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Abstract
Tuberculosis is an infectious disease caused by bacteria that most commonly affects
the lungs. Due to its high mortality, it remains a global health issue, and it is one of the
leading causes of death in the majority of sub-Saharan African countries. We formu-
late a six-compartmental deterministic model to investigate the impact of vaccination
on the dynamics of tuberculosis in a given population. The qualitative behaviors of the
presented model were examined, and the respective threshold quantity was obtained.
The tuberculosis-free equilibrium of the system is said to be locally asymptotically
stable when the effective reproduction number R0 < 1 and unstable otherwise. Fur-
thermore, we examined the stability of the endemic equilibrium, and the conditions
for the existence of backward bifurcation are discussed. A numerical simulation was
performed to demonstrate and support the theoretical findings. The result shows that
reducing the effective contact with an infected person and enhancing the rate of vac-
cinating susceptible individuals with high vaccine efficacy will reduce the burden of
tuberculosis in the population.
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1 Introduction

Tuberculosis (TB) is a contagious illness that primarily affects the lungs but can affect
any organ in the body [1]. The Bacteria can spread by droplets in the air, causing them
to develop. Although tuberculosis can be deadly, it is often prevented and treated.
About a quarter of the world’s population has a tuberculosis infection, which means
they’ve been infected with the germs but aren’t symptomatic yet and can’t spread it.
When an infected individual coughs or sneezes, the bacterium that causes tuberculosis
is disseminated [2, 3]. The majority of people who are infected with the bacteria that
causes tuberculosis don’t show any signs or symptoms. When symptoms do appear,
they typically include a cough (which can be bloody), weight loss, nocturnal sweats,
and a fever [4, 5]. A person can have tuberculosis bacteria in their body but not develop
symptoms.Most people’s immune systems are capable of containing bacteria, prevent-
ing them from replicating and causing disease. A person will have a TB infection but
not an active disease in this case. This is referred to as latent tuberculosis (TB). The
body’s ability to contain tuberculosis bacteriamay be compromised.When the immune
system is weak by disease or the use of certainmedications, this is more likely to occur.
When this occurs, the bacteria can multiply and create symptoms, leading to active
tuberculosis. People who have active tuberculosis can spread the infection to others.
Treatment isn’t usually necessary for people who don’t have any symptoms. Active
symptoms will require a long course of antibiotic treatment using various medica-
tions. To effectively control and prevent infectious diseases such as tuberculosis, one
must be well-versed in the disease’s spread mechanism and transmission dynamics.
This will aid our disease prediction and elimination tactics. Because diseases vary
over time, studying epidemic dynamics is an important theoretic way to obtain insight
into their transmission dynamics and control. Mathematical models are often used to
better understand how infectious diseases spread and how to prevent them [6]. Several
research have been conducted utilizing a mathematical model method in order to iden-
tify ways to control diseases in the population [7–22]. Many models on the dynamics
of tuberculosis have been developed and examined to gain a better knowledge of the
transmission dynamics and control of tuberculosis. Yang et al. [23] developed a model
to investigate the role of partial therapy in the transmission of tuberculosis disease.
Zhang et al. [24] examined a dynamical TB illness problem involving both hospitalized
and non-hospitalized infectious classes. Egonmwan and Daniel [25] also presented a
model for tuberculosis disease to estimate the impact of treatment and analysis for
infectious individuals. The stability of tuberculosis with partial treatment is investi-
gated by Ullah et al. [26]. Intan et al. [27] investigated tuberculosis transmission by
taking into account the existence of a latent group and vaccine administration to the
susceptible class. The model was constructed using the SEIR approach, and the results
indicated that increasing the vaccination ratewould reduce the rate of TB disease trans-
mission. Several researchers have proposed mathematical models for tuberculosis to
investigate the disease’s global stability and the impact of heterogeneity on TB dis-
persion [28, 29]. Other significant contributions on the dynamics of TB models can
be found in [30–36]. Few works in the literature focused on deterministic modelling
of tuberculosis disease inspired us. Each of these research is based on deterministic
models, however, none of the studies examine the role of vaccination, contact rate,
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vaccine efficiency, or coverage rate in disease control. Vaccination is themost effective
way to reduce the burden of disease in a population. It’s a long-standing prevention
strategy for a variety of diseases, including tuberculosis. This protects the population
from infection and reduces the number of potential infections in the community. As a
result, this study aims to investigate the effects of vaccination of susceptible individ-
uals, vaccine efficacy, and contact rate on the transmission dynamics of tuberculosis.
We believe that the study will provide governments and the public health sector with
information on how to prevent the disease from spreading. This paper is organized
as follows: Sect. 2 deals with the formulation of the model, the basic properties of
the model are derived in Sect. 3, Numerical results and discussion of the analytical
findings and conclusion are presented in Sects. 4 and 5 respectively.

2 Model formulation

In this section,we propose a deterministicmodel of tuberculosis (TB)which comprises
six compartments based on the epidemiological status of individuals in the population.
The compartments include the susceptible population S(t) (these are individuals who
are prone or susceptible to TB), the vaccinated population V (t), latent population
L(t) (these are individuals who are infected with TBwithout showing any symptoms),
the active TB population A(t) (these are TB infectious individuals that are showing
symptoms of the disease), the treated population T (t), and the recovered population
R(t) (these are individuals that have been treated and free of TB). Thus, the total
population represented by N (t) is the sum of all the compartment given as N (t) =
S(t) + V (t) + L(t) + A(t) + T (t) + R(t). We assume that the susceptible population
is derived by the recruitment rate through birth or immigration at a rate θ , and vaccine
wane at rate ρ. This population is depopulated by the effective contact with an infected
individual at a rate ω. We assume that only the active TB individuals can transfer the
infection, thus the force of infection is given as ωSA. The susceptible population
is further reduced through vaccination at the rate τ , and natural death μ. Thus, the
susceptible population is given as

θ + ρV − ωSA − (μ + τ)S

Following vaccination, the susceptible individuals are partially protected from being
infected with TB and thus increase the vaccinated population at the rate τ . The partial
protection from vaccination is a result of the use of an imperfect vaccine. Thus, we
assume that the vaccinated individuals can be infected after effective contact with an
active TB individual at a reduced rate of (1 − ε) so that the force of infection for the
vaccinated population is given asω(1−ε)V A. Furthermore, the population is reduced
by the vaccine waning rate and natural death at the rate ρ and μ respectively. So, the
vaccinated population is given as

θ + ρV − ωSA − (μ + τ)S.
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The latent class is populated by the infection rate from the susceptible and the vac-
cinated class. This population is reduced by the natural mortality at the rate μ, and
by the progression rate of latent to active TB stage at the rate β. Hence, the latent
population is given as

ωSA + ω(1 − ε)V A − (β + μ)L.

After the incubation period, the latent individuals will start showing symptoms of TB
and thus progress to increase the active TB population at the rate β. This population
is reduced by natural death μ, disease-induced death δ (the death due to tuberculosis),
and the treatment rate γ . Consequently, the active TB population is given as

βL − (μ + δ + γ )A.

Following the treatment of the active TB individuals, they progress to the treated class
at the rate γ . This population is decreased by the natural death μ, and the recovery
rate φ. It must be noted that in this work, we do not consider the case of treatment
failure, thus the treated population is given as

γ A − (μ + φ)T .

Lastly, the recovered class is populated by the recovery rate of treated individuals at
the rate φ, while it is depopulated by the natural death at rate μ. Thus, the recovered
population is given as

φT − μR.

Following the above descriptions, the six compartmental deterministic models used
in studying the dynamics of TB in this study are represented in the form of nonlinear
differential equations below.

dS

dt
= θ + ρV − ωSA − (μ + τ)S,

dV

dt
= τ S − ω(1 − ε)V A − (μ + ρ)V ,

dL

dt
= ωSA + ω(1 − ε)V A − (β + μ)L,

d A

dt
= βL − (μ + δ + γ )A,

dT

dt
= γ A − (μ + φ)T ,

dR

dt
= φT − μR.

(1)
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Fig. 1 Schematic illustration of the TB model (1)

Table 1 Description of the
model variables

Variable Description

S(t) Susceptible class

V (t) Vaccinated class

L(t) Latent class

A(t) Active TB class

T (t) Treated class

R(t) Recovered class

Table 2 The description of parameters and values

Parameter Description Value Source

θ Recruitment rate into susceptible class 5 [37]

ρ Vaccine wane rate 0.067, 0.1 [38–41]

ω Effective contact rate 0.6501 [4]

τ Rate of vaccinating susceptible individuals 0.1–0.98 [25, 42]

ε Vaccine efficacy 0–1 [43, 44]

γ Rate of treatment for active TB individuals 0.1 [4]

φ Recovery rate of treated individuals 0.01 [4]

μ Natural death rate 1
67.7 [4]

δ TB induced death rate 0.1 [4]

β Progression rate from latent to active TB 0.00375 [42]

With the initial conditions S(0) > 0, V (0) ≥ 0, L(0) ≥ 0, A ≥ 0, T (0) ≥ 0, and
R ≥ 0. The description of the model variables and parameters are presented in Tables
1 and 2 respectively, while the pictorial illustration is given in Fig. 1.
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3 Model analysis

In this section, we study the positivity and boundedness of the solutions, investigate
the existence and stability of the steady states (disease-free equilibrium and endemic
equilibrium). In addition, we examine the nature of bifurcation exhibited by the model
(1). Furthermore, we investigate the impact of vaccine efficacy and proportion of vac-
cinated individuals in controlling the disease burden by using the threshold quantities.
Lastly, we examine the nature of bifurcation exhibited by the TB model.

3.1 Positivity and boundedness of solutions

For the TB model (1) to be epidemiologically meaningful, it is important to show that
its state variables are non-negative for all time t > 0 and that the feasible region � is
bounded. Therefore, we state the following result.

Theorem 1 The initial data for the TB model satisfies S(0) > 0, V (0) ≥ 0, L(0) ≥
0, A(0) ≥ 0, T (0) ≥ 0, and R(0) ≥ 0, such that the solutions of themodel represented
by (S(t), V (t), L(t), A(t), T (t), R(t)) with positive initial data remain positive for
all time t > 0.

Proof Let t f = sup{t > 0 : S(t) > 0, V (t) > 0, L(t) > 0, A(t) > 0, T (t) >

0, R(t) > 0 ∈ [0, t]}, so that t f > 0. Considering the first equation of the model
presented in (1), it follows that

dS

dt
= θ + ρV − ωSA − (μ + τ)S ≥ θ − λ∗S − (μ + τ)S, (2)

where λ∗ = ωA. We employ the integrating factor method to solve the ordinary
differential equation given in (2). Thus, this is expressed as

d

dt

(
S(t) exp

[
(μ + τ)t +

∫ t

0
λ∗(ζ )dζ

])
≥ θ exp

[
(μ + τ)t +

∫ t

0
λ∗(ζ )dζ

]
.

Hence,

S(t f ) exp

[
(μ + τ)t f +

∫ t f

0
λ∗(ζ )dζ

]
− S(0)

≥
∫ t f

0
θ

(
exp

[
(μ + τ)η +

∫ η

0
λ∗(ζ )dζ

])
dη

so that,

S(t f ) ≥ S(0) exp

[
−(μ + τ)t f −

∫ t f

0
λ∗(ζ )dζ

]
+ exp

[
−(μ + τ)t f −

∫ t f

0
λ∗(ζ )dζ

]

×
∫ t f

0
θ

(
exp

[
(μ + τ)η +

∫ η

0
λ∗(ζ )dζ

])
dη > 0.
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Clearly, from the above inequality S(t f ) ≥ 0 is positive. Similarly, the remaining state
variables V (t) ≥ 0, L(t) ≥ 0, A(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0, can be shown to be
positive for all time t > 0. Thus, all the solutions of the TB model (1) remain positive
for all positive initial conditions. ��
Furthermore, for the TBmodel (1) to be mathematically and epidemiologically mean-
ingful, it is essential to consider system (1) in a biologically feasible region � ⊂ R6+
such that

� =
{
(S, V , L, A, T , R) ∈ R6+ : S + V + L + A + T + R ≤ θ

μ

}
.

Employing the standard technique method as presented in [45], the feasible region �

can be shown to be positively invariant. Thus, all the solutions (S(t), V (t), L(t), A(t),
T (t), R(t)) are in the feasible region � where the TB model is said to be mathemati-
cally and epidemiologically well-posed [45, 46]. Hence, we claim the following result
in the theorem below.

Theorem 2 The biological feasible region � ⊂ R6+ of the TB model presented in (1)
is positively invariant with positive initial conditions in R6+.

3.2 Existence and stability of the TB-free equilibrium (TBFE)

The disease-free equilibrium steady state henceforth refers to as TB-free equilibrium
steady state (TBFE) describes the state atwhich the population is free from the presence
of TB infection. To obtain the TBFE, we equate the right hand side of all the equations
in (1), and the variables L, A to zero. Thus, the TB-free equilibrium denoted by E0 is
obtained as

E0 = (S∗, V ∗, L∗, A∗, T ∗, R∗),

=
(

θ(μ + ρ)

μ(μ + ρ + τ)
,

θτ

μ(μ + ρ + τ)
, 0, 0, 0, 0

)
.

(3)

We further obtain the threshold quantity called the reproduction number to investigate
the stability of the system. This is achieved by using the next-generationmatrixmethod
as presented in [47, 48]. Consequently, the Jacobian matrix of the new infection terms
(F) and the remaining transfer terms (V ) are obtained as

F =
[
0 ω[S + (1 − ε)V ]
0 0

]
and V =

[
β + μ 0
−β μ + δ + γ

]

Hence, following [45], the reproduction number of themodel (1) defined as the highest
eigenvalue of FV−1 given by R0 = ρ(FV−1), is obtained as

R0 = βωθ [(μ + ρ) + (1 − ε)τ ]
μ(μ + ρ + τ)(β + μ)(μ + δ + γ )

. (4)
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The threshold quantityR0 given in (4) is known as the effective reproduction number,
also called the control reproduction number. It measures the average number of new
secondary infections a single infected individual can reproduce during an infection
period, in a population that is completely susceptible in the presence of controlmeasure
(in this case vaccination) [49]. Thus, the threshold quantity R0 in (4) measures the
expected number of new TB cases that one TB-infected person can produce in a
completely susceptible population in a population with a vaccination program. A
similar threshold quantity identified as the basic reproduction number can be gotten
by setting the control measure and its parameters into zero (i.e ρ = τ = ε = 0), such
that

R	 = βωθ

μ(β + μ)(μ + δ + γ )
. (5)

It must be noted that the basic reproduction numberR	 measures the average number
of secondary cases produced by a single infected individual in a population that is
completely susceptible, in a populationwithout any controlmeasure (see, for examples
[8, 50–54]). Now, following Theorem 2 of [55], we use the effective reproduction
numberR0 to establish the local stability of the TB-free equilibrium E0, and the result
is given in the Theorem below.

Theorem 3 The TB-free equilibrium E0, of the model (1) is locally asymptotically
stable in the biological feasible region � ifR0 < 1 and unstable ifR0 > 1.

Proof To prove Theorem 3 above, we obtained the Jacobian matrix of system (1) at
the TB free-equilibrium E0 as

J (E0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−k1 ρ 0 −ωS∗ 0 0
τ −k2 0 −ωk6V ∗ 0 0
0 0 −k3 ω(S∗ + k6V ∗) 0 0
0 0 β −k4 0 0
0 0 0 γ −k5 0
0 0 0 0 0 −μ

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

where k1 = μ + τ , k2 = μ + ρ, k3 = β + μ, k4 = μ + δ + γ , k5 = μ + φ, and
k6 = 1− ε, while S∗ and V ∗ are steady states given in (3). To establish the stability of
the TB-free equilibrium, it is vital to show that the eigenvalues of the Jacobian matrix
J (E0) are all negative. From (6), the first two eigenvalues are obtained as −μ, and
− k5. We further obtain the remaining four eigenvalues from the sub-matrixM given
below as

M =

⎡
⎢⎢⎣

−k1 ρ 0 −ωS∗
τ −k2 0 −ωk6V ∗
0 0 −k3 ω(S∗ + k6V ∗)
0 0 β −k4

⎤
⎥⎥⎦ (7)

Following the standards of the Routh–Hurwitz criterion, all the eigenvalues of the
sub-matrixM will be real and negative if
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(i) Tr (M) < 0,
(ii) Det (M) > 0.

Using the sub-matrix (7), we obtain the following

Tr(M) = − (k1 + k2 + k3 + k4) < 0, and

Det(M) = k3k4(k1k2 − ρτ)(1 − R0),

= μk3k4(τ + k2)(1 − R0).

Following the above results, all the eigenvalues of the sub-matrix (6) are negative real
part if R0 < 1. Thus, the TB-free equilibrium E0 is said to be locally asymptotically
stable and unstable otherwise. ��
A simple interpretation of Theorem 3 is that TB infection can be controlled in the
population if the threshold number R0 is less than unity, and the initial size of the
sub-population of the system (1) are in the basin of attraction of E0.

3.3 Analysis of vaccine impact using the threshold quantities (R0,R�)

As stated in Theorem 3, the control of TB depends on the value of the effective repro-
duction number, such that the disease can be eliminated ifR0 < 1, while TB persists
in the population otherwise. However, this is not always guaranteed particularly in a
system that exhibits the coexistence of two different equilibria. For instance, if the
TB model (1) exhibit the phenomenon of backward bifurcation, it will imply that the
epidemiological condition of having the R0 < 1 to eliminate TB although necessary
will not be sufficient for the effective control of TB in the populace. Thus, additional
measures must be embraced to mitigate the burden of the disease. The use of imperfect
vaccine as a control measure has been associated with the occurrence of backward
bifurcation in many studies (see for examples [56–58]). Thus, since we consider the
use of an imperfect vaccine in this work, it will be useful to investigate the impact of
such vaccine and the proportion of individuals that are vaccinated, on the spread of
TB in the public. To accomplish this, we will investigate the impact of the proportion
of the vaccinated population at the TB-free equilibrium in controlling TB in the pop-
ulation. To achieve this, we define the proportion of the vaccinated population to be
ψ = V ∗

N∗ , and we further express the effective reproduction number as a function of
ψ , such that

R0 = R	
(

μ + ρ + (1 − ε)τ

μ + ρ + τ

)
= R	(1 − εψ) (8)

It must be noted that R	 given in Eq. (5) is the basic reproduction number without
control measures, while R0 is the effective or control reproduction number with an
imperfect vaccine.We note that,R0 ≤ R	 is true and the equality sign is only satisfied
if ε = τ = ρ = 0 (i.eψ = 0). It can be observed that even in the presence of imperfect
vaccine, an increase in the vaccinated proportion ψ , or vaccine efficacy and coverage
(i.e ε > 0, and τ > 0), will reduce TB burden in the population. To establish the
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Fig. 2 Contour plot of effective reproduction number R0 as a function of the proportion of vaccinated

individuals at steady-state (ψ = V ∗
N∗ ) and vaccine efficacy ε. Parameter values used are as provided in

Table 2

condition for which TB will be controlled based on ψ , we obtained the minimum
proportion of population needed to be vaccinated as

ψ ≥ 1

ε

(
1 − 1

R	

)
= ψc (9)

such that ψc is the critical minimum proportion of vaccinated population needed to
eliminateTB infection in the population.Consequently, following [44, 49]we establish
the following theorem.

Theorem 4 TB infection can be eliminated in the population if ψ > ψc.

To show the impact of vaccine efficacy ε and proportion of vaccinated individuals
at steady state ψ on the effective reproduction number, we present a contour plot
of R0 as a function of ε and ψ in Fig. 2. From the figure, it can be deduced that to
effectively control the spread of TB in the population (to attainR0), a higher proportion
of vaccinated individuals must be reached with high vaccine efficacy.

3.4 Existence of endemic equilibria and backward bifurcation

We present the TB endemic equilibrium steady-state and the possibilities of back-
ward bifurcation in this section. The TB endemic equilibria represented by E1 =
(S∗∗, V ∗∗, L∗∗, A∗∗, T ∗∗, R∗∗) describes the steady-state solution in the presence of
tuberculosis in the population. This equilibrium point is obtained by setting the right-
hand sides of the system (1) to zero and solving simultaneously. Consequently, the
result yields
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S∗∗ = θ(ωk6A∗∗ + k2)

(ωA∗∗ + k1)(ωk6A∗∗ + k2) − ρτ

V ∗∗ = τθ

(ωA∗∗ + k1)(ωk6A∗∗ + k2) − ρτ

L∗∗ = ωA∗∗ [
θ(ωk6A∗∗ + k2) + k6τθ

]
k3 [(ωA∗∗ + k1)(ωk6A∗∗ + k2) − ρτ ]

T ∗∗ = γ A∗∗

k5

R∗∗ = φγ A∗∗

μk5

(10)

Since we obtained the steady states as a function of the infected variable A∗∗, we
substitute the expression of L∗∗ presented in (10) into the third equation of system (1)
to obtain the polynomial of order two given as

a1(A
∗∗)2 + a2A

∗∗ + a3 = 0 (11)

where the polynomial coefficients ai for i = 1 . . . , 3 are given as

a1 = k3k4k6ω
2, a2 = ωk3k4(k2 + k1k6) − βω2θ, a3 = μk3k4(τ + k2)(1 − R0)

From the polynomial given in (11), the coefficient a1 is positive, while the constant
term a3 is positive or negative contingent on the value of R0. This means that, if
R0 < 1, then a3 is positive, while a3 is negative if R0 > 1. Thus, we claim the
following result.

Theorem 5 The TB model given by Eq. (1) has

(i) exactly one unique endemic equilibrium if a3 < 0 or R0 > 1,
(ii) exactly one unique endemic equilibrium if a2 < 0, and either a3 = 0 or a22 −

4a1a3 = 0,
(iii) exactly two endemic equilibria if a3 > 0, a2 < 0 and a22 − 4a1a3 > 0,
(iv) no endemic equilibrium otherwise.

Clearly, from case (i) of Theorem 5 above, the system (1) has a unique equilibrium
point represented by E1 wheneverR0 > 1. Additionally, case (iii) of Theorem 5 shows
the possibility of backward bifurcation in the TB model (1) when R0 < 1. Thus, in
order to check for the possibility of backward bifurcation when R0 < 1, we set the
discriminant a22 − 4a1a3 = 0 and solve for the critical value of R0 which we denote
byRc

0. This result to

Rc
0 = 1 − a22

4a1μk3k4 (τ + k2)
(12)

for which we claim the following Theorem.
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Fig. 3 Bifurcation diagram for active TB population in terms of effective contact rate ω ∈ [0, 3]. Parameter
values used are as provided in Table 2

Theorem 6 The TB model (1) will exhibit a backward bifurcation when case (iii) of
Theorem 5 holds and the inequality Rc

0 < R0 < 1 is satisfied.

The phenomenon of backward bifurcation of a system occurs when a stable disease-
free equilibrium coexists with a stable endemic equilibrium under some given values
for which the reproduction number is less than unity. The result of Theorem 6 implies
that, while the epidemiological condition of having a reproduction number less than
unity is necessary for TB elimination in the population, it is no longer sufficient. As a
result, additional control measures will be necessary to control the TB epidemic. That
is, the condition R0 < Rc

0 < 1 must be satisfied. It is imperative to mention that the
existence of backward bifurcation can be dependent on the values of the parameter
used on the system. Thus, we simulate the behavior of the active TB population with
respect to effective contact rate ω and vaccine efficacy ε in Figs. 3 and 4 respectively.
Figure 4 shows a bifurcation diagram of the active TB infected population in terms
of the effective contact rate ω, where the value of ω ranges in [0, 3]. Using equation
(4), we note that the effective reproduction numberR0 = 1 when ω = 0.3249. In line
with Fig. 3, for ω ∈ [0, 0.3249), the TB-free equilibrium E0 is stable. This supports
the result presented in Theorem 3. Furthermore, it can be observed that at ω = 0.3249
the system exhibits a fold bifurcation such that for ω > 0.3249, the stable TB-free
equilibrium is exchanged for the endemic equilibrium E1 (i.e. endemic equilibrium is
stable). A similar result is observed in Fig. 4. The TB endemic equilibrium is stable
for all values of ε ∈ [0, 0.9626) and thus exchanged with the TB-free equilibrium at
ε > 0.9626.

4 Numerical simulations

In this section, some numerical simulations are performed to confirm the previous
analytical results. The influence of three important parameters is chosen based on the
effect of vaccination on the density of Active of TB population A(t). These parameters
are the rate of vaccinating susceptible individuals (τ ), the vaccine efficacy (ε), and the
effective contact rate (ω). To support our simulations, the following parameter values
are given.
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Fig. 4 Bifurcation diagram for active TB population in terms of vaccine efficacy ε ∈ [0, 1]. Parameter
values used are as provided in Table 2

(a)(τ, A)− ((b)enalp R0, A)−plane

Fig. 5 Bifurcation diagram driven by τ in interval [0.1, 0.35] using parameter values as in Eq. 13

θ = 0.05, ρ = 0.067, ω = 0.6501, τ = 0.1, ε = 0.7, γ = 0.1, φ = 0.01,

μ = 1

67.7
, δ = 0.1, β = 0.00375. (13)

Now, the dynamical behaviors of model 1 are investigated by varying each parameter
value. In other words, we simulate the effects of different parameter values (i.e. higher
and lower values) to illustrate the system’s dynamics at higher and lower parameter
values.

4.1 The influence of the rate of vaccinating susceptible individuals (�)

The influence of the rate of vaccinating susceptible individuals on the density of active
TB population is numerically shown by portraying the bifurcation diagram driven by
τ in the interval 0.1 ≤ τ ≤ 0.35. The numerical results is given in Fig. 5a. For
0.1 ≤ τ < τ̂ , τ̂ ≈ 0.2327, both TBFE and TBEE exist where TBFE is unstable while
TBEE is asymptotically stable. When τ passes through τ̂ , the stable TBEE disappears
and TBFE becomes asymptotically stable simultaneously via forward bifurcation.
Thus, τ̂ is confirmed as the bifurcation point. This condition holds for τ̂ < τ ≤ 0.35.
Based on the change τ , the corresponding bifurcation diagram driven by the effective
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Fig. 6 Time series of TB-model (1) using parameter values as in Eq. 13 and τ = 0.15, 0.2, 0.25, 0.3

(a) (ε, A)− ((b)enalp R0, A)−plane

Fig. 7 Bifurcation diagram driven by ε in interval [0.85, 1] using parameter values as in Eq. 13

Fig. 8 Time series of TB-model (1) using parameter values as in Eq. 13 and ε = 0.88, 0.91, 0.97, 1
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(a)(ω, A)− ((b)enalp R0, A)−plane

Fig. 9 Bifurcation diagram driven by ω in interval [0.4, 0.7] using parameter values as in Eq. 13

Fig. 10 Time series of TB-model (1) using parameter values as in Eq. 13 and ω = 0.4, 0.45, 0.55, 0.6

reproduction number (R0) is also plotted in Fig. 5b. We confirm that when τ = τ̂ ,
the effective reproduction number is R0 = 1. When R0 < 1, the density of the active
TB population decreases and tends to the extinction condition. The TB population
increases are directly proportional to the increases of R0. For example, the time series
of TB model (1) for some values of τ is given in Fig. 6. From those simulations, we
conclude that the rate of vaccinating susceptible individuals is inversely proportional
to the density of the active TB population and the effective reproduction number. The
number of active TB populations can be reduced by enhancing the rate of vaccination
in susceptible individuals.

4.2 Influence of the vaccine efficacy (")

In this subsection, the parameter values is setted as in Eq. 13 and the vaccine efficacy
is varied in interval 0.85 ≤ ε ≤ 1. Therefore, we obtain Fig. 7a which states the
bifurcation diagram driven by ε. As in Sect. 4.1, the forward bifurcation also occurs
around the axial. In this respect, ε becomes the bifurcation parameter and ε̂ ≈ 0.9415
is the bifurcation point. The bifurcation diagram is also shown in (R0, A)-plane where
the bifurcation point R0 = 1 corresponds to ε̂, see Fig. 7b. When ε < ε̂ (or R0 < 1),
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TBEE is asymptotically stable while TBFE is a saddle point. TBEE decreases when ε

increases and finally vanishes when ε crosses ε̂ (R0 = 1). To support the circumstance
given by Fig. 7, the time series for ε = 0.88, 0.91, 0.97, 0.93 are portrayed. When
ε = 0.88, 0.91, solutions converge to TBEE which indicate TB will eventually exists
for all the time. If the vaccine efficacy ε = 0.97, 1, TB will becomes disappears from
the population when time is moving forward. Similar with the influence of the rate of
vaccinating susceptible individuals, the vaccine efficacy also inversely proportional to
the density of active TB population and effective reproduction number.

4.3 Influence of the effective contact rate (!)

To study the influence of the effective contact rate on the existence of active TB
population, we still use the parameter values as in Eq. 13 and drive the value of
ω as the effective contact rate parameter. The forward bifurcation also occurs for
this condition which is exhibited by the bifurcation diagram given by Fig. 9a. The
dynamical behavior of model (1) changes when ω crosses ω̂ ≈ 0.5096 via forward
bifurcation. When ω < ω̂, TBFE is the only equilibrium point of the model (1) which
is asymptotically stable while T BEE does not exist. When ω > ω̂, TBFE losses its
stability and is accompanied by the appearance of an asymptotically stable TBEE.
The suitable bifurcation diagram respect to R0 is given in Fig. 9b where R0 = 1
is attained for ω = ω̂. The appropriate time series is given in Fig. 10 by setting
ω = 0.4, 0.45, 0.55, 0.6.Whenω = 0.4, 0.45, all solutions converge to TBFEEwhile
when ω = 0.55, 0.6, all solutions converge to TBFE. From biological meanings, by
pressing the effective contact rate, the effective reproduction number and the number
of active TB will decrease.

5 Conclusions

To gainmore insight into the dynamics of tuberculosis in the population, we developed
a deterministic mathematical model to study the effect of vaccination on its spread and
control. The developed model accounts for vaccinated individuals becoming infected
as a result of using an imperfect vaccine. The model’s qualitative properties were
discussed, including the solution’s positivity and boundedness, the biologically fea-
sible region, the existence of equilibrium points, estimation of the threshold quantity,
and the establishment of conditions for backward bifurcation possibilities. The next-
generation matrix method was used to obtain the effective reproduction number R0,
which measures the average number of new secondary infections a single infected
individual can reproduce during an infection period, in a population that is completely
susceptible in the presence of control measure (in this case vaccination). This thresh-
old quantityR0 is used in determining the criteria for the stability of the disease-free
equilibrium, such that when R0 < 1, the tuberculosis-free equilibrium is said to be
locally asymptotically stable and otherwise stable. The unstable stability of the TB-
free equilibrium (i.e.R0 > 1) indicates the existence of the TB-endemic equilibrium.
The existence of the endemic equilibrium of model (1) is examined and the condi-
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tions for the existence of backward bifurcation were presented. To demonstrate and
support the analytical result of the study, some numerical simulations were performed
to illustrate the influence of the vaccination rate τ , vaccine efficacy ε, and effective
contact rate ω on the density of the active tuberculosis population A(t) over time. The
findings show that increasing the vaccination rate of susceptible individuals reduces
the disease’s reproduction number, thus lowering the disease’s burden. However, to
effectively reduce the disease’s burden, vaccine efficacymust remain above ninety-five
percent. Overall, the findings indicate that reducing effective contact with an infected
person and increasing the rate of vaccinating susceptible individuals with high vaccine
efficacy will reduce the population’s tuberculosis burden. The effect of vaccination as
a disease prevention strategy was investigated in this study; however, tuberculosis can
be treated after an effective infection. As a result, a future study on the impact of treat-
ment adherence on reducing disease burden in the population will be recommended.
Researchers should look into the long-term implications of the rise in drug-resistant
strains, as some tuberculosis germs have been found to develop the ability to survive
medications due to a variety of factors.
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