.2)

Definition 3 The AB fractional integral operator can be expressed as

ABC
a I pt (φ1(t)) = 1 − p

M(p)
φ1(t) + p

M(p)Γ (p)

∫ t

a
φ1(X)(t − X)p−1dX , (4.3)
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where M(p) represent normalized function.

Theorem 6 If φ1 is continuous on [a, b], the inequality holds.

‖ABR
a Dp

t φ1(t) ‖< M(p)

1 − p
‖ φ1(X) ‖, where ‖ φ1(X) ‖= maxa≤x≤b | φ1(X) | . (4.4)

Theorem 7 The ABR and ABC derivatives satisfy the Lipschitz criteria below

‖ABR
a Dp

t φ1(t) −ABR
a Dp

t φ2(t) ‖< p ‖ φ1(t) − φ2(t) ‖ (4.5)

‖ABC
a Dp

t φ1(t) −ABC
a Dp

t φ2(t) ‖< p ‖ φ1(t) − φ2(t) ‖ . (4.6)

Fractional Order Meningitis Model

The fractional order version of the meningitis model 2.1 in AB derivative can be written as

ABC Dp
t S =θ − (μ + λ(t))S + σ R + τV − αS,

ABC Dp
t V =αS − (1 − ω)λ(t)V − (τ + μ)V ,

ABC Dp
t E =λ(t)S − (ε + μ)E + (1 − ω)λ(t)V ,

ABC Dp
t I =εE − (δ + β + γ + μ)I ,

ABC Dp
t Q =β I − (φ + δ + μ)Q,

ABC Dp
t R =γ I + φQ − (σ + μ)R,

(4.7)

with the initials for each of the variables given as S(0) = n1, V (0) = n2, E(0) = n3, I (0) =
n4, Q(0) = n5, R(0) = n6.

Existence and Uniqueness of the Fractional Order Solution

In this section, we show that the existence and uniqueness of the fractional ABC model in
4.7 using fixed point theory. We express 4.7 in equivalent form as

ABC Dp
t [S(t)] =G1(t, S),

ABC Dp
t [V (t)] =G2(t, V ),

ABC Dp
t [E(t)] =G3(t, E),

ABC Dp
t [I (t)] =G4(t, I ),

ABC Dp
t [Q(t)] =G5(t, Q),

ABC Dp
t [R(t)] =G6(t, R).

(4.8)

The fractional integral derivative of ABC on 4.7 is given as

S(t) =S(0) +ABC Ipt (θ − (μ + λ(t))S + σ R + τV − αS),

V (t) =V (0) +ABC Ipt (αS − (1 − ω)λ(t)V − (τ + μ)V ),

E(t) =E(0) +ABC Ipt (λ(t)S − (ε + μ)E + (1 − ω)λ(t)V ),

I (t) =I (0) +ABC Ipt (εE − (δ + β + γ + μ)I ),

Q(t) =Q(0) +ABC Ipt (β I − (φ + δ + μ)Q),

R(t) =R(0) +ABC Ipt (γ I + φQ − (σ + μ)R).

(4.9)
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Using the definition of integral fractional derivative in AB sense, we have that

S(t) =S(0) + (1 − p)

M(p)
G1(t, S(t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G1(Λ, S(Λ))dΛ,

V (t) =V (0) + (1 − p)

M(p)
G2(t, V (t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G2(Λ, V (Λ))dΛ,

E(t) =E(0) + (1 − p)

M(p)
G3(t, E(t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G3(Λ, E(Λ))dΛ,

I (t) =I (0) + (1 − p)

M(p)
G4(t, I (t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G4(Λ, I (Λ))dΛ,

Q(t) =Q(0) + (1 − p)

M(p)
G5(t, Q(t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G5(Λ, Q(Λ))dΛ,

R(t) =R(0) + (1 − p)

M(p)
G6(t, R(t)) + p

M(p)�(p)

∫ t

0
(t − Λ)p−1G6(Λ, R(Λ))dΛ.

(4.10)

Theorem 8 The kernel G1 satisfy the Lipschitz condition and contaction if the inequality in
holds

0 ≤ (ψβ1 + β2) < 1 (4.11)

Proof To establish the Lipschitz condition, we consider two functions, S and S1

‖ G1(t, S(t))−G1(t, S1(t)) ‖=‖ −ψ(ρE+ I )

N
S(t)−S1(t)−α(S(t)−S1(t))−μ(S(t)−S1(t)) ‖

≤ψ ‖ ρE + I ‖‖ S(t) − S1(t) ‖ +(α + μ) ‖ S(t) − S1(t) ‖
≤ψβ1 + β2 ‖ S(t) − S1(t) ‖
≤σ1 ‖ S(t) − S1(t) ‖ .

(4.12)
��

Where
σ1 = ψβ1 + β2, andβ2 = α + μ (4.13)

This implies that

‖ G1(t, S(t)) − G1(t, S1(t)) ‖≤ σ1 ‖ S(t) − S1(t) ‖ . (4.14)

The rest of the equations followed the same procedure

‖‖ G2(t, V (t)) − G2(t, V1(t)) ‖≤σ2 ‖ V (t) − V1(t) ‖,
‖ G3(t, E(t)) − G3(t, E1(t)) ‖≤σ3 ‖ E(t) − E1(t) ‖,
‖ G4(t, I (t)) − G4(t, I1(t)) ‖≤σ4 ‖ I (t) − I1(t) ‖,

‖ G5(t, Q(t)) − G5(t, Q1(t)) ‖≤σ5 ‖ Q(t) − Q1(t) ‖,
‖ G6(t, R(t)) − G6(t, R1(t)) ‖≤σ6 ‖ R(t) − R1(t) ‖ .

(4.15)
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Where σ1„„σ6 represent the corresponding Lipschitz constants. As a result, the Lipschitz
conditions are met. The model in 4.7 can be written in a recursive terms as

Sn(t) =S(0) + (1 − p)

M(p)
G1(t, Sn−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G1(Λ, Sn−1(Λ))dΛ,

Vn(t) =V (0) + (1 − p)

M(p)
G2(t, Vn−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G2(Λ, Vn−1(Λ))dΛ,

En(t) =E(0) + (1 − p)

M(p)
G3(t, En−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G3(Λ, En−1(Λ))dΛ,

In(t) =I (0) + (1 − p)

M(p)
G4(t, In−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G4(Λ, In−1(Λ))dΛ,

Qn(t) =Q(0) + (1 − p)

M(p)
G5(t, Qn−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G5(Λ, Qn−1(Λ))dΛ,

Rn(t) =R(0) + (1 − p)

M(p)
G6(t, Rn−1(t)) + p

M(p)�(p)

∫ t

0
(t − x)p−1G6(Λ, Rn−1(Λ))dΛ.

(4.16)
Furthermore, the difference of successive terms is expressed as

ϕ1,n(t) =Sn(t) − Sn−1(t) = (1 − p)

M(p)
(G1(t, Sn−1(t)) − G1(t, Sn−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G1(Λ, Sn−1(Λ)) − G1(Λ, Sn−2(Λ)))dΛ,

ϕ2,n(t) =Vn(t) − Vn−1(t) = (1 − p)

M(p)
(G2(t, Vn−1(t)) − G2(t, Vn−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G2(Λ, Vn−1(Λ)) − G2(Λ, Vn−2(Λ)))dΛ,

ϕ3,n(t) =En(t) − En−1(t) = (1 − p)

M(p)
(G3(t, En−1(t)) − G3(t, En−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G3(Λ, En−1(Λ)) − G3(Λ, En−2(Λ)))dΛ,

ϕ4,n(t) =In(t) − In−1(t) = (1 − p)

M(p)
(G4(t, In−1(t)) − G4(t, In−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G4(Λ, In−1(Λ)) − G4(Λ, In−2(Λ)))dΛ,

ϕ5,n(t) =Qn(t) − Qn−1(t) = (1 − p)

M(p)
(G5(t, Qn−1(t)) − G5(t, Qn−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G5(Λ, Qn−1(Λ)) − G5(Λ, Qn−2(Λ)))dΛ,

ϕ6,n(t) =Rn(t) − Rn−1(t) = (1 − p)

M(p)
(G1(t, Rn−1(t)) − G6(t, Rn−2(t))

+ p

M(p)�(p)

∫ t

0
(t − Λ)p−1(G6(Λ, Rn−1(Λ)) − G6(Λ, Rn−2(Λ)))dΛ.

(4.17)

123



  117 Page 18 of 28 Int. J. Appl. Comput. Math            (2022) 8:117 

Consider that, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t) =∑n
i=0 ϕ1i (t),

Vn(t) =∑n
i=0 ϕ2i (t),

En(t) =∑n
i=0 ϕ3i (t),

In(t) =∑n
i=0 ϕ4i (t),

Qn(t) =∑n
i=0 ϕ5i (t),

Rn(t) =∑n
i=0 ϕ6i (t).

(4.18)

Hence, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1,n−1 = Sn−1(t) − Sn−2(t),

ϕ2,n−1 = Vn−1(t) − Vn−2(t),

ϕ3,n−1 = En−1(t) − En−2(t),

ϕ4,n−1 = In−1(t) − In−2(t),

ϕ5,n−1 = Qn−1(t) − Qn−2(t),

ϕ6,n−1 = Rn−1(t) − Rn−2(t).

(4.19)

Furthermore, we derive the relation

‖ ϕ1,n(t) ‖≤ (1 − p)

M(p)
σ1 ‖ ϕ1,n−1(t) ‖ + p

M(p)Γ (p)
σ1

∫ t

0
(t − Λ)p−1 ‖ ϕ1,n−1(Λ) ‖ dΛ,

‖ ϕ2,n(t) ‖≤ (1 − p)

M(p)
σ2 ‖ ϕ2,n−1(t) ‖ + p

M(p)Γ (p)
σ2

∫ t

0
(t − Λ)p−1 ‖ ϕ2,n−1(Λ) ‖ dΛ,

‖ ϕ3,n(t) ‖≤ (1 − p)

M(p)
σ3 ‖ ϕ3,n−1(t) ‖ + p

M(p)Γ (p)
σ3

∫ t

0
(t − Λ)p−1 ‖ ϕ3,n−1(Λ) ‖ dΛ,

‖ ϕ4,n(t) ‖≤ (1 − p)

M(p)
σ4 ‖ ϕ4,n−1(t) ‖ + p

M(p)Γ (p)
σ4

∫ t

0
(t − Λ)p−1 ‖ ϕ4,n−1(Λ) ‖ dΛ,

‖ ϕ5,n(t) ‖≤ (1 − p)

M(p)
σ5 ‖ ϕ5,n−1(t) ‖ + p

M(p)Γ (p)
σ5

∫ t

0
(t − Λ)p−1 ‖ ϕ5,n−1(Λ) ‖ dΛ,

‖ ϕ6,n(t) ‖≤ (1 − p)

M(p)
σ1 ‖ ϕ6,n−1(t) ‖ + p

M(p)Γ (p)
σ6

∫ t

0
(t − Λ)p−1 ‖ ϕ6,n−1(Λ) ‖ dΛ.

(4.20)
Hence, S(t), V (t), E(t), I (t), Q(t), R(t) are bounded functions.

Theorem 9 The solution of the meningitis fractional order model 4.7 exist and is unique if
there exist t0 such that;

1 − p

M(p)
σi + p

M(p)Γ (p)
σi ; t0 < 1, i = 1, , , , 6 (4.21)
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Proof It is established that S(t), V (t), E(t), I (t), Q(t), R(t) are bounded functions and sat-
isfy Lipschitz conditions. From 4.20, we obtain the succeeding expression below

‖ ϕ1,n(t) ‖≤‖ S0(t) ‖
[

(1 − p)

M(p)
σ1 + t0

M(p)Γ (p)
σ1

]n
,

‖ ϕ2,n(t) ‖≤‖ V0(t) ‖
[

(1 − p)

M(p)
σ2 + t0

M(p)Γ (p)
σ2

]n
,

‖ ϕ3,n(t) ‖≤‖ E0(t) ‖
[

(1 − p)

M(p)
σ3 + t0

M(p)Γ (p)
σ3

]n
,

‖ ϕ4,n(t) ‖≤‖ I0(t) ‖
[

(1 − p)

M(p)
σ4 + t0

M(p)Γ (p)
σ4

]n
,

‖ ϕ5,n(t) ‖≤‖ Q0(t) ‖
[

(1 − p)

M(p)
σ5 + t0

M(p)Γ (p)
σ5

]n
,

‖ ϕ6,n(t) ‖≤‖ R0(t) ‖
[

(1 − p)

M(p)
σ6 + t0

M(p)Γ (p)
σ6

]n
.

(4.22)

��

The existence of the solutions are proved. We define the following functions in order to show
that 4.22 represent the solution of the fraction order model 4.7

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S(t) − S(0) = Sn(t) − C1(t),
V (t) − V (0) = Vn(t) − C2(t),
E(t) − E(0) = En(t) − C3(t),
I (t) − I (0) = In(t) − C4(t),
Q(t) − Q(0) = Qn(t) − C5(t),
R(t) − R(0) = Rn(t) − C6(t).

(4.23)

Further, we get

‖C1n(t) ‖=‖ 1 − p

M(p)
(G1(t, S(t)) − G1(t, Sn−1(t)))

+ p

M(p)Γ (p)

∫ t

0
(t − Λ)p−1(G1(Λ, S(Λ)) − G1(Λ, Sn−1(Λ)))dΛ ‖

, ≤ 1 − p

M(p)
‖ G1(t, S(t)) − G1(t, Sn−1(t)) ‖

+ p

M(p)Γ (p)

∫ t

0
‖ G1(Λ, S(Λ)) − G1(Λ, Sn−1(Λ)) ‖ dΛ,

≤ 1 − p

M(p)
σ1 ‖ S − Sn−1 ‖ + p

M(p)Γ (p)
σ1 ‖ S − Sn−1 ‖ t .

(4.24)

By repeating the same procedure at t0 we have

‖ C1n(t) ‖≤
[

(1 − p)

M(p)
+ pt0

M(p)Γ (p)
σ1

]
σ n+1
1 (4.25)

Taking the limit of 4.25 as n −→ ∞ clearly, ‖ C1n(t) ‖−→0. By the same procedure,
‖ C2n(t) ‖, ‖ C3n(t) ‖, ‖ C4n(t) ‖, ‖ C5n(t) ‖ and ‖ C6n(t) ‖ −→0.
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Theorem 10 The solution of the fractional order model 4.7 is unique if the assumption below
holds (

1 − (1 − p)

M(p)
σ1 + p

M(p)Γ (p)
σ1t

)
≥ 0 (4.26)

Proof In other to proof the uniqueness of the solution of 4.7, we consider another solution
such as, S1(t), V1(t), E1(t), I1(t), Q1(t), R1(t) then,

S(t) − S1(t) = 1 − p

M(p)
(G1(t, S(t)) − G1(t, S1(t)))

+ p

M(p)Γ (p)

∫ t

0
(G1(Λ, S(Λ)) − G1(Λ, S1(Λ)))dΛ, (4.27)

‖ S(t) − S1(t) = ‖ 1 − p

M(p)
(G1(t, S(t)) − G1(t, S1(t)))

+ p

M(p)Γ (p)

∫ t

0
(G1(Λ, S(Λ)) − G1(Λ, Sn−1(Λ)))dΛ,

≤ 1 − p

M(p)
σ1 ‖ S(t) − S1(t) ‖ + p

M(p)Γ (p)
σ1 ‖ S(t) − S1(t) ‖ t .

‖ S(t) − S1(t) ‖
(
1 − (1 − p)

M(p)
σ1 + p

M(p)Γ (p)
σ1t

)
≤ 0. (4.28)

��
Hence, S(t) = S1(t), if the condition 4.26 holds. Similarly, V (t) = V1(t), E(t) =

E1(t), I (t) = I1(t), Q(t) = Q1(t) and R(t) = R1(t). Hence, the solution is unique.

Numerical Simulation

Some of the parameter values were obtained from the literature, as shown in Table 2, and
the demographic parameter values were estimated. The natural death rate is estimated to
be μ = 1

60.87×365 , with Nigerians having an average life expectancy of 60.87 years [60].
Furthermore, the recruitment rate is estimated by μ × N , where the total population N is
reported as 219,463,862 [60].

The numerical dynamics of themeningitis outbreak asmodeledwith the ABC operator are
examined in this section, while the remaining parameters are taken fromTable 2. In this paper,
an explicit Euler fractional type numerical approach is used to simulate fractional ABC type
ordinary differential equations. The approach itself, as well as its complete analysis based on
convergence and error boundaries, may be found in [61–63]. Because of its simplicity and
versatility, the numerical approach devised for this purpose has garnered a lot of praise in the
current literature. The use of such readily available routines onMathWorks made simulations
far more useful for the current research study for the ABC meningitis model. It should be
noted that we utilize the MATLAB program version (R2019a).

We ran simulations for each state variable using the ABC operator model. This simulation
consists of two charts for each class, one comparing the classical and fractional order deriva-
tives Figs. 2, 3 and the other varying the fractional-order Figs. (4), (5) values to study the
dynamics of the compartments. Susceptible people appear to diminish with fractional value
variation, however, the vaccinated and exposed groups exhibit symmetrical behavior with the
bell-shaped curve representing, once again, the true behavior of the disease. Concerning the
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Table 2 Parameter and value descriptions

Parameter Description Baseline value Dimension Reference

θ Recruitment rate into susceptible class 9876 Day−1 Estimated

μ Natural death rate 4.5 ×10−5 Day−1 Estimated

ε Progression of exposed to infectious 0.0438 Day−1 [6]

δ Meningitis induced death rate 0.0005 Day−1 [6]

ω Vaccine efficacy 85% Dimensionless [6]

σ Loss of immunity 0.0032 Day−1 [6]

τ Waning rate of vaccine 0.2 Day−1 [6]

φ Recovery rate after treatment 0.0701 Day−1 Asssumed

α Vaccination rate 0.4868 Day−1 [6]

γ Natural recovery rate 0.1128 Day−1 [6]

ψ Transmission probability 0.3345 Day−1 [6]

β Treatment rate 0.011 Day−1 Assumed

ρ Infection modification parameter 0.95 Dimensionless Assumed

(A) (B)

(C)
Fig. 2 Profile of S(t), V(t), E(t) in classical and fractional sense describe in (A), (B), (C), respectively
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(A) (B)

(C)
Fig. 3 Profile of I(t), Q(t), R(t) in classical and fractional sense describe in (A), (B), (C), respectively

infectious and quarantine classes, they fall dramatically at first but thereafter follow the bell-
shaped structure. Last but not least, the recovered class’s behavior is depicted in Fig. (5(C)).
There aren’t many deaths in this class since the infectious population declines after a while,
and as a result, people begin to recover, as seen.We also test the effect of the vaccine by vary-
ing the values of the vaccine rate on the susceptible population as can be seen in Fig. (6). The
treatment rate shows sensitive behavior as the infectious class got decreased with increasing
values of the treatment rate (7). Based on this information, it is possible to conclude that the
meningitis outbreak is manageable if it can be prevented from spreading by increasing the
rate of vaccination. Vaccinating against meningitis is the most effective strategy to lessen the
disease’s incidence and effects by providing long-term protection. Treatments are also given
to people who are at a high risk of contracting meningococcal illness. Controlling meningitis
epidemics, on the other hand, necessitates both vaccine and therapy.

Conclusion

A new mathematical model for the transmission dynamics of meningitis in fractional ABC
derivatives has been investigated. The meningitis outbreak is particularly fast-acting and has
shockingly dangerous implications. It is vital to investigate the dynamics of this epidemic in
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(A) (B)

(C)
Fig. 4 Variation of fractional order p for S(t), V(t), E(t) in (A), (B), (C), respectively

greater depth. The fractional operator utilized in this study has been shown in the literature
to be effective for analyzing the transmission dynamics of various epidemic models. p is
the fractionalized order. As a result, the model formulation, existence, and uniqueness of the
solution via the fixed point theorem, bifurcation analysis, global and local stability analysis,
and, most importantly, the basic number of reproductions for the suggested fractional version
of the model have all been demonstrated. Furthermore, the model’s parameters are derived
from actual cases of the infection. Data from the 2017 Nigerian meningitis outbreak was
used to parameterize the model [6]. It is worth mentioning that the fractional type illness
model under consideration understands disease behavior better than the integer-order varia-
tion. The treatment and vaccine’s effect has been demonstrated by altering the vaccine rate
values. Furthermore, several numerical simulations were run using an efficient numerical
scheme to provide more light on the model’s behavior. Moreover, in order to predict menin-
gitis eradication, we investigated the effects of multiple control techniques in reducing the
disease’s prevalence in the population. The findings of the study are expected to provide a
necessary framework for assessing meningitis management in any part of the world. Because
the prevalence of meningitis varies by region, our analytical results can show the genuine
picture of meningitis dynamics in a given region.
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(A) (B)

(C)
Fig. 5 Variation of fractional order p for I(t), Q(t), R(t) in (A), (B), (C), respectively

(A) (B)

Fig. 6 vaccine rate α on S with increasing and decreasing values. (A) classical sense (B) fractional sense
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(A) (B)

Fig. 7 treatment rate on I and β with increasing and decreasing values. (A) classical sense (B) fractional sense

Appendix

The values of Ais : i = 1, 2...6 used in Section 3.8 are given as:

• A1 = (−a11 − a22 − a33 − a44 − a55 − a66).
• A2 = −ατ − λa13 − a23a32 − εa34 + a11(a22 + a33 + a44 + a55 + a66) + a22(a33 +

a44 + a55 + a66) + a33(a44 + a55 + a66) + a44(a55 + a66) + a55a66
• A3 = −εa24a32+ατ(a33+a44)+εa22a34+a23a32a44−a22a33(a44−a55−a66)+

(
ατ +

a23a32 +εa34 − (a22 −a33)a44
)
a55 + (ατ +a23a32 +εa34 − (a22 −a33)a44 −a55(a22 −

a33−a44)
)
a66+a11

(
a23a32 +εa34−a33a44−a33a55−a44a55− (a33−a44−a55)a66 −

a22
(
a33+a44+a55+a66

))−εa14λ∗ −τa23λ∗ +a13(−αa32+(a22+a44+a55+a66)λ∗)
• A4 = αετa34 + αa13a32(a44 + a55 + a66) − ατa33(a44 + a55 + a66) + εa24a32a55 −

εa22a34a55 − (ατ −a23a32+a22a33)a44a55+εa24a32a66−εa22a34a66−(ατ −a23a32+
a22a33

)
a44a66 + (−ατ −a23a32+a22a33−εa34+a22a44+a33a44)a55a66+a11((εa24−

a23a44 − a23a55)a32 − εa34a55 + a33a44a55 − (a23a32 − εa34 + a33a44 + a33a55 +
a44a55

)
a66+a22(−εa34+a44a55+a44a66+a55a66 + a33(a44+a55+a66)))−λ∗

(
γ εσ −

ετa24−a13a22a44+τa23a44−(a13a22+τa23a13a44)a55−a66(a13a22+τa23−a13a44−
a13a55) + εa14 (−αa32 + (a22 + a55 + a66))

)
.

• A5 = ((ατ − a11a22)a55 + (ατa11a22)a66)a33a44 + (ατa33 − a11a22a33 + ατa44 −
a11a22a44−(a11−a22)a33a44)a55a66 + εa34((−ατ +a11a22)a66+a55(−ατ +a22a66+
a11(a22+a66)))−a32(αγ εσ+αa13a44a55+αa13a44a66+(αa13+εa24−a23a44)a55a66−
αεa14(a55 +a66)+a11(εa24(a55 +a66)−a23(a55a66 +a44(a55 +a66)))) − λ∗(βεσφ +
γ εσa22 + (γ εσ − εa14a22 + ετa24 + a13a22a44 − τa23a44)a55 − (εa14a22 + ετa24 +
a13a22a44 − τa23a44)a66 − (εa14 + a13a22 − τa23 + a13a44)a55a66

)
.

• A6 = (
ε (ατ − a11a22) a34 − (ατ + a11a22)a33a44

)
a55a66 + a32(−αβεσφ

+ a55(−αεa14a66 + a11(εa24 − a23a44)a66 + α(γ εσ + a13a44a66))) + λ∗
[
βεσφa22 −

γ εσa22a55 + a55a66
(
εa14a22 − ετa24 − a13a22a44 + τa23a44

)]
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