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ABSTRACT
Measles is a highly contagious and life-threateningdisease causedby
a virus calledmorbillivirus, despite the availability of a safe and cost-
effective vaccine, it remains a leading cause of death, especially in
children. Measles spreads easily from person to person via infected
people’s coughs and sneezes. It can also be transmitted through
direct contact with the mouth or contaminated surfaces. To have a
better knowledge of measles epidemiology in Nigeria, we develop a
deterministicmathematical model to study the transmission dynam-
ics of the disease in the population. The boundary of the model
solution is performed, both equilibrium points are calculated, and
the basic reproduction number R0 is determined. We have proved
that whenR0 < 1, the disease-free equilibrium point is both locally
and globally stable. When R0 > 1, the endemic equilibrium point
exists and is stable if it satisfies Routh–Hurwitz criteria. We demon-
strate themodel’s effectiveness by using a real-life application of the
disease spread in Nigeria. We fit the proposed model using available
data fromNigeria Center for Disease Control (NCDC) from January to
December 2020 to obtain the best fit, this help us to determine the
accuracy of the proposed model’s representation to the real-world
data. We investigate the impact of vaccination rate and hospital-
ization of infected individuals on the dynamics of measles in the
population. The result shows that the combined control strategies
reduce the peak of infection faster than the single control strategy.
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1. Introduction

Measles remains a vital universal public health issue, particularly in developing nations.
Measles (also known as rubeola or morbilli) represents one of the very highly transmissi-
ble diseases triggered by the genusMorbilliviruswithin the family Paramyxoviridae [18,19].
Although effective vaccines against measles infection are readily available, yet measles
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affects the mortality of children below five years of age [33], infecting ailing children in
tens of millions yearly and resulting in deaths of about a million in number due primarily
to intricate conditions that are coexistentwith the disease examples ofwhich are poor nour-
ishment, diarrhea plus pneumonia [37]. Measles is transmitted by coughing and sneezing,
contact with nasal or aerosol secretions, or near personal contact. It continues to remain
highly infectious in the air or on the surface for up to two hours. Early symptoms include
high-grade sore throat, cough, runny nose, blurry vision, and tinywhite spots in themouth;
generally, 10–12 days after the infection appears. A later rash emerges, spreading down-
wards from the nose. The cycle of greatest infectiousness (meaning virus shedding) appears
four days before the onset of rash and 4 days after the onset of rash. The average incuba-
tion period is 14 days, varying from 7 to 18 days [30]. In the real sense, some individuals
who are vaccinated could still be vulnerable when the vaccination failed or their immu-
nity caused by the vaccine waned. Although vaccination has reduced significantly global
measles deaths by a 73%decrease between 2000 and 2018.Worldwide,measles is still preva-
lent inmany developing countries, especially parts of Africa andAsia. Over 140,000 people
died of measles in 2018. Between 2000 and 2018, global measles vaccination resulted in an
85 percent reduction in measles mortality, [15,24]. According to the World Health Orga-
nization (WHO), about 110,000 people died from measles especially children below the
age of 6, despite the availability of a safe and efficient vaccine in 2017 [9]. Vaccination is
one of the most effective public health interventions for lowering mortality rates and dis-
ease outbreaks; in Nigeria, it has been shown to save over three million lives each year.
Vaccines work with the body’s immune system to develop natural immunity against dis-
ease, lowering the chance of infection [36]. Measles is a vaccine-preventable disease that
can be prevented with the MMR vaccine. The MMR vaccine protects children and adults
against measles and is extremely safe. Two doses of the MMR vaccine are around 95%
effective in preventing measles, while a single dose is approximately 92% effective. Mumps
and rubella are also protected by MMR immunization. The MMR vaccine is also effective
against is mumps and rubella [11] In Nigeria, measles is an endemic illness with repeated
outbreaks at frequent intervals. Measles is spread throughout Nigeria at all times of the
year, however, it is most prevalent during the dry season. According to a study conducted
in Nigeria, measles accounted for up to 3% of hospital admissions, the majority of which
resulted in measles complications. Nigeria is one of the few countries worldwide with a
measles vaccine coverage of less than 40%. This is due to the country’s low vaccine cov-
erage [20]. There is no clear treatment for infection with measles. Although measles cases
have a higher mortality rate that necessitates hospitalization, little is known about measles
hospitalization and complications in the past few years. Measles can be dangerous in peo-
ple of all ages, although children under the age of five and individuals over the age of 20
are more prone to develop complications. Ear infections and diarrhea are two common
side effects. Pneumonia and encephalitis are serious complications. Measles can lead to a
serious sickness that necessitates hospitalization. Even though there is no medication or
cure for measles, the majority of people who contract the disease survive it. However, the
majority of measles patients will feel severely ill for about a week, and up to 30% of those
who have the disease will develop complications that may require hospitalization [12].

Measles cases have a high morbidity rate, necessitating hospitalization. Hence, further
studies are needed to improve our understanding of the transmission dynamics, preven-
tion, and management of measles. In the United States, one out of every five unvaccinated
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peoplewho contractmeasles is admitted to the hospital. One to three children in every 1000
who contract measles will die as a result of respiratory and neurologic disorders [10,14].
For several countries worldwide, measles remains prone to both economic and health
issues despite the availability of themeasles vaccine. Thus, a deeper and better understand-
ing of measles transmission remains essential. The disease models help to understand the
dynamics of the disease spread and prevention strategies.

Ashir et al. [3] conducted a systematic review of 124 children hospitalized with measles
in Maiduguri Teaching Hospital, Nigeria, to determine the incidence of measles utilizing
the length of hospital stay as a result of complications in hospitalized childrenwithmeasles.
The study found that treating measles and its sequelae might be a huge strain on medical
resources in this part of Nigeria, especially unvaccinated young children and those from
poor backgrounds. Other studies on measles hospitalization in Nigeria can be found in
[8,16].

There has been an increasing interest in the use of deterministic compartmental mod-
els in recent decades to study the dynamics of measles and find measures to control and
prevent the outbreak [6]. Bauch examined the implication of vaccination with regards to
the effect of reaching herd immunity [23]. Mossong and Muller carried out a study on
the modelling of measles re-emergence attributable to weakened immunity of vaccinated
populations [38]. Zhang et al. examined the degree of the epidemic against the policy of
discretional vaccination on Erdos-Renyi random graphs and Barabasi-Albert scale-free
networks [22]. Momoh et al. designed a mathematical model to limit the spread of measles
[17]. Fred et al. carried out a study on mathematical modelling on how vaccination curbs
measles. In [1], the authors found that a wider gap between measles-infected and non-
infected individuals is effective to control the spread of the disease. The impacts of the role
of vaccination in controlling the spread of measles dynamics were investigated in [31,35]
. Other notable contributions are in [2,4,5,7,21,26,27,29,34]. Many mathematical mod-
els have been introduced in recent years by many researchers to study the transmission
dynamics ofmeasles by considering different scenarios in themeaslesmodels, we observed
that none investigated the effects of hospitalization of the infected individuals. The goal of
this study is to investigate the impact of vaccination rate and hospitalization of infected
individuals on the dynamics of measles in the population. The remaining part of the paper
is organized as follows: Section 2 deals with themodel’s descriptions based on the epidemi-
ology of individuals, in Section 3, we carried out the analysis of the measles model which
includes, boundedness of the solutions, the equilibrium states, the basic reproductionnum-
ber, and stability analysis. Section 4 deals with data fitting and numerical simulation, results
of the findings and discussion are presented in Section 5, Section 6 is the conclusion.

2. Formulation of themodel

In this section, we formulate a deterministic mathematical model on the transmission
dynamics of measles. Based on the epidemiological status of individuals, the model sub-
divides the human population into six classes which are susceptible class S(t), vaccinated
class V(t), exposed class E(t), infected class I(t), hospitalized class H(t) and recovered
class R(t). Daily recruitment into the susceptible class is at a rate φ. Individuals in the sus-
ceptible class receive a vaccination at a rate τ and loss immunity at a vaccine wane rate
ω. The transmission rate of susceptible individuals is α and the force of infection term is
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Figure 1. Flow chart of the measles model.

given as αSI, the progression from the exposed class to infected class is at a rate β . Infected
individuals visit the hospital due to complications from measles at a rate ρ and recovered
from complications from measles infection upon treatment at a rate γ . Natural mortality
occurs in all the classes at a rate μ and the mortality caused by measles is denoted by δ.
We have not considered the natural recovery rate from measles in this study. The model’s
flowchart and description of parameters are illustrated in Figure 1 and Table 1, respec-
tively. The description above can be written in the form of a system of ordinary differential
equations as

dS
dt

= φ − αSI + ωV − (τ + μ)S,

dV
dt

= τS − (μ + ω)V ,

dE
dt

= αSI − (μ + β)E,

dI
dt

= βE − (μ + δ + ρ)I,

dH
dt

= ρI − (γ + δ + μ)H,

dR
dt

= γH − μR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

3. Analysis of themodel

3.1. Boundedness of the solution

Let the total population be N = S(t) + V(t) + E(t) + I(t) + H(t) + R(t) then

dN
dt

= dS
dt

+ dV
dt

+ dE
dt

+ dI
dt

+ dH
dt

+ dR
dt

= φ − μ(S + V + E + I + H + R) − δI − δH. (2)
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Table 1. Description of the model variables and parameters.

Variable Description

S(t) Susceptible class
V(t) Vaccinated class
E(t) Exposed class
I(t) Infected class
H(t) Hospitalized class
R(t) Recovered class

Parameter Description
φ Recruitment rate into susceptible class
μ Natural death rate
δ Measles death rate
τ Rate of vaccinating susceptible class
ω Vaccine wane rate
α Transmission rate of susceptible individuals
β Rate of progression from the exposed to infected class
ρ Rate at which infected individuals visit hospital due to complications frommeasles
γ Recovery rate

From (2), we have

dN
dt

≤ φ − μN (3)

Integrating both sides of (3) yields

∫ t

0

dN
φ − μN

≤
∫ t

0
dt

− 1
μ
ln(φ − μN) |t0≤ t.

(4)

Further simplification of (4) result in

Nt ≤ φ

μ
−

[
φ − μN0

μ

]
e−μt , (5)

by taking t −→ ∞, then we obtain that Nt ≤ φ
μ
. This implies that the model in (1) can be

studied in the feasible region


 =
{
(S,V ,E, I,H,R) ∈ R6 : N ≤ φ

μ

}
. (6)

3.2. Disease-free equilibrium (DFE)

This happens when no infection occurs. Thus, we set E, I andH to zero in Equation (1), in
the absence of infection and the resulting solution gives the disease-free equilibrium states
that are given as

E0 = (S0,V0,E0, I0,H0,R0) =
(

(μ + ω)φ

(μ + ω + τ)μ
,

φτ

(μ + ω + τ)μ
, 0, 0, 0, 0

)
. (7)
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3.3. Endemic equilibrium

This happens in the presence of infection that is,
EE = (S∗,V∗,C∗, I∗,H∗,R∗) population
appears to have the infection.We set the left hand side of Equation (1) to zero for obtaining
it. Therefore,

S∗ = k3k4
αβ

, (8)

V∗ = τk3k4
αβk2

, (9)

E∗ = αβk2φ − k1k2k3k4 + k3k4ωτ

αβk2k3
, (10)

I∗ = αβk2φ − k1k2k3k4 + k3k4ωτ

αk2k3k4
, (11)

H∗ = ρ(αβk2φ + k3k4ωτ − k1k2k3k4)
αk2k3k4k5

, (12)

R∗ = γ (αβk2φ − k1k2k3k4 + k3k4ωτ)

αμk2k3k4
, (13)

where k1 = τ + μ, k2 = μ + ω, k3 = μ + β , k4 = μ + δ + ρ, and k5 = γ + δ + μ.

3.4. The basic reproduction number

The basic reproductive number of a single infected person is a threshold that indicates the
total number of potential diseases that have been developed into a completely susceptible
population during its transmission period. F and V are the matrices created for new infec-
tion and transition terms respectively. Following the same method as in [31], the basic
reproduction number is calculated as follows.

The new infection components are E(t), I(t) and H(t)

dE
dt

= αSI − (μ + β)E,

dI
dt

= βE − (ρ + μ + δ)I,

dH
dt

= ρI − (γ + δ + μ)H,

f =
⎛
⎝αSI

0
0

⎞
⎠ , v =

⎛
⎝ (β + μ)E

(ρ + μ + δ)I − βE
(γ + δ + μ)H − ρI

⎞
⎠ .

(14)

F and V are the Jacobian matrices which shall be computed at the DFE such that

F =
⎛
⎝0 αS 0
0 0 0
0 0 0

⎞
⎠ , V =

⎛
⎝μ + β 0 0

−β μ + δ + ρ 0
0 −ρ γ + δ + μ

⎞
⎠
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F(E0) =
⎛
⎝0 αS0 0
0 0 0
0 0 0

⎞
⎠ ,

V−1 =

⎡
⎢⎢⎢⎢⎣

(μ + β)−1 0
β

(μ + β) (μ + δ + ρ)
(μ + δ + ρ)−1

β ρ

(μ + β) (μ + δ + ρ) (γ + δ + μ)

ρ

(μ + δ + ρ) (γ + δ + μ)

0
0

(γ + δ + μ)−1

⎤
⎦

F(E0)V−1 =

⎛
⎜⎜⎝

βαS0
(μ + β)(μ + δ + ρ)

αS0
μ + δ + ρ

0

0 0 0
0 0 0

⎞
⎟⎟⎠ .

The basic reproduction number R0 is obtained by the spectral radius of the matrix
F(E0)V−1, given as

R0 = βαS0
(μ + β)(μ + δ + ρ)

, (15)

where

S0 = φ(μ + ω)

(μ + ω + τ)μ
.

3.5. Stability analysis of themodel

Theorem 3.1: The disease-free equilibrium point (E0) is locally asymptotically stable if
R0 < 1 otherwise it is unstable.

Proof:

J(S,V ,E, I,H,R)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−αI − τ − μ ω 0 −αS 0 0
τ −μ − ω 0 0 0 0
αI 0 −μ − β αS 0 0
0 0 β −μ − δ − ρ 0 0
0 0 0 ρ −γ − δ − μ 0
0 0 0 0 γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Then, we find the eigenvalues of the above Jacobian matrix at E0

det(J(E0) − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−τ − μ − λ ω 0 −αS0
τ −μ − ω − λ 0 0
0 0 −μ − β − λ αS0
0 0 β −μ − δ − ρ − λ

0 0 0 ρ

0 0 0 0

0 0
0 0
0 0
0 0

−γ − δ − μ − λ 0
γ −μ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

We have that λ1 = −μ < 0, λ2 = −γ − δ − μ < 0 and

(−β)

∣∣∣∣∣∣
−τ − μ − λ ω −αS0

τ −μ − ω − λ 0
0 0 αS0

∣∣∣∣∣∣ + (−μ − δ − ρ − λ)

×
∣∣∣∣∣∣
−τ − μ − λ ω 0

τ −μ − ω − λ 0
0 0 −μ − β − λ

∣∣∣∣∣∣ = 0,

(−βαS0)[(−τ − μ − λ)(−μ − ω − λ) − τω] + (−μ − δ − ρ − λ)(−μ − β − λ)

× [(−τ − μ − λ)(−μ − ω − λ) − τω] = 0.

Then,

[(μ + δ + ρ + λ)(μ + β + λ) − βαS0][(τ + μ + λ)(μ + ω + λ) − τω] = 0.

First consider the latter term, we have λ2 + (2μ + τ + ω)λ + μ(τ + μ + ω) = 0.
By the Routh–Hurwitz criteria, we then have a1 = 2μ + τ + ω > 0 and a2 = μ(τ +

μ + ω) > 0, which meet the criteria as required.
Next, consider the first term, we have λ2 + (2μ + δ + ρ + β)λ + (μ + δ + ρ)(μ +

β) − βαS0 = 0, similarly, we have a1 = 2μ + δ + ρ + β > 0 and

a2 = (μ + δ + ρ)(μ + β)

[
1 − βαS0

(μ + δ + ρ)(μ + β)

]

= (μ + δ + ρ)(μ + β)[1 − R0].

Thus, a2 > 0 when R0 < 1. Therefore, E0 is locally asymptotically stable when R0 < 1
and unstable whenR0 > 1. �

Theorem 3.2: The disease-free equilibrium point (E0) is globally asymptotically stable when
R0 < 1.
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Proof: We begin the proof by using the boundary condition from (6), we have,

S + V0 ≤ φ

μ
,

S ≤ φ

μ
− φτ

μ(μ + ω + τ)

= φ(μ + ω + τ) − φτ

μ(μ + ω + τ)

= φ(μ + ω)

μ(μ + ω + τ)
= S0.

Thus, S(t) ≤ S0.
Next we define the Lyapunov function as follows:

L = βE + (μ + β)I,

dL
dt

= β(αSI − (μ + β)E) + (μ + β)(βE − (μ + δ + ρ)I)

= βαSI − (μ + β)(μ + δ + ρ)I

= (μ + β)(μ + δ + ρ)

[
βαS

(μ + β)(μ + δ + ρ)
− 1

]
I

≤ (μ + β)(μ + δ + ρ)

[
βαS0

(μ + β)(μ + δ + ρ)
− 1

]
I

= (μ + β)(μ + δ + ρ)[R0 − 1]I.

Then, dLdt = 0 when I = 0 and dL
dt < 0 whenR0 < 1. Therefore, E0 is globally asymptoti-

cally stable whenR0 < 1. �

Theorem 3.3: WhenR0 > 1, the endemic equilibrium point (
EE) is locally stable.

Proof: First, consider det(J(
EE) − λI) = 0

det(J(
EE) − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−αI∗ − τ − μ − λ ω 0
τ −μ − ω − λ 0

αI∗ 0 −μ − β − λ

0 0 β

0 0 0
0 0 0

−αS∗ 0 0
0 0 0

αS∗ 0 0
−μ − δ − ρ − λ 0 0

ρ −γ − δ − μ − λ 0
0 γ −μ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Then, we have

(−μ − λ)(−γ − δ − μ − λ)

×

∣∣∣∣∣∣∣∣

−αI∗ − τ − μ − λ ω 0 −αS∗
τ −μ − ω − λ 0 0

αI∗ 0 −μ − β − λ αS∗
0 0 β −μ − δ − ρ − λ

∣∣∣∣∣∣∣∣
= 0.

Here, λ1 = −μ < 0 and λ2 = −γ − δ − μ < 0.
The rest of the term is

(−β)

∣∣∣∣∣∣
−αI∗ − τ − μ − λ ω −αS∗

τ −μ − ω − λ 0
αI∗ 0 αS∗

∣∣∣∣∣∣ + (−μ − δ − ρ − λ)

×
∣∣∣∣∣∣
−αI∗ − τ − μ − λ ω 0

τ −μ − ω − λ 0
αI∗ 0 αS∗

∣∣∣∣∣∣ = 0,

(−β)

[
(αI∗)(−αS∗)(μ + ω + λ) + (αS∗)

∣∣∣∣−αI∗ − τ − μ − λ ω

τ −μ − ω − λ

∣∣∣∣
]

− (μ + δ + ρ + λ)αS∗
∣∣∣∣−αI∗ − τ − μ − λ ω

τ −μ − ω − λ

∣∣∣∣ = 0,

βα2S∗I∗(μ + ω + λ) − βαS∗
∣∣∣∣−αI∗ − τ − μ − λ ω

τ −μ − ω − λ

∣∣∣∣
− (μ + δ + ρ)(αS∗)

∣∣∣∣−αI∗ − τ − μ − λ ω

τ −μ − ω − λ

∣∣∣∣ = 0,

βα2S∗I∗(μ + ω + λ) − αS∗(μ + δ + ρ + λ + β)

× [(αI∗ + τ + μ + λ)(μ + ω + λ) − τω] = 0,

βα2S∗I∗(μ + ω) + βα2S∗I∗λ − αS∗(μ + δ + ρ + λ + β)

× [λ2 + (αI∗ + τ + ω + 2μ)λ + (αI∗ + τ + μ)(μ + ω) − τω] = 0,

βα2S∗I∗(μ + ω) + βα2S∗I∗λ − αS∗(μ + δ + ρ + β)λ2

− αS∗(μ + δ + ρ + β)(αI∗ + τ + ω + 2μ)λ

− αS∗(μ + δ + ρ + β)[(αI∗ + τ + μ)(μ + ω) − τω]

− αS∗λ3 − αS∗(αI∗ + τ + ω + 2μ)λ2

− αS∗[(αI∗ + τ + μ)(μ + ω) − τω]λ = 0.

Then, we have that

λ3 + (αI∗ + τ + ω + δ + ρ + β + 3μ)λ2 + ((μ + δ + ρ + β)(αI∗ + τ + ω + 2μ)

+ ((αI∗ + τ + μ)(μ + ω) − τω) − βαI∗)λ

+ ((μ + δ + ρ + β)[(αI∗ + τ + μ)(μ + ω) − τω] − βαI∗(μ + ω)) = 0.
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This can be written in the form λ3 + a1λ2 + a2λ + a3 = 0 where

a1 = αI∗ + τ + ω + δ + ρ + β + 3μ > 0,

a2 = ((μ + δ + ρ + β)(αI∗ + τ + ω + 2μ)

+ ((αI∗ + τ + μ)(μ + ω) − τω) − βαI∗)

= (μ + δ + ρ)(αI∗ + τ + ω + 2μ) + β(τ + ω + 2μ)

+ (αI∗ + μ)(μ + ω) + τμ > 0,

a3 = ((μ + δ + ρ + β)[(αI∗ + τ + μ)(μ + ω) − τω] − βαI∗(μ + ω))

= (μ + δ + ρ)[(αI∗ + μ)(μ + ω) + τμ] + βμ(μ + ω + τ) > 0,

a1a2 − a3 = (αI∗ + τ + ω + δ + ρ + β + 3μ)(μ + δ + ρ)(αI∗ + τ + ω + 2μ)

+ (αI∗ + τ + ω + δ + ρ + β + 2μ)β(τ + ω + 2μ)

+ βμ2 + (αI∗ + τ + ω + β + 2μ)[(αI∗ + μ)(μ + ω) + τμ] > 0.

This leads to a1 > 0, a2 > 0, a3 > 0 and a1, a2 > a3 which meets the Routh–Hurwitz
criteria. Hence, the equilibrium point (
EE) is stable. This completes the proof. �

3.6. Sensitivity analysis

We further explore the effects of each parameter on measles transmission dynamics in
Nigeria. To accomplish this, we used the data in Table 3 to conduct a sensitivity analysis to
examine the impact of each threshold quantity parameter. This will allow us to identify the
parameters that have the most impact on the model’s numerical simulation results. Sensi-
tivity analysis reveals the importance of each parameter in disease transmission, allowing
public health experts to prioritize a well-planned intervention approach for preventing and
controlling disease spread in the population. The normalized forward sensitivity index,
often known as elasticity, was employed, following the approach of [28,32]. The normalized
forward sensitivity index of the basic reproduction number R0 with respect to parameter
q is expressed as

KR◦
q = ∂R◦

∂q
× q

R◦
. (16)

The numerical values for the elasticity index are calculated using the elasticity formula [32]
and the baseline parameters listed in Table 3. Table 2 shows the results of estimating the
elasticity index with respect to each parameter. The results of the sensitivity analysis shows
that recruitment rate φ and the progression rate from exposed to infected class β have the
highest positive index, hospitalization of the infected individuals is critical in reducing the
spread of the disease since the increase in the value of hospitalization rate ρ should reduce
the progression from exposure to infectious β . Also, the natural death rateμ and the rate at
which infected individuals visit the hospital ρ have the highest negative index. The negative
figure indicates that increasing natural death rate or the rate at which infected individuals
visit the hospital by H% will reduce the reproduction number by H% and vice versa.
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Table 2. Sensitivity indexes of
R0 to model parameters.

Parameter Sensitivity Index

φ 1
μ −1.0050
δ −0.47983
τ −0.00027809
ω 0.000023902
α 0
β 0.00061762
ρ −0.51577

Table 3. The description of parameters and values.

Parameter Description Value Source

φ Recruitment rate into susceptible class 68,027 Estimated
μ Natural death rate 0.000309 Estimated
δ Measles death rate 0.033720 Estimated
τ Vaccination rate 0.000001 Fitted
ω Rate of loss of immunity 0.003286 Fitted
α Transmission rate of susceptible individuals 1×10−9 Fitted
β Rate of progression from the exposed class to infected class 0.500000 Estimated
ρ Hospitalization rate of infected individuals due to complications 0.036246 Fitted
γ Recovery rate 0.062366 Fitted

4. Data fitting and numerical simulation

Mathematical models have been used by many researchers to effectively replicate the
observed incidence and prevalence of several diseases. Furthermore, it has been used to
describe the dynamics of disease epidemics from the present data to predict the future and
particularly, to quantify the imprecision in these predictions. These are achieved by vali-
dating a formulated model with real data if available. This will provide a meaningful result
to themodel predictions. In this section, we fit the proposedmodel given with the real data
fromNigeria, to describe the dynamics of themeasles epidemic in theNigerian population.

We used the measles reported cases from Nigeria for the period between the first week
in January through the last week in December 2020, obtained through the Nigerian Cen-
tre for Disease Control (NCDC) database [25]. As presented in Table 3, we obtained our
parameter values through parameter estimation and the data fitting method. Four out of
the nine parameters of the proposed model were estimated, while the remaining unknown
five parameter values were obtained through data fitting of themodel. The natural death of
a human is estimated as 1

60.87×53 per week, where 60.87 year is the average life expectancy
of humans inNigeria [13]. Furthermore, the recruitment rate is estimated byμ × N, where
the total human population N is reported as 219,463,862 [13]. We used the reported con-
firmed cases and reported death cases due to measles denoted as (I,D) respectively to
estimate the measles death rate δ (which is the death caused by measles). This is obtained
by

δ =
∑n

t=1 Dt∑n
t=1 It

,

where t = 1, 2, . . . , n is the time measured in weeks and n = 53 is the total number of
weeks as reported in the data used. Lastly, since the average incubation period of measles
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Figure 2. Best fitting of the proposed measles model with real statistical cases in Nigeria and the
corresponding (b) residual plot.

Figure 3. 2-D contour plot of the reproduction numberR0 of measles model, varying vaccination rate
τ with respect to the hospitalization rate ρ. Parameter values used are as given in Table 3.

is 14 days, varying from 7 to 18 days [30], the progression rate from the exposure to
infected class β is estimated as 0.500 per week. Using the standard nonlinear least square
method, we fit the cumulative confirmed reported cases to the measles model. We present
all the parameter values estimated and fitted in Table 3, and the data fitting of the observed
cumulative cases are depicted in Figure 2(a) wherein residuals have also been graphically
depicted in Figure 2(b). It must be noted that all parameter values are presented in per
week.

5. Results and discussion

Following the estimation of parameter values and data fitting, we simulate the measles
model using the parameter values as presented in Table 3. It is imperative to note that
the reproduction number of measles in Nigeria is estimated as 3.13, using the parameter
values in Table 3. This implies that measles is expected to be endemic in Nigeria if there
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Figure 4. Simulations of themeaslesmodelwith varying effects of parameters on total infectedhumans
population: (a) vaccination rate τ = 0.000001(R0 = 3.13), τ = 0.001(R0 = 3.05), τ = 0.01(R0 =
2.45), and τ = 0.1(R0 = 0.83); (b) hospitalization rate ρ = 0.0363(R0 = 3.13), ρ = 0.0726(R0 =
2.07), ρ = 0.1452(R0 = 1.23), and ρ = 0.2178(R0 = 0.88); (c) vaccination rate and hospitaliza-
tion rate τ = 0.000001, ρ = 0.0363(R0 = 3.13), τ = 0.001, ρ = 0.0726(R0 = 2.01), τ = 0.01, ρ =
0.1452(R0 = 0.96), and τ = 0.1, ρ = 0.2178(R0 = 0.23). Other parameter values used are given in
Table 3.

are no further strategies to mitigate the disease in the population. Since vaccination of sus-
ceptible individuals and treatment of infected individuals has been shown to reduce the
burden of measles in the population, we simulate the effect of these two control strategies
on the reproduction number in Figure 3. The result shows that increasing the vaccina-
tion rate decreases the reproduction number. For instance, if we fix the hospitalization
rate of infected humans at ρ = 0.5, a vaccination rate at τ = 0.3 will yield a reproduction
number between the range of (1, 2), while the vaccination rate at τ = 0.7 reduces the repro-
duction number below unity. A similar result was observed when we fix the value of the
vaccination rate and vary the hospitalization rate. The result shows that increasing the hos-
pitalization rate of the infected individuals will reduce the reproduction number. Overall,
the result from Figure 3 suggests that to reduce the reproduction number of measles below
unity, increasing the vaccination rate and the hospitalization rate of infected individuals
simultaneously will reduce the burden of measles in Nigeria.
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Figure 5. Convergence of solution trajectories for total infected population (E + I)with different initial
sizes. Parameter values used are as provided in Table 3 except for τ = 0.1 and ρ = 0.2178, so thatR0 =
0.23 < 1.

To investigate the impact of vaccination rate and hospitalization of infected individu-
als on the dynamics of measles in the population, we examine the behaviour of the total
infected human population under different scenarios. We note that since measles exposed
individuals can transfer the infection, we defined the total infected human population as
the sum of exposed humans and infected human population (E + I). We illustrate the
effects of vaccination rate on the total infected population in Figure 4(a). The result shows
that the total infected population reduces with increasing value of vaccination rate from
1 × 10−6 to 0.1. A similar result is observed in Figure 4(b); an increase in the hospitaliza-
tion rate of infected individuals reduces the total infected population. Thus, an increase in
any of the control strategies will reduce the burden of measles in the population. To inves-
tigate the dynamics of measles under the combination of vaccination and hospitalization
of infected individuals on the population, we combined the two control strategies (vacci-
nation and hospitalization of infected individuals) as depicted in Figure 4(c). The result
shows that the combined control strategies reduce the peak of infection faster than the
single control strategy. The overall result from Figure 4 emphasizes the importance of con-
trol strategies such as vaccination and hospitalization of measles-infected individuals in
mitigating the spread of measles in the population. Figure 5 illustrates the convergence
of solution trajectories for the infected population. The result shows that regardless of
the changes in the initial sizes of the infected population, the infected population equi-
librium will remain the same. This result validates the global stability result presented in
Theorem 3.2.

6. Conclusion

The dynamics of measles have been examined using a mathematical model with six com-
partments: susceptible, vaccinated, exposed, infected, hospitalized, and recovered. The



16 O. JAMES PETER ET AL.

boundary of solutions is proved, the basic reproduction number is calculated. Two equi-
librium points are determined and their stability are analysed. The proposed model was
validated by using real data of measles incidence obtained from NCDC, we obtained the
best-fitted values for the model, this shows that the model will be useful for measles pre-
diction, this will also help the health workers in decision making and control policy in
eradicating the spread of measles in Nigeria. The study suggests that an increase in the
hospitalization rate of infected individuals with serious complications reduces the total
infected population. Also, without vaccination, the number of infections will increase and
in most cases, a complication occurs in most infected individuals which will require hos-
pitalization. Thus, an increase in any of the control strategies will reduce the burden of
measles in the population. To investigate the dynamics of measles under the combination
of vaccination and hospitalization of infected individuals, on the population, we combined
the two control strategies (vaccination and hospitalization of infected individuals). The
result shows that the combined control strategies reduce the peak of infection faster than
the single control strategy. The result of our study recommends the importance of con-
trol strategies such as vaccination and hospitalization of measles-infected individuals in
mitigating the spread of measles in the population.
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