
Vol.:(0123456789)1 3

Modeling Earth Systems and Environment 
https://doi.org/10.1007/s40808-022-01607-z

ORIGINAL ARTICLE

Modeling and optimal control of monkeypox with cost‑effective 
strategies

Olumuyiwa James Peter1,2  · Chinwendu E. Madubueze3 · Mayowa M. Ojo4,5 · Festus Abiodun Oguntolu6 · 
Tawakalt Abosede Ayoola7

Received: 29 September 2022 / Accepted: 7 November 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
In this work, we develop and analyze a deterministic mathematical model to investigate the dynamics of monkeypox. We 
examine the local and global stability of the basic model without control variables. The outcome demonstrates that when the 
reproduction number R

0
< 1 , the model’s disease-free equilibrium would be locally and globally asymptotically stable. We 

further analyze the effective control of monkeypox in a given population by formulating and analyzing an optimal control 
problem. We extend the basic model to include four control variables, namely preventive strategies for transmission from 
rodents to humans, prevention of infection from human to human, isolation of infected individuals, and treatment of iso-
lated individuals. We established the necessary conditions for the existence of optimal control using Pontryagin’s maximal 
principle. To illustrate the impact of different control combinations on the spread of monkeypox, we use the fourth-order 
Runge–Kutta forward–backward sweep approach to simulate the optimality system. A cost-effectiveness study is conducted 
to educate the public about the most cost-effective method among various control combinations. The results suggest that, of 
all the combinations considered in this study, implementing preventive strategies for transmission from rodents to humans 
is the most economical and effective among all competing strategies.

Keywords Monkeypox · Optimal control · Cost-effectiveness · Preventive strategies · Isolation

Introduction

Monkeypox is a viral disease that causes skin lesions that 
look like the pox. Although it is closely linked to smallpox, 
it is not nearly as dangerous. Monkeypox has a recent 
history (1958), with medical practitioners diagnosing the 
first human cases and distinguishing them from smallpox 
in the early 1970s. Since May 2022, every continent 
except Antarctica has reported at least 15,000 confirmed 
cases of monkeypox (Bisanzio and Reithinger 2022). 
Monkeypox is caused by the monkeypox virus (MPXV) 
(Durski et al. 2018; Jezek et al. 1988). The majority of 
infections are spread via direct contact between animals 
(rodents) and humans. Monkeypox is a severe disease 
caused by the monkeypox virus, which is similar to 
smallpox. It is usually found in Africa, although it is also 
been seen in other parts of the world. Fever and chills 
are common symptoms of monkeypox, and a rash appears 
within a few days. The monkeypox virus is contagious 
in a variety of animal species. The natural history of the 
monkeypox virus is still unknown, and further research 
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is needed to determine the specific reservoir(s) and how 
virus circulation is maintained in nature. A possible 
risk factor is eating undercooked meat and other animal 
products from infected animals (Alakunle et al. 2020). In 
non-endemic nations that have found cases, more public 
health investigations are underway, including intensive 
case detection and contact tracing, laboratory analysis, 
clinical management, and isolation with supportive 
care. Genomic sequencing has been used to identify the 
monkeypox viral clade(s) in this outbreak, where possible. 
Although there are no specific treatments for monkeypox 
infection at present time, however, the outbreaks can be 
controlled.

Monkeypox outbreak can be controlled with the smallpox 
vaccine, Cidofovir, ST-246, but the vaccination is not yet 
available because smallpox has been eradicated globally 
and also with antivirals medication such as tecovirimat, 
Cidofovir and Brincidofovir developed for use in patients 
with smallpox may prove beneficial against monkeypox 
(Center 2022). The best available information about the 
benefits and dangers of smallpox vaccination and medicine 
used for the prevention and management of monkeypox and 
other orthopoxvirus infections was used to establish Centers 
for Disease Control and Prevention (CDC) guidance. Many 
researchers have utilized mathematical models to study the 
epidemiology of diseases in different populations, and they 
have proven to be an effective and useful tool. To gain a 
better knowledge of the disease’s transmission dynamics 
and control, many models have been developed and studied 
using various methodologies. These studies include the 
following: Peter et al. (2018, 2020, 2021b), Ojo et al. (2018, 
2021, 2022c), Abioye et al. (2018, 2021), Ojo and Goufo 
(2021, 2022b), Ayoola et al. (2021). In the past, monkeypox 
research has received little attention, which contributed 
to a lack of knowledge about the disease’s transmission 
dynamics. Despite this, a few studies have attempted to 
use a mathematical modeling technique to understand the 
dynamics of the monkeypox virus. In Peter et al. (2021a), 
the authors proposed a deterministic mathematical model 
to investigate the dynamics of the monkeypox virus in the 
human population. The asymptotic stability conditions for 
disease-free and endemic equilibria are determined in both 
the local and global states. The model exhibits backward 
bifurcation, with the locally stable disease-free equilibrium 
coexisting with an endemic equilibrium. Furthermore, the 
conditions under which the model’s disease-free equilibrium 
was found to be globally asymptotically stable. The findings 
suggest that isolating infected people from the general 
population helps to reduce disease transmission. Usman and 
Adamu (2017) investigated the dynamics of the monkeypox 

virus in human hosts and rodents using stability analysis. A 
sensitivity analysis was performed on the model parameters, 
which revealed that the basic reproduction numbers of the 
model, which served as a threshold for measuring new 
infections in host populations decreased as the control 
parameters of vaccination and treatment were increased.

According to Bhunu and Mushayabasa (2011), the basis 
for transmission analysis of pox-like dynamics of monkey-
pox virus as a case study was examined, and the numeri-
cal simulations suggest that people’s immune status varies 
the way they recover after infection with the orthopoxvi-
rus. The authors of Bhunu et al. (2009) demonstrated that 
with the planned treatment intervention, the disease will be 
eradicated from both human and non-human primates in 
due course. In Lasisi et al. (2020), the authors presented a 
mathematical model of monkeypox transmission based on 
an ordinary differential equation to analyze the disease’s 
dynamics. The solutions were found to be positive through-
out the model’s feasible region. The model’s disease-free 
equilibrium and effective basic reproduction number were 
investigated. Other notable contributions include TeWinkel 
(2019), Emeka et al. (2018), Somma et al. (2019), Bankuru 
et al. (2020) and Grant et al. (2020). By taking into account 
different situations, each of the aforementioned investiga-
tions reveals a significant finding for monkeypox dynamics. 
However, we observed that no study has yet been conducted 
to investigate the dynamics of monkeypox using an optimal 
control approach and a cost-effectiveness analysis of the 
control strategies. Because of the above, we developed a 
deterministic mathematical model to analyze the dynamics 
of monkeypox while employing the most cost-effective con-
trol measures. The rest of the paper is structured as follows: 
the next section deals with the model formulation, the third 
section deals with the analysis of the basic model, the fourth 
section deals with the analysis of the control model, while 
the fifth section is the numerical simulations of the optimal 
control model. In the sixth section, the cost-effectiveness 
analysis of the optimal control model is presented, while 
the conclusion and recommendation of the study is given 
in the last section.

Methods

We formulate a deterministic model of the monkeypox virus 
by considering two populations, humans and rodents. The 
human population is sub-divided into five compartments 
based on the epidemiological status of individuals in the 
population. The compartments are, susceptible humans Sh , 
exposed humans Eh , infected humans Ih , isolated humans Jh 
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and recovered human Rh . Furthermore, the rodent population 
is further sub-divided into susceptible rats Sr and infected 
rats Ir . The total population of human and rodent population 
with respect to time is given as Nh(t)=Sh + Eh + Ih + Jh + Rh 
and Nr(t) = Sr + Ir , respectively. The susceptible human 
population is increased through birth or immigration at 
a constant recruitment rate �h , and the population of the 
susceptible class is reduced after effective interaction with 
infected individuals at the rate

where �r and �h represent the rate of transmission per contact 
with infected humans and rat, respectively. Individuals who 
have been infected in the susceptible class become exposed. 
In this state, individuals go through an infection incubation 
period before becoming infectious and then advance through 
the infectious class at a rate � . The parameter k represents 
the isolation rate due to surveillance or contact tracing, while 
the natural recovery rate of individuals in the infected class 
and recovery of individuals in the isolated class through 
treatment is represented by � . � is the modification param-
eter for the recovery rate of individuals in the infected class 
while �m represents the modification parameter for disease 
transmission for individuals in isolation. We assume that the 
human and rat population decreased by a natural death at the 
rate of �h and �r , respectively. The disease-induced death is 
at a rate �h , the population of the rat population is increased 
at a constant rate �r while the sub-population of the rodent 
is decreased as a result of effective contact with the rodent 
at a rate �2 which is expressed as

where �r is the transmission rate per contact with the infected 
rats. The descriptions above can be illustrated in a system of 

�1 =
�rIr + �h(Ih + �mJh)

Nh

,

�2 =
�rIr

Nr

,

differential equations in (1), while the model’s compartmen-
tal flow diagram is shown in Fig. 1:

(1)

dSh

dt
= �h − �1Sh − �hSh,

dEh

dt
= �1Sh − (� + �h)Eh,

dIh

dt
= �Eh − (�h + �h)Ih − (k + ��)Ih,

dJh

dt
= kIh − (� + �h)Jh,

dRh

dt
= ��Ih + �Jh − �R,

dSr

dt
= �r − �2Sr − �rSr,

dIr

dt
= �2Sr − �rIr.

Fig. 1  Flow chart of the 
monkeypox model (1)

Table 1  Description of the 
model variables

Variable Description

Sh(t) Susceptible humans
Eh(t) Exposed humans
Ih(t) Infected humans
Jh(t) Isolated humans
Rh(t) Recovered humans
Sr(t) Susceptible rodents
Ir(t) Infected rodents
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Model analysis

Invariant region

In this section, we analyzed the model (1) in the epidemio-
logical domain as follows. Consider the epidemiological 
region such that, � = �h �r ∈ ℝ

5
+
ℝ

2
+
 , such that

and

We can demonstrate that the set � is a non-negative invari-
ant set and global attractor of this system. This means that 
any phase trajectory initiated anywhere in the non-negative 
region ℝ7

+
 enters the feasible region � and remains in � 

thereafter.

Lemma 1

The region 𝜓 ⊂ ℝ
7
+
 is non-negatively invariant of the monkey-

pox model (1) with non-negative initial conditions ℝ7
+
.

Proof Let � represents the feasible region of the monkeypox 
model (1), expressed as

Next, we show the conditions for the positive invariance of 
� that is, the solution in � remains in 𝜓 ∀ t > 0 . We obtain 
this by adding (1) for the two populations (i.e., humans and 
rodents population).

and

Using the standard comparison theorem (Choi et al. 2014), 
we can say that

(2)�h =

{
(Sh,Eh, Ih, Jh,Rh) ∈ ℝ

5
+
∶ Nh ≤ �h

�h

}
.

(3)�r =

{
(Sr, Ir) ∈ ℝ

2
+
∶ Nr ≤ �r

�r

}
.

𝜓 ⊂ ℝ
7
+
.

dNh(t)

dt
≤ �h − �hNh(t)

dNr(t)

dt
≤ �r − �rNr(t).

Particularly, Nh(t) ≤ �h

�h

 if Nh(0) ≤ �h

�h

 . Also, Nr(t) ≤ �r

�r

 if 

Nr(0) ≤ �r

�r

 . Therefore, the region � is a non-negative invari-

ant.   ◻

Existence and stability of the monkeypox free 
equilibrium

Disease-free equilibrium is the equilibrium state in the absence 
of the disease. This is obtained by setting the right hand side 
of (1), and variables Ih and Jh to zero. Hence, the disease-free 
equilibrium state is given by

We also obtain the reproduction number as a threshold quan-
tity to investigate the system’s stability. This is accomplished 
by employing the method in Peter et al. (2022) called the 
next generation matrix. The Jacobian matrices of Fi and Vi 
at the disease-free equilibrium are given by

where f1 = � + �h , f2 = �h + �h + k + �� , and f3 = � + �h . 
The basic reproduction number, R0 is the spectral radius of 
the matrix FV−1 given by

where Rr =
�r

�r

 is the rodent reproduction number while 
Rh = Rhi +Rhj is reproduction number for human to human 
with hi =

�h�k�m
f1 f2 f3

 and Rhj =
�h�

f1f2
 as the respective reproduction 

numbers from infected and isolated human to susceptible 
human.

(4)
Nh(t) ≤ Nh(0)e

−�ht +
�h

�h

(
1 − e−�ht

)
and

Nr(t) ≤ Nr(0)e
−�rt +

�r

�r

(
1 − e−�rt

)
.

(5)E0 = (S0
h
,E0

h
, I0

h
, J0

h
,R0

h
, S0

r
, I0

r
) =

(
�h

�h

, 0, 0, 0, 0,
�r

�r

, 0

)
.

F =

⎡⎢⎢⎢⎣

0 �h �h�m �b
0 0 0 0

0 0 0 0

0 0 0 �r

⎤⎥⎥⎥⎦
and V =

⎡⎢⎢⎢⎣

f1 0 0 0

−� f2 0 0

0 − k f3 0

0 0 0 �r

⎤⎥⎥⎥⎦
,

(6)R0 = max(Rr,Rh) = max

(
�r

�r

,
�h�k�m

f1f2f3
+

�h�

f1f2

)
,
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Local stability of the disease‑free equilibrium

Theorem 1 The monkeypox -free equilibrium �0 , of the 
model (1) is locally asymptotically stable in the biological 
feasible region if R0 < 1 and unstable if R0 > 1.

The local stability of the disease-free equilibrium is estab-
lished using the linearization method. The Jacobian matrix of 
the model (1) at disease-free equilibrium is given by

The eigenvalues of J(E0) are �r − �r = �r(Rr − 1) , −�r , −�h 
twice and the roots of the polynomial

w h e r e  a0 = 1  ,  a1 = f1 + f2 + f3  , 
a2 = f1f3 + f2f3 + f1f2(1 −Rhj) , and a3 = f1f2f3(1 −Rh).

Using Routh–Hurwitz cr i ter ia ,  the polyno-
mial (8) has negative real roots if a0 > 0 , a1 > 0 , 
a2 > 0 , a3 > 0 and a1a2 − a0a3 > 0 . This is true since 
a1a2 − a0a3 > 0 = a1(f1 + f2) − f1f2f3Rhi . Thus, the eigen-
values of J(E0) are all negative if R0 = max(Rr,Rh) < 1 . 
This implies that the disease-free equilibrium, E0 is locally 
asymptotically stable if R0 < 1 . Monkeypox infection can 
be controlled in a population if R0 is less than one and the 
initial size of the sub-populations of the system (1) are in 
the basin of attraction of E0 . Above is the brief illustration 
of Theorem 1.

Optimal control model

We extend the monkeypox model in (1) by incorporating 
four time-dependent control variables namely; preven-
tive strategies for transmission from rodents to humans u1 , 
prevention from human-to-human contact u2 , isolation of 
infected individuals through contact tracing u3 , and treat-
ment of isolated individuals u4 . By introducing the above 
control interventions, we have the following system of 
equations:

(7) (0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−�h 0 − �h − �h�m 0 0 − �b
0 − f1 �h �h�m 0 0 �b
0 � − f2 0 0 0 0
0 0 k − f3 0 0 0
0 0 �� � − �h 0 0
0 0 0 0 0 − �r − �r
0 0 0 0 0 0 �r − �r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(8)a0�
3 + a1�

2 + a2� + a3 = 0,

where k = u3 and �=u4 and the initial conditions Sh ≥ 0 , 
Eh ≥ 0 , Ih ≥ 0 , Jh ≥ 0 , Rh ≥ 0 , Sr ≥ 0 , Ir ≥ 0.

We aim to minimize, the exposed Eh , infected Ih and 
isolated Jh humans and the cost involved in using the con-
trols. According to Pontryagin (1987) and Fleming and 
Rishel (2012), the objective function is defined as

where A1 , A2 , and A3 are positive weight constant of the 
exposed humans, infected humans, and isolated humans, 
respectively. Also, the cost control functions take a quad-
ratic form, such that B1u

2
1

2
 , B2u

2
2

2
 , B3u

2
3

2
 , and B4u

2
4

2
 represent the 

cost control function for prevention from rodents to humans, 
prevention from human-to-human contact, isolation through 
contact tracing and treatment of isolated individuals, respec-
tively. The aim is to find an optimal control of u∗

1
(t), u∗

2
(t) , 

u∗
3
(t) and u∗

4
(t) such that

where Δ is the non-empty control subject to the optimal con-
trol model set defined as Δ = {ui ∶ 0 ≤ ui(t) ≤ 1 , Lebesgue 
measurable t = [0, tf ] for i = 1, 2, 3, 4} represents the control 
set with respect with initial conditions.

(9)

dSh
dt

= �h −
�rIrSh(1 − u1(t))

Nh

−
�h(Ih + Jh)Sh(1 − u2(t))

Nh
− �hSh,

dEh
dt

=
�rIrSh(1 − u1(t))

Nh

+
�h(Ih + Jh)Sh(1 − u2(t))

Nh
− (� + �h)Eh,

dIh
dt

= �Eh − (�h + �h + u3(t) + ��)Ih,

dJh
dt

= u3(t)Ih − (u4(t) + �h)Jh,

dRh
dt

= ��Ih + u4(t)Jh − �hRh,

dSr
dt

= �r −
�rIrSr
Nr

− �rSr,

dIr
dt

=
�rIrSr
Nr

− �rIr,

(10)

J(u1, u2, u3, u4) = ∫
tf

0(
A1Eh + A2Ih + A3Jh + B1

u2
1

2

+B2

u2
2

2
+ B3

u2
3

2
+ B4

u2
4

2

)
dt,

(11)
J(u∗

1
, u∗

2
, u∗

3
, u∗

4
) = min

{
(u1, u2, u3, u4) ∶ u1, u2, u3, u4 ∈ Δ

}
,
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Next, we show that the optimal control problem exists. 
The Pontryagin’s Maximum Principle gives the necessary 
conditions for which the optimal control u∗ = (u1, u2, u3, u4) 
exists. According to Pontryagin (1987), the Hamiltonian 
function is given by

where �1, �2, �3, �4, �5, �6 , and �7 are the adjoint variables 
associated with the state variables of the optimal control 
model in (9). Following the approach in Peter et al. (2020), 
Ayoola et al. (2021), and Madubueze et al. (2021), we estab-
lish the characterization result in the theorem as follows.

Theorem 2 Let S∗
h
,E∗

h
, I∗

h
, J∗

h
,R∗

h
, S∗

r
 , and I∗

r
 be optimal state 

solutions associated with optimal control u∗
1
, u∗

2
, u∗

3
 , and 

u∗
4
 for the optimal control problem in (9). There exist an 

adjoint functions �i which satisfy the system (12) with the 
transversality conditions �i(tf ) = 0 in (14) for i = 1, 2, 3, 4 
and the control variables (u∗

1
, u∗

2
, u∗

3
, u∗

4
).

Proof By differentiating the Hamiltonian function (12) with 
respect to the state variables Sh,Eh, Ih, Jh,Rh, Sr and Ir , we 
have the following:   ◻

(12)

H = A1Eh + A2Ih + A3Jh + B1

u2
1
(t)

2
+ B2

u2
2
(t)

2

+ B3

u2
3
(t)

2
+ B4

u2
4
(t)

2

+ �1

[
�h −

�rIrSh(1 − u1(t))

Nh

−
�h(Ih + Jh)Sh(1 − u2(t))

Nh

− �hSh

]

+ �2

[
�rIrSh(1 − u1(t))

Nh

+
�h(Ih + Jh)Sh(1 − u2(t))

Nh

− (� + �h)Eh

]

+ �3[�Eh − (�h + �h + u3(t) + ��)Ih]

+ �4[u3(t)Ih − (u4(t) + �h)Jh]

+ �5[��Ih + u4(t)Jh − �hRh]

+ �6

[
�r −

�rIrSr

Nr

− �rSr

]

+ �7

[
�rIrSr

Nr

− �rIr

]
,

with the transversality conditions
(13)

d�1

dt
= −

�H

�Sh
= (�1 − �2)

(
�rIr(1 − u1)

Nh

+
�h(Ih + �mJh)(1 − u2)

Nh

)

(
1 −

Sh

Nh

)
+ �h�1

d�2

dt
= −

�H

�Eh

= −A1 + (�2 − �1)

(
�rIrSh(1 − u1)

N2
h

+
�h(Ih + �mJh)(1 − u2)Sh

N2
h

)

+ �h�2 + (�2 − �3)�

d�3

dt
= −

�H

�Ih
= −A2 + (�2 − �1)

(
�rIrSh(1 − u1)

N2
h

−
�hSh(1 − u2)

Nh

+
�h(Ih + �mJh)Sh(1 − u2)

N2
h

)

+ �3 + (�h + �h) + (�3 − �4)u3 + (�3 − �5)��

d�4

dt
= −

�H

�Jh
= −A3 + (�2 − �1)

(
�rIrSh(1 − u1)

N2
h

−
�h�mSh(1 − u2)

Nh

+
�h(Ih + �mJh)Sh(1 − u2)

N2
h

)

+ (�4 − �5)u4 + �4�h

d�5

dt
= −

�H

�Rh

= (�2 − �1)

(
�rIrSh(1 − u1)

N2
h

+
�h(Ih + �mJh)Sh(1 − u2)

N2
h

)
�5�h

d�6

dt
= −

�H

�Sr
= (�6 − �7)

�rIr

Nr

(
1 −

Sr

Nr

)
+ �r�6

d�7

dt
= −

�H

�Ir
= (�1 − �2)

�rSh(1 − u1)

Nh

(
1 −

Sr

Nr

)

+ (�6 − �7)
�rSr

Nr

(
1 −

Ir

Nr

)
+ �r + �7

(14)
�1(tf ) = �2(tf ) = �3(tf ) = �4(tf )

= �5(tf ) = �6(tf ) = �7(tf ) = 0.
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To establish the optimal control of the control variable set, 
where ui = (0, 1) , we differentiate the Hamiltonian H in (12) 
with respect to control variable u1, u2 , u2 , and u4 to obtain

Hence,
(15)

�H
�u1

= B1u1 + �1
�rIrSh
Nh

− �2
�rIrSh
Nh

= 0

⇒ u∗1 =
(�2 − �1)�rIrSh

B1Nh

�H
�u2

= B2u2 +
�1�h(Ih + �mJh)Sh

Nh
−

�2�h(Ih + �mJh)Sh
Nh

= 0

⇒ u∗2 =
(�2 − �1)�h(Ih + �mJh)Sh

B2Nh
�H
�u3

= −�3Ih + �4Ih + B3u3 = 0

⇒ u∗3 =
(�3 − �4)Ih

B3

�H
�u4

= B4u4 − �4Jh + �5Jh = 0

⇒ u∗4 =
(�4 − �5)Jh

B4
.

(16)

u∗
1
= max

{
0,min

(
(�2 − �1)�rIrSh

B1Nh

)}
,

u∗
2
= max

{
0,min

(
(�2 − �1)�h(Ih + �mJh)Sh

B2Nh

)}
,

u∗
3
= max

{
0,min

(
(�3 − �4)Ih

B3

)}
,

u∗
4
= max

{
0,min

(
(�4 − �5)Ih

B4

)}
.

Numerical simulations of the optimal control 
model

The impact of various optimum control strategies on the 
reduction of monkeypox prevalence in the human population 
is examined in this section. We specifically want to look at 
the impact of various combined control measures that can 
help quickly stop the spread of the disease in the absence of 
mass vaccination for monkeypox prevention. We will also 
investigate the most cost-effective strategy that will be suita-
ble for use among all the various combinations of the control 
strategy because disease control and eradication in a large 
population can be difficult and expensive. This is a crucial 
aspect to consider when putting intervention strategies into 
practice, especially in developing and low-income nations.

In order to describe the dynamical behavior of a given 
system over time and for different parameter values and 
conditions, numerical simulation has shown to be a useful 
tool. To determine the effect of various intervention 
techniques on the ideal control model, we thus simulate 
the impact of various combinations of measures on the 
control of monkeypox in a given population. To do this, 
we use Matlab’s Runge–Kutta forward–backward sweep 
method. We simulate the impact of seven distinct optimal 
control strategies on the infected human and isolated 
human populations. The simulation’s initial conditions 
were taken from Peter et al. (2022), while Table 2 contains 
the parameter values that were used. In order to ensure that 
none of the three terms is dominant during simulation, we 
assume that the positive weight constants in the objective 
functions are equal such that A1 = A2 = A3 = 1 . In contrast, 
we assume that the weight constants relating to the overall 

Table 2  Model parameter values and description

Parameter Description Value Source

Λh Recruitment rate of susceptible humans 64850 Peter et al. (2022)
Λr Recruitment rate of rodents 0.2000 Peter et al. (2022)
�h Per capita natural death rate in human 0.000303 Peter et al. (2022)
�r Per capita natural death rate in rodent 0.00200 Peter et al. (2022)
�1 Effective contact rate of rodents to humans 0.052466 Peter et al. (2022)
�2 Effective contact rate of humans to humans 0.022325 Peter et al. (2022)
� Movement rate from exposed class 0.016744 Peter et al. (2022)
� Fraction of individuals not detected with the virus after quarantine 0 < 𝜌 < 1 Assumed
� Movement rate from quarantine 0.003286 Peter et al. (2022)
� Movement rate from infected class 0.088366 Peter et al. (2022)
� Recovery rate of individuals in the isolated class due to treatment 0.036246 Peter et al. (2022)
�h Disease-induced death rate for humans 0.003286 Peter et al. (2022)
k Fraction of exposed individuals that are quarantined 0 < k < 1 Assumed
�3 Effective contact rate of rodents to rodents 0.012458 Peter et al. (2022)
� Fraction of infected individuals that are isolated 0 < 𝛾 < 1 Assumed
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costs of control implementation are unequal. Due to the 
assumption that the weight constant for calculating the 
total cost to apply isolation through contact tracing and 
treat isolated individuals is higher than other controls, the 
weight constants are set to B1 = B2 = 10 and B3 = B4 = 15 , 
respectively. For instance, the cost of implementing 
preventive strategies for transmission of infection from 
rodents to humans (like personal hygiene) would be lesser 
than the cost of isolating infected people. It is important to 
remember that the weight constant values chosen are based 
on assumptions, and they could affect how realistically the 
control terms behave. The cost of control, in particular, 
can fluctuate over time in different parts of the country; 
as a result, in such a situation, the weight constant will be 

modeled using the region’s scenario. For instance, the cost 
of treating a patient who is separated from medical services 
may vary based on the severity of the infection and the cost 
of travel to a facility.

The impact of the four optimal control techniques and 
their various combinations was discussed in the following 
sub-sections. We observe that the four distinct scenarios 
namely; single control, double controls, triple controls, and 
quadruplet controls are used to group the seven potential 
control strategies that were simulated in this study. Scenario 
A, scenario B, scenario C, and scenario D, respectively, were 
used to identify them. According to Table 3, each scenario 
is further divided into various strategies. For instance, the 
single control (scenario A) includes two distinct prevention 
methods, namely preventive strategies for transmission of 
infection from rodents to humans only (u1 ≠ 0) and preven-
tion from human-to-human contact only (u2 ≠ 0).

Strategy 1: the optimal use of preventive strategies 
for transmission from rodents to humans only

Figure 2 depicts the effect of the optimal use of preventive 
strategies for transmission from rodents to humans only on 

Table 3  Possible scenarios with their combination strategies

Scenarios Strategies Scenarios Strategies

Single control u1 ≠ 0 Triple controls u1, u3, u4 ≠ 0

A u2 ≠ 0 C u2, u3, u4 ≠ 0

Double controls u1, u2 ≠ 0 Quadruplet controls u1, u2, u3, u4 ≠ 0

B u3, u4 ≠ 0 D
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Fig. 2  Simulations of the effects of strategy 1 on the optimal control model. A Infected human population; B isolated human population; C 
control profile; and D cost function
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the isolated and infected human population. We also show 
the intervention’s control profile and the associated cost 
function necessary for the intervention’s successful effects 
on the human population. As shown in Fig. 2A, we observed 
a significant decline in the number of infected people when 
preventive strategies for transmission from rodents to 
humans are practiced to their fullest. Since the application 
of these strategies is used in reducing the transmission of 
infections to susceptible people, this outcome was largely 
anticipated. Some studies have shown the effectiveness of 
preventive interventions on some infectious diseases (Ojo 
et al. 2022a, b), and this intervention strategy has been 
recommended by the Centers for Disease Control and 
Prevention (CDC) to reduce monkeypox spreads particularly 
during this insurgence (Centers for Disease Control and 
Prevention 2022a). This intervention averted a total size 
of 7.26 × 107 infected individuals. However, as shown 
in Fig. 2B, it is important to note that using preventive 
strategies for transmission from rodents to humans has 
no appreciable impact on the isolated human population. 
Since isolated humans are already contagious, interventions 
like treatment are more crucial in reducing the number of 
infected individuals than preventive measures like personal 

hygiene. We display the control profile of the best use of 
preventive strategies from rodents to humans only in Fig. 2C. 
The outcome demonstrates that the best use of preventive 
strategies for transmission from rodents to humans is 
maintained at the highest coverage ( 100% ) throughout the 
intervention (150 days). This suggests to the public that the 
control effort should be implemented and maintained at its 
highest level throughout the intervention period in order to 
achieve the expected outcome of the impact of the strategy 
as shown in Fig. 2A. In Fig. 2D, the cost function for the 
ideal application of preventive strategies for transmission 
from rodents to humans is shown.

Strategy 2: the optimal use of prevention 
from human‑to‑human only

We show the impact of the best use of human-to-human 
transmission prevention u2 only on the isolated and 
infected human population in Fig.  3. We also display 
the intervention’s control profile and the related cost 
function necessary for the intervention’s successful 
effects on the human population. In the presence of the 
best use of prevention from human to human, as shown in 
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Fig. 3  Simulations of the effects of strategy 2 on the optimal control model. A Infected human population; B isolated human population; C 
control profile; and D cost function
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Fig. 3A, we observe a minimal decrease in the population 
of infected humans. With this intervention, a total of 
1.72 × 107 infected people were averted. It is important to 
note that monkeypox transmission requires the presence 
of a second host (a non-human). Based on this finding, 
it can be inferred that human-to-human transmission of 
the disease contributes less to the disease’s prevalence 
and that the intervention reduces the number of infected 
people. It is possible to suggest that additional control 
measures would be required to effectively lessen the 
burden of the disease on the human population. In Fig. 3B, 
a similar result from Fig. 2B is seen on the isolated human 
population. Referencing Fig. 3C, we display the control 
profile of the ideal application of prevention from human 
to human only. The outcome demonstrates that the best 
use of this intervention is maintained at the upper bound 
( 100% ) throughout the duration of the intervention. This 
suggests that in order to achieve the intervention’s desired 
outcome, the control effort should be put into place and 
maintained at its highest level throughout the intervention. 
In Fig. 3D, the cost function for the ideal use prevention 
from human to human is shown.

Strategy 3: the optimal use of isolation 
and treatment only

The combined effect of the best use of isolation of infected 
individuals u3 and treatment of isolated individuals u4 only 
on the infected and isolated human population is shown 
in Fig. 4. During the first 146 days of the intervention, 
as depicted in Fig.  4A, the number of infected people 
decreases; however, after these days, the number of 
infected people increases. The relaxation of the isolation 
strategy, as seen in the control profile shown in Fig. 4C, 
makes this dynamic possible. This suggests that there is a 
chance for an increase in infection prevalence if the practice 
of isolating monkeypox-infected people is discontinued. 
With this intervention, a total of 6.50 × 107 infected people 
were avoided. This finding suggests that both interventions 
should be maintained at their highest coverage levels in 
order to limit the spread of monkeypox among the general 
population. The impact of isolating the infected individuals 
and treatment of isolated people on the isolated humans is 
shown in Fig. 4B. We see that the size of the isolated human 
population increases until the optimal control intervention 
of isolation through contact tracing u3 is relaxed. The cost 
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Fig. 4  Simulations of the effects of strategy 3 on the optimal control model. A Infected human population; B isolated human population; C 
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function of the combined interventions (strategy 3) is shown 
in Fig. 4D.

Strategy 4: the optimal use of preventive strategies 
for transmission from rodents to humans 
and prevention from human‑to‑human only

The combined effect of preventive strategies for transmission 
from rodents to humans u1 and prevention from human-to-
human u2 only on the infected and isolated human population 
is depicted in Fig. 5A, B, respectively with control profile in 
Fig. 5C. The result of this combined interventions are similar 
to the result presented in Fig. 2 (see Sect. 5.1). However, it is 
worth noting that this intervention (strategy 4) averted a total 
size of 7.33 × 107 infected individuals. The cost function of 
the combined interventions is shown in Fig. 5D.

Strategy 5: the optimal use of preventive strategies 
from rodents to humans, isolation, and treatment 
only

In Fig. 6, we demonstrate the simulation of the triple 
combination of the optimal use of preventive strategies 
from rodents to humans u1 , isolation u3 and treatment u4 

only on the infected human and isolated human population. 
Throughout interventions, the infected human population 
declined tremendously when the combined interventions 
are implemented compared to the case without control as 
seen in Fig. 6A. These combined interventions averted 
a total size of 7.37 × 107 infected individuals. The size 
of the isolated individual’s population declined in the 
early days of the implementation of control interventions 
as seen in Fig. 6B. This decline is likely a result of the 
relaxation of the optimal isolation intervention as depicted 
in Fig. 6C. The control profile shows that the optimal 
use of preventive strategies from rodents to humans u1 
and treatment of isolated individuals u4 are kept at the 
upper bound throughout the time of intervention. This 
advises the public that to attain the expected outcome 
of the intervention (strategy 5) as shown in Fig. 6A, at 
least both preventive strategies from rodents to humans 
and treatment of isolated individuals interventions must 
be implemented and remain at their maximum level 
throughout the intervention period. The cost function for 
the triple interventions (strategy 5) is shown in Fig. 6D.

0 50 100 150
0

1

2

3

4 105

0 50 100 150
190

192

194

196

198

200

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

5

10

15

Fig. 5  Simulations of the effects of strategy 4 on the optimal control model. A Infected human population; B isolated human population; C 
control profile; and D cost function
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Strategy 6: the optimal use of prevention 
from human to human, isolation, and treatment 
only

Figure 7 illustrates the impact of the best use of human-
to-human transmission prevention u2 , isolation of infected 
individuals through contact tracing u3 , and treatment of 
isolated individuals u4 only on the infected and isolated 
human population. We also display the intervention’s 
control profile and the associated cost function necessary 
for the intervention’s successful effects on the human 
population. Figure 7A shows that, even when the triple 
intervention is used to its fullest potential, the number 
of infected people does not drop significantly (strategy 
6). With this intervention, a total of 1.74 × 107 infected 
individuals were averted. It is very important to note that 
even though we implement triple control intervention, 
the total size of infected individuals averted is minimal. 
This result is likely due to the relaxation of the isolation 
intervention strategy u3 as seen in the control profile 
Fig. 7C. The result of the combined interventions (strategy 
6) on the isolated human population is similar to the 

outcome presented in Fig. 6B (see Sect. 5.5). The cost 
function for the triple interventions (strategy 6) is shown 
in Fig. 7D.

Strategy 7: the optimal use of all the controls

In Fig.  8A, B, we simulate the impact of all the 
combination strategies (optimal use of preventive 
strategies from rodents to humans u1 , prevention from 
human-to-human u2 , isolation of infected individuals 
through contact tracing u3 , and treatment of infected 
individuals u4 ) on the infected and isolated humans 
population. Figure  8C is the control profile The result of 
this combined interventions (strategy 7) on the infected 
human population is similar to the result presented in 
Fig. 2A, 5A and 6A (see Sects. 5.1 and 5.5). However, it 
is worth noting that this intervention (strategy 7) averted 
a total size of 7.35 × 107 infected individuals. Also, the 
impact of strategy 7 on the isolated human population is 
similar to the result presented in Fig. 7B (see Sect. 5.6). In 
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Fig. 8D, the cost function of the combined interventions 
(strategy 7) is depicted.

Cost‑effectiveness analysis

The cost and severity of disease mitigation are well known, 
especially in densely populated and low-income areas. 
Therefore, it is crucial to research the most cost-effective 
yet accessible control strategies that can be used to lessen 
the impact of monkeypox in a given population. The cost-
effectiveness analysis is used in this section to investigate 
the most cost-effective control strategy among all the com-
binations of control strategies (scenario A to scenario D). 
We employed three different strategies namely; the infection 
averted ratio (IAR), average cost-effectiveness ratio (ACER), 
and incremental cost-effectiveness ratio (ICER), to accom-
plish this goal, as described in Ojo and Goufo (2022a) and 
Agusto and Leite (2019). In the sections that follow, we out-
line each methodology and the estimates it provides for the 
control strategies.

Infection averted ratio (IAR)

The ratio of individuals who recovered from an infection 
as a result of the intervention to the number of infections 
prevented by the intervention is known as the infection 
averted ratio (IAR). This is estimated as

It is worth mentioning that the number of infections averted 
(IA) is determined by comparing the total infectious 
individuals under optimal control to the total infected 
individuals under no control. According to Ojo and Goufo 
(2022a) and Agusto and Leite (2019), the approach with the 
highest infection avoided ratio will be the most cost-effective 
in stopping the disease’s spread among the populace. Table 4 
lists the estimations of the total cost of control, IA, ACER, 
and IAR for the seven techniques taken into consideration 
in this study, while Fig. 9 depicts the IAR bar plots of 
scenario A, scenario B, and scenario C. According to the 
decision rule of IAR, the strategy with the highest ratio 
is the most cost-effective. Thus, the most cost-effective 

(17)

IAR =
Number of infections averted

Number of recovered individuals from the infection
.
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control profile; and D cost function
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strategies in scenario A, scenario B, and scenario C are 
strategy 1, strategy 4, and strategy 5, respectively. The most 
cost-effective strategy among those in scenarios A, through 
scenario C, is examined in the following subsection using 
the average cost-effectiveness ratio approach.

Average cost‑effectiveness ratio (ACER)

The average cost-effectiveness ratio (ACER), which measures 
the effectiveness of a particular intervention strategy, is the 
ratio between the total cost incurred and the total number of 
infections prevented by that strategy. This is calculated by

Notably, the objective function provided in (10) can be used 
to estimate the numerator of Eq. (18). A single optimal 
strategy is measured using ACER against a no-intervention 
scenario. The estimates of the ACER for the seven strategies 
considered in this study are tabulated in Table 4, while 
Fig. 10 depicts the ACER bar plots of scenario A, scenario 
B, and scenario C. The most cost-effective strategies in 
scenarios A through scenario C, according to the average 
cost-effective ratio method, are strategy 1, strategy 4, and 

(18)

ACER =
Total cost incurred by implementation of intervention

Total number of infections averted by the intervention
.
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Fig. 8  Simulations of the effects of strategy 7 on the optimal control model. A Infected human population; B isolated human population; C 
control profile; and D cost function

Table 4  Total infection averted, 
total cost, ACER, and IAR for 
the intervention strategies of all 
scenarios

Scenarios Strategies Infection averted Total cost ACER IAR

Scenario A 1 1.7268 ×107 5000 0.6879 ×10−4 46.6207
2 1.7168 ×107 4998 2.9110 ×10−4 0.2087

Scenario B 3 6.5027 ×107 14674 2.2566 ×10−4 0.4619
4 7.3325 ×107 9979 1.3609 ×10−4 119.7684

Scenario C 5 7.3659 ×107 13438 1.8244 ×10−4 65.755
6 1.7362 ×107 12494 7.1962 ×10−4 0.2106

Scenario D 7 7.3519 ×107 17472 2.3765 ×10−4 91.1558
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strategy 5, respectively. This outcome validates the one 
obtained by applying the infection averted ratio method.

Incremental cost‑effectiveness ratio (ICER)

In this section, we investigate the most cost-effective strat-
egy among all the strategies in scenarios A to C using 
the incremental cost-effectiveness ratio approach. The dif-
ference between two or more competing strategies, with 
their associated health benefits and implementation costs, 
is determined using the ICER. This is calculated by

In the sections that follow, we will talk about how to esti-
mate each strategy for its respective scenarios.

Scenario A

We present the monkeypox infection averted, the total cost 
of implementation, ACER, and ICER in Table 5 in increas-
ing order of the infected averted in order to determine the 
most cost-effective strategy in scenario A (strategy 1 and 
strategy 2). The ICER’s derivation is provided as follows:

(19)

ICER =
Difference in total costs between control strategies

Difference in total infection averted by control strategies
.
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Fig. 9  Infection averted ratio for scenario A, B, and C
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We compare strategy 1 and strategy 2 and we observed a 
cost-saving of 2.9109 × 10−4 over strategy 1. We can see 
that ICER(2) exceeds ICER(1). This suggests that strategy 

ICER(2) =
4998

(1.7168) × 107
= 2.9109 × 10−4

ICER(1) =
50000 − 4998

(7.2682 − 1.7168) × 107
= 4.3232 × 10−8.

2 surpasses the other, proving that strategy 1 is the less 
expensive of the two strategies in scenario A. Therefore, 
strategy 1 is the most cost-effective in scenario A.

Scenario B

Among the double control strategies (strategy 3 and 
strategy 4), we examine which is the most economical. 
The cost of implementation, the infection prevented, the 
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Fig. 10  ACER for scenario A, B, and C

Table 5  ICER for strategies 1 and 2

Strategies IA (×107) Total cost ACER (×10−4) ICER

2 1.7168 4998 2.9110 2.9109 ×10−4

1 7.2682 5000 0.6879 4.3232 ×10−8

Table 6  ICER for strategies 3 and 4

Strategies IA (×107) Total cost ACER (×10−4) ICER

3 6.5027 14674 2.2566 2.2566 ×10−4

4 7.3325 9979 1.3609 -5.6580 ×10−4
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ACER, and the ICER are all given in Table 6. The ICER 
calculation is provided as follows:

Since ICER(3) > ICER(4), this implies that strategy 4 is the 
most cost-efficient among the two strategies in scenario B.

Scenario C

We examine the most cost-effective strategy among the triple 
control strategies (strategy 5 and strategy 6). The infection 
averted, cost of implementation, ACER, and the ICER are 
tabulated in Table 7. The calculation of the ICER is given 
as follows:

Since ICER(6)>ICER(5), this implies that strategy 5 is the 
most cost-efficient among the two strategies in scenario C.

All the most cost‑effective strategies from all scenarios

We looked at the most economical approaches in each case 
in the sections before using various techniques. We observe 
that in scenario A, scenario B, and scenario C, respectively, 
all the methodologies used selected strategy 1, strategy 
4, and strategy 5 as the most cost-effective strategies. We 
now choose strategies 1, 4, and 5 (which are the chosen 
strategies from scenarios A through C) and strategy 7 to 
analyze the overall minimal cost strategy among all the 
techniques in this study. Table  8 lists the infection avoided, 

ICER(3) =
14674

(6.5027) × 107
= 2.2566 × 10−4

ICER(4) =
9979 − 14674

(7.3325 − 6.5027) × 107
= −5.6580 × 10−4.

ICER(6) =
12494

(1.7362) × 107
= 7.1962 × 10−4

ICER(5) =
13438 − 12494

(7.3659 − 1.7362) × 107
= 1.6768 × 10−5.

implementation costs, ACER, and ICER. From Table 8, we 
compare strategy 1 and strategy 4, and it was noted that 
ICER(4)>ICER(1). This informs us that strategy 1 is less 
costly and more efficient when compared to strategy 4. As a 
result, we eliminate strategy 4, to further our investigation 
with the remaining alternative strategies. The infection 
averted, cost of implementation, ACER, and the ICER of 
the remaining competing strategies are given in Table 9.

We compare strategy 1 with strategy 7 in Table  9 and 
find that ICER(7)>ICER (1). This shows us that strategy 1 
is more effective and less expensive than strategy 7 overall. 
In order to continue our analysis with the remaining poten-
tial tactics, we, therefore, discard strategy 7. Table 10 lists 
the infections avoided, implementation costs, ACERs, and 
ICERs of the remaining competing options. From Table 10, 
strategy 1 and strategy 5 were compared, and it was noted 
that ICER(5)>ICER(1). This shows us that, compared to 
strategy 5, strategy 1 is less expensive and more effective. 
Therefore, among all other strategies in this study, the imple-
mentation of preventive strategies for transmission of infec-
tion from rodents to humans to stop transmission between 
the rodent and human populations (strategy 1) is considered 
to be the most cost-effective strategy.

Conclusion and recommendations

Multiple interventions are required to reduce the 
ongoing incidence of monkeypox since the prevalence 
poses a threat to the human population. To gain more 
insight into the spread and control of monkeypox 
disease in the communities, we develop and analyzed a 
mathematical model to investigate the impact of various 
control mechanisms that can be used to lessen the 
disease burden. In Sect. 2, we present and analyzed the 
basic model without optimal control variables (1). The 
threshold quantity known as the reproduction number 
was obtained and used to examine the model’s local and 

Table 7  ICER for strategies 5 and 6

Strategies IA (×107) Total cost ACER (×10−4) ICER

6 1.7362 12494 7.1962 7.1962 ×10−4

5 7.3659 13438 1.8244 1.6768 ×10−5

Table 8  ICER for strategies 1, 4, 5, and 7

Strategies IA (×107) Total cost ACER (×10−4) ICER

1 7.2682 5000 0.6879 6.8793 ×10−5

4 7.3325 9979 1.3609 7.7434 ×10−3

7 7.3519 17472 2.3765 3.8624 ×10−2

5 7.3659 13438 1.8244 -2.8814 ×10−2

Table 9  ICER for strategies 1, 5, and 7

Strategies IA (×107) Total cost ACER (×10−4) ICER

1 7.2682 5000 0.6879 6.8793 ×10−5

7 7.3519 17472 2.3765 1.4901 ×10−2

5 7.3659 13438 1.8244 -2.8814 ×10−2

Table 10  ICER for strategies 1 and 5

Strategies IA (×107) Total cost ACER (×10−4) ICER

1 7.2682 5000 0.6879 6.8793 ×10−5

5 7.3659 13438 1.8244 8.6366 ×10−3
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global stability. The outcome demonstrates that when the 
reproduction number R0 < 1 , the model’s disease-free 
equilibrium would be locally and globally asymptotically 
stable. To investigate the impact of various optimum 
control strategies on the reduction of the ongoing 
monkeypox prevalence, we extended the basic model (1) 
by incorporating four time-dependent control variables. 
These controls are preventive strategies for transmission 
from rodents to humans u1 , prevention of infection from 
human to human u2 , isolation of infected individuals u3 , 
and treatment of isolated individuals u4.

The renowned Pontryagin’s maximal principle technique 
was used to find the optimal solutions. We simulate the 
dynamics of the infected and isolated human populations 
using the fourth-order Runge–Kutta forward–backward 
sweep method to show how each intervention strategy affects 
the burden of monkeypox. Each control strategy effectively 
lessens the burden of the infected population when com-
pared to the case without control, as shown in Fig. 2 through 
Fig. 8. It should be noted that among all the competing strat-
egies, strategy 7 (the combination of all the strategies), has 
the highest size of infected human averted (7.3519 × 107) . 
Implementing the combination of all four strategies would 
help reduce the burden of monkeypox, especially in a critical 
phase of the disease insurgence. However, this can be very 
expensive, especially for high populated and low-income 
nations. Because of this, we performed a cost-effectiveness 
analysis using the infection averted ratio (IAR), average 
cost-effective ratio (ACER), and the incremental cost-effec-
tiveness ratio (ICER) method, to determine the most cost-
effective strategies that can be used in reducing monkeypox 
infections. The overall conclusion of this analysis shows that 
implementing preventive strategies (strategy 1) for transmis-
sion from rodents to humans is the most economical and 
effective among all competing strategies.

Based on the findings of this study, we advise health 
policy decision-makers to expand public health initia-
tives to educate people about preventive measures that 
can be taken to stop the spread of infection from rodents 
to humans. Examples of these include maintaining good 
personal hygiene, avoiding close contact with bodily fluids 
or animal rashes caused by monkeypox, and making sure 
that animals are properly cooked to prevent the consump-
tion of infected animals. The Centers for Disease Control 
and Prevention (CDC) also advocated for this course of 
action (Centers for Disease Control and Prevention 2022b; 
Mayo Clinic 2022). The current model can be extended to 
account for the vaccination of susceptible individuals in 
order to further investigate the impact of vaccine usage. 
With the aid of the model, it is possible to investigate the 
effects of widespread vaccination against monkeypox on 
the suppression of the disease’s insurgence.

Data Availability Data used to support the findings of this study are 
included in the article. The authors used a set of parameter values 
whose sources are from the literature as shown in Table 1.
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