
i 

 

MATHEMATICAL MODEL FORMULATION FOR SUBMERGED AQUATIC 

CANOPY 

 

 

 

 

BY 

 

 

MANKO, Ayesha 

MEng/SEET/2017/7421 

 

 

 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA 

 

 

 

 

SEPTEMBER, 2021 



     

2 

 

MATHEMATICAL MODEL FORMULATION FOR SUBMERGED AQUATIC 

CANOPY 

 

 

 

 

BY 

 

 

MANKO, Ayesha 

MEng/SEET/2017/7421 

 

 

 

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL,                          

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA                                    

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF 

THE DEGREE OF MASTER OF ENGINEERING IN WATER RESOURCE 

AND ENVIRONMENTAL ENGINEERING 

 

 

 

SEPTEMBER, 2021 

 

 



     

3 

 

ABSTRACT 

The Hydraulics of flow in an open channel/waterway with flexible vegetation is studied. 

Vegetation along waterway has an ecological advantage; it enhances biodiversity, 

reduces erosion, and traps sediment. However, it has a hydraulic impact on flow. This 

study reviews hydrodynamics of vegetation along waterways (a concept to promote a 

sustainable green environment). It applies a modified one-dimensional (1-D) hydraulic 

model to replicate the vegetative velocity profile and Reynolds stresses using several 

laboratories experimental and field dataset found in the literature. Using this concept, a 

synthetic velocity profile is generated under varying hydraulic conditions. Using the 

concept of dimensional similarity, the vegetative parameters and flow resistance 

equation which relates these vegetation parameters, flow depth, and the zero-

displacement parameter is proposed. The findings gave clear and comprehensive 

deduction, that mathematical model could to an extent replicate the rigorous 

experiments, as evaluations were parallel to the estimated laboratory values. It was 

concluded that at <10% slope, the flow channel can be construction without the use of 

concrete and other rigid materials. 
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CHAPTER ONE 

1.0           INTRODUCTION 

1.1 Background to the Study 

Contrary to popular opinion, the vegetation in flow channels to a large extent does more 

good than harm to hydraulic systems. In the cause of achieving significant innovative 

solutions to the problems faced as a result of environmental conditions, the water 

infrastructures have become some of the key resources that require constant 

development and subsequent overhaul. The flow of fluid in systems is a phenomenon 

that is dependent on certain factors, some of which includes but not limited to, Velocity 

of flow, configuration of the system (that is size, shape and structure), geographical 

conditions, state of the fluid, and the likes. Out of the numerous benefits of Vegetation 

in flow Channels, the following are benefits derived by the aquatic habitats; to improve 

its ecosystem, to stabilize the bed slope and as a result curbs the likelihood of erosion, a 

reasonable amount of improved water quality, accumulation of sediment which may 

further enhance growth of vegetation. In any flow field, velocity is the most important 

characteristic to be identified, at any point (Featherstone & Nalluri, 1998). This has 

been the basis upon which all other flow conditions have been measured and studied. 

The effect of Velocity could affect a system in variety of ways (positively or 

negatively), when the flow is constant or gradually increases with pressure along the 

pathline, the next point of check is Erosion and Flood Control. 

 

In a flood control system, for every (open) channel flow, the requirement for flood 

control is the fundamental necessity that governs its development. The design of flood-

control systems will usually include a variety of conveyance channels that must behave 

in a stable and predictable way to ensure a known flow capacity will be available for an 

unplanned flood event. As soil erosion always occurs for a flood flow, channel linings 
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are required either temporarily or permanently to attain channel stability. These linings 

may be classified as Rigid or Flexible. Rigid Linings such as, Channel Pavements of 

concrete or asphaltic concrete, a variety of precast interlocking blocks and articulated 

mats are encountered. Flexible Linings includes loose stones (ripraps) Vegetation, 

manufactured mats of lightweight materials, fabrics or a combination of these materials. 

The selection of a particular lining is a function of the design context, involving issues 

related to the consequences of flooding, the availability of land, and environmental 

needs. 

 

A rigid lining can withstand high discharge and high velocity flow. Flood-control 

channels with rigid linings are often used to reduce the amount of land required for a 

surface drainage system.  However, a flexible lining on the other hand can respond to a 

change in channel shape, and therefore, it is not so easy to subject it to local damage. It 

is used as temporary lining for control of erosion during construction or reclamation of 

disturbed areas. From environmental considerations, flexible linings are inexpensive, 

permit infiltration and exfiltration, and allow growth of vegetation. Flow conditions in 

the channel lined with flexible materials generally can be made to conform to conditions 

found in a natural channel, thus provide better habitat opportunities for local flora and 

fauna.   

 

Rigid and flexible lining materials, Channel roughness is affected by the relative height 

of the roughness compared to the flow depth. Consequently channel roughness increases 

for shallow flow depths and decreases as flow depth increases.   

 

Vegetative Lining; channel roughness varies significantly for vegetative linings, 

depending on the amount of submergence of the vegetation. As vegetation is flexible, 

the amount of submergence will increase as the drag force bends the plant stems toward 
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the channel bed. The Manning's coefficient can be determined practically by the 

Kouwen's method (to be elaborated in Literature. 

 

Vegetative canopy occurs in riverine environment such as in channels or on the flood 

plain, rivers and wetlands. It has a significant influence on the behaviour of the fluvial 

system. It increases the hydraulic resistance and reduces the inflow velocity, thereby 

causing problem on flood control. Meanwhile, it benefits as a storm surge protection, 

providing habitat for aquatic animals, reduce erosion (causing bank/channel 

stabilization) and water quality improvement motivate research of vegetated flows. 

 

Several studies had been done on the resistance of vegetation to flow leading to 

established empirical relationships between vegetation parameters and the flow 

hydraulics (Cowna, 1956). Upon development of measuring devices, research interests 

have been extended to the study of velocity distributions and Reynolds stress. Based on 

this, theoretical analysis, Lopez and Garcia (2001) experimental study Stoesser et al. 

(2006) and mathematical model (Su Xiao-hui, 2003) have become the adopted study 

scheme. The classical issue of different vegetation type and hydraulic conditions of 

flows has restricted the generalization of experimental results. Hence, several 

mathematical models are been put forward based on the experimental results. 

 

Many approaches have been proposed to develop the models. For example Naot, Huang 

(2002) used the continuity equation, energy equation and momentum equation in 3 

dimensions to establish mathematical models. Among other 3-D models include two-

equation 𝑘 − 𝜔 turbulence model (Huai et al., 2009), large Eddy Simulation (LES) 

(Wang et al., 2009; Kubrak et al., 2008) etc. these models yielded results of high 

accuracy, but their limitation is based on complexity with large computation quantities 

and time. 



     

12 

 

Huai et al. (2009) developed a simpler mathematical model with restriction of rigid 

cylindrical stem of low vegetation density and not applicable to compound channel. 

Based on this, for sea grasses and other blade-type vegetation of high flexibility (that is, 

large deflection) and vegetation density, valid mathematical models are needed.  

Another approach regards vegetation layer and soil layer as homogenous and isotropic 

media, and applies the theory of turbulent flow and Biot’s poro-elastic theory to study 

the vegetated flow (Ghisalberti & Nepf, 2004). The method is, however, useful for soil 

of large porosity. 

 

Recently, a one-dimensional numerical that combined the continuity equation and 

momentum equations with Spalart- Allmaras model with a modified length scale which 

is dependent on the vegetation density and vegetation height to water depth ratio as 

turbulence model (Busari & Li, 2015). The vegetation flexibility is accounted for using 

a large deflection analysis Based on the synthetic data an inducing equation is derived 

which relates the Manning roughness coefficient to the vegetation parameters, flow 

depth and a zero-plane displacement parameter. The predictions of the equation depend 

on the accuracy surrounding the estimation of plant’s drag coefficient. 

 

In this study, the analysis of the turbulence structure in the vegetation region of the flow 

with submerged vegetation employs the mixing length approach and modifies its 

expression using Karman similarity theory base on the concept of zero-plane 

displacement to distinguish the regions in the vegetated area. The main force acting on a 

lining composed of large particles is the drag force. The effect is to increase the shear 

parameter and consequently Vegetation. Two major types of Vegetation are widely 

known Emergent Vegetation and Submerged Vegetation (Mazda et al., 1997). 
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The plant life, such as trees, grass, and bushes, always grows in the channels, rivers and 

wetlands. The vegetation can increase the resistance and reduce the velocity in flow, 

which has the negative influence on the flood control. However, the vegetation in flow 

can promote sediment deposition, reduces the river bed erosion, improves water 

environment and restores the river ecological systems. Therefore, it is important to 

study the influences of vegetation on the flow. At earlier time, researchers focused on 

the resistance of vegetation to flow and established some empirical relationships 

between the vegetation and the flow. With the development of measuring equipment, 

researchers became more interested in the distributions of the velocity and the Reynolds 

stress. They adopted three different study schemes, namely experimental study, 

theoretical analysis, and mathematical model. But the difference of vegetation types and 

experimental conditions restrict the generalization of the experimental results. So at 

present researchers put forward several mathematical models based on the experimental 

study. Many approaches have been proposed to construct the models. For example Naot 

et al. (2000) combined the continuity equation, energy equation, and momentum 

equations in three dimensions and established mathematical models, and other 3-D 

models include two-equation k - Z turbulence model and Large Eddy Stimulation 

(LES). The 3-D models can give relatively accurate results, but these models are 

complex with large computation quantities. So, simpler, valid mathematical models are 

needed. Another method is to derive the momentum equations regarding the flow with 

vegetation as a 1-D one. By adopting the mixing length expression, the model can give 

the vertical distributions of the stream-wise velocity and the Reynolds stress. To analyze 

the turbulence structure in the vegetated region of the flow with submerged vegetation, 

this work applies the mixing length approach and improves its expression according to 
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the Karman similarity theory, and adopts the conception of penetrated distance to 

distinguish the regions in the vegetated area.  

 

1.1.1 Mathematical modeling and simulation; numerical methods 

In simple terms, a Mathematical Model is a description of a system using mathematical 

concepts and language. The process of developing a mathematical model is 

termed mathematical modeling. 

Numerical Methods are techniques by which mathematical simulations/models are 

formulated so as to obtain their solutions using arithmetic operations. They usually 

comprise of large number of tedious calculations. Numerical solutions are often 

approximate values which may be the exact solutions, thus, are generally acceptable and 

valid. They can be determined either experimentally or analytically, the analytical 

method is applied in the case of this study as experimental methods have become more 

cumbersome and less economical, whose results are easily prone to error due to 

environmental conditions and human factors. A simple principle of numerical method is 

discretization, which is dependent on time and space of flow considered which gives an 

approximate result. It is also important to note, that the smaller the time interval, the 

more accurate the approximate result obtained.  

 

In Hydraulics, Computational Fluid Dynamics is the use of computer aided design to 

determine, suggest and analyze fluid flow. It is the study of complex fluid flow, by 

solving the equations of flow velocity and motion, known as Navier-Stoke’s Equations 

(also referred to as Momentum equation, is used for the complete set of equations 

solved by numerical methods, which also includes the energy and continuity 

equations.), in a certain geometry and physical environment. Such flow environments 

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Language_of_mathematics
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could be considered waters channels with free surfaces, porous packed beds or porous 

concrete/metallic structures. 

The presence of vegetation significantly have impact on flow conditions, while 

increasing flow resistance by (highly reducing erosion and stabilizing the earth through 

the plant root system), thereby improving the general purity of water. 

 

Turbulent flows in such channels with submerged vegetation evidently have their 

structures depending on the nature of vegetation, its density and how it is arranged. 

Application of Computation Fluid Dynamics is of high significance as compared to 

physical experiment, due to its operation within the evolving Computer Aided Design/ 

Information Technology structure in conjunction with drawing and manufacturing tools, 

making it more accessible than experimental methods. The major issue in river 

modeling is the uncertainty in the predictions of resistance (Galema, 2009). 

 

1.2 Aim and Objectives of the Study 

1.2.1 Aim  

The aim of this research is to obtain the Mathematical Model formulation for 

Submerged Aquatic Canopy (Flexible Vegetation). 

 

1.2.2 Objectives of the study 

This is guided by the following objectives; 

1. To formulate the required theory of vegetated flow. 

2. To evaluate significant hydraulic parameters using dimensional analysis. 

3. To develop a Mathematical model for aquatic canopies. 

4. To simulate mean velocity profile and Reynolds stress for different hydraulic 

conditions. 
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1.3 Statement of the Research Problem 

In the cause of this study, it is likely to encounter some hindrances (not necessarily 

challenges) which may affect the expected outcomes of this research but not damaging 

to a viable result. The expected limitations may result from lack of access to accurate 

experimental findings, and hence the incorporation of Computational Fluid Dynamics to 

investigate the types of flow and further solve the flow equations. The Samples to be 

considered are restricted to blade-type flexible vegetation, whose model may have a 

certain level of variation with other types of vegetation (flexible or rigid). There is a 

likelihood of error due to experimental set-up, which may be experienced during 

physical sampling and hence may not be noticed immediately. Vegetation is observed to 

cause problem of flood control in a channel, which has further reinforced the lapses of 

vegetative cover in a flow channel. 

 

1.4 Justification of the Study 

With the recent intensity of discussions on flooding as a result Climate Change, the 

common acceptance that Vegetation is a cause of hindrance to flow or a cause of flow 

resistance is in high contrast to the findings by research and studies. This has further 

influenced the possibility that vegetation along a flow path or path line does not only 

have environmental benefits, but might also be a means of regulating excesses as a 

result of certain flow conditions. 

The use of Mathematical Model shall further elaborate the significance of the need for 

more results and evidences to reinforce this theory. 

 

The 3-D models can give relatively accurate results, but these models are complex with 

large computation quantities. So, simpler, valid mathematical models are needed. 

Another method is to derive the momentum equations regarding the flow with 
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vegetation as a 1-Dimension. By adopting the mixing length expression, the model can 

give the vertical distributions of the stream-wise velocity and the Reynolds stress, 

though these models always involve some unknown parameters which are difficult to 

estimate. 

 

1.5 Scope of the Study 

With maximum accuracy, this Research is targeted at covering a wide range of 

situations and conditions; hence, it is not limited to a particular type or location of 

Vegetation. For the course of this research, we shall focus on the submerged aquatic 

canopy, study velocity, reconfiguration of flow channels to conserve aquatic life, 

alongside flood/erosion control by the application of Mathematical Model. This research 

shall be taken through the following stages  

Stage one; The introduction and elaboration of aim and objectives 

Stage Two; Detailed review of Literature available  

Stage Three; Method of research process 

Stage Four; Analysis and evaluation of results obtained 

Stage Five; General observations and recommendations 
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CHAPTER TWO 

2.0            LITERATURE REVIEW 

2.1 Hydrodynamics (Fluid Flow) 

Water Systems world over have been considered to have one major effect or the other 

on its surrounding life and properties (Galema, 2009). It is regarded as a major element 

of human existence hence its availability cannot be overemphasized, which has brought 

the need for how to maximize its use with minimal or no danger. In the concept of fluid 

flow in river or water bodies, the velocity may be regarded as the key cause of high or 

low discharge which either ways may result in a disaster or the other, some of the effect 

of flow could be but not limited to Flooding or Erosion. 

Hydrodynamics simply, is the study of fluid in motion. It is a branch of physics that 

deals with the motion of fluids and the forces acting on solid bodies immersed in fluids 

and in motion relative to them.  

 

In the event of a disaster such as flooding, it is essential to have a foresight about the 

water levels and to also deduce the effect of appropriate measures to guard its environs 

against the occurrence of flood. To be able to carry out such operations effectively with 

as high as possible accuracy, the behavior of water bodies are predicted with the use of 

computational flow models. 

 

2.1.1 Types of fluid flow 

There are two major types of fluid flow 

The Laminar and Turbulent flows, but, in major advance situation there is interchange 

that occurs between these flow stages, this referred to as Transitional flow. 

a. Laminar Flow: It is encountered when highly viscous fluids such as oils flow in 

small pipes or narrow passages. 



     

19 

 

b. Transitional Flow: The change from laminar to turbulent flow depends on: the 

geometry, surface roughness, flow velocity, surface temperature, and type of 

fluid etc. 

c. Turbulent Flow: The intense mixing of the fluid in turbulent flow as a result of 

rapid fluctuations enhances momentum transfer between fluid particles, which 

increases the friction force on the surface and thus the required pumping power 

and the friction factor reaches a maximum when the flow becomes fully 

turbulent. 

 

2.2 Channel Linings 

In a flood control system, for every (open) channel flow, the requirement for flood 

control is the fundamental necessity that governs its development. The design of flood-

control systems will usually include a variety of conveyance channels that must behave 

in a stable and predictable way to ensure a known flow capacity will be available for an 

unplanned flood event. As soil erosion always occurs for a flood flow, channel linings 

are required either temporarily or permanently to attain channel stability.  

 

2.2.1 Types of lining in a flow channel 

These linings may be classified as Flexible or Rigid.  

Rigid Linings such as, Channel Pavements of concrete or asphaltic concrete, a variety of 

precast interlocking blocks and articulated mats are encountered. Flexible Linings 

includes loose stones (ripraps) Vegetation, manufactured mats of lightweight materials, 

fabrics or a combination of these materials. The selection of a particular lining is a 

function of the design context, involving issues related to the consequences of flooding, 

the availability of land, and environmental needs. 
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A rigid lining can withstand high discharge and high velocity flow. Flood-control 

channels with rigid linings are often used to reduce the amount of land required for a 

surface drainage system.  However, a flexible lining can respond to a change in channel 

shape, and therefore, it is not so easy to subject it to local damage. It is used as 

temporary lining for control of erosion during construction or reclamation of disturbed 

areas. From environmental considerations, flexible linings are inexpensive, permit 

infiltration and exfiltration, and allow growth of vegetation. Flow conditions in the 

channel lined with flexible materials generally can be made to conform to conditions 

found in a natural channel, thus provide better habitat opportunities for local flora and 

fauna.   

Flexible and Rigid Lining Materials; Channel roughness is affected by the relative 

height of the roughness compared to the flow depth. Consequently channel roughness 

increases for shallow flow depths and decreases as flow depth increases.   

 

2.3 Vegetative Lining 

Channel roughness varies significantly for vegetative linings, depending on the amount 

of submergence of the vegetation. As vegetation is flexible, the amount of submergence 

will increase as the drag force bends the plant stems toward the channel bed. The 

Manning's coefficient can be determined practically by the Kouwen's method. 

Vegetative canopy occurs in riverine environment such as in channels or on the flood 

plain, rivers and wetlands. It has a significant influence on the behaviour of the fluvial 

system. It increases the hydraulic resistance and reduces the inflow velocity, thereby 

causing problem on flood control. Meanwhile, it benefits as a storm surge protection, 

providing habitat for aquatic animals, reduce erosion (causing bank/channel 

stabilization) and water quality improvement motivate research of vegetated flows. 
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Several studies had been done on the resistance of vegetation to flow leading to 

established empirical relationships between vegetation parameters and the flow 

hydraulics (Cowna, 1956). Upon development of measuring devices, research interests 

have been extended to the study of velocity distributions and Reynolds stress. Based on 

this, theoretical analysis Lopez and Garcia (2001), experimental study Stoesser et al. 

(2006) and mathematical model Su Xiao-hui and Chen, (2003) have become the adopted 

study scheme. The classical issue of different vegetation type and hydraulic conditions 

of flows has restricted the generalization of experimental results. Hence, several 

mathematical models are been put forward based on the experimental results. 

 

Many approaches have been proposed to develop the models. For example Naot et al. 

(2002) used the continuity equation, energy equation and momentum equation in 3 

dimensions to establish mathematical models. Among other 3-D models include two-

equation 𝑘 − 𝜔 turbulence model Huai et al. (2009), large Eddy Simulation (LES) 

Wang et al. (2009); Kubrak et al, (2008) etc. These models yielded results of high 

accuracy, but their limitation is based on complexity with large computation quantities 

and time. 

 

Huai et al. (2006), developed a simpler mathematical model with restriction of rigid 

cylindrical stem of low vegetation density and not applicable to compound channel. 

Based on this, for sea grasses and other blade-type vegetation of high flexibility (i.e 

large deflection) and vegetation density, valid mathematical models are needed.  

Another approach regards vegetation layer and soil layer as homogenous and isotropic 

media, and applies the theory of turbulent flow and Biot’s poro-elastic theory to study 

the vegetated flow (Ghisalberti & Nepf, 2004). The method is, however, useful for soil 

of large porosity. 
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Recently, a one-dimensional numerical that combined the continuity equation and 

momentum equations with Spalart- Allmaras model with a modified length scale which 

is dependent on the vegetation density and vegetation height to water depth ratio as 

turbulence model (Nepf & Ghisalberti, 2008). The vegetation flexibility is accounted for 

using a large deflection analysis (Nepf, 1999). Based on the synthetic data an inducing 

equation is derived which relates the Manning roughness coefficient to the vegetation 

parameters, flow depth and a zero-plane displacement parameter. The predictions of the 

equation depend on the accuracy surrounding the estimation of plant’s drag coefficient. 

 

In this study, the analysis of the turbulence structure in the vegetation region of the flow 

with submerged vegetation employs the mixing length approach and modifies its 

expression using Karman similarity theory base on the concept of zero-plane 

displacement to distinguish the regions in the vegetated area. 

 

The Manning's coefficient; is determined as follows, the coefficients a and b are based 

on a classification of the three types of flow conditions with vegetation: Erect, 

Submerged (bent), and Flattened and is determined from a table. The initial shear stress 

that bends the vegetation from an erect position is referred to as the vegetative critical 

shear stress.     

 

For cohesive material, the variation in critical shear stress depends on the concentration 

of the clay particles within the soil.  The mean boundary shear stress is already given by 

the local boundary shear stress varies within a river reach as a consequence of the non-

uniform distribution of velocity in the cross section. For design, it is important to assess 

the maximum shear stress occurred at specific locations in the reach. The maximum 

boundary shear stress is then given by; where Ka=boundary shear-stress adjustment 

factor, depending on the conditions of channel bed, channel bank, and flexible lining. 
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Steep-gradient channel design (Channel gradient greater than 10%)   

The maximum permissible shear stress is less for channels on steep slopes. As velocity 

increases and flow depth decreases the exchange of momentum between portions of the 

channel becomes more efficient. The channel boundary away from the zone of 

maximum shear stress receives increased shear stress that approaches the maximum. 

Localized shear zones are created near irregularities in the lining. This requires linings 

with larger particle sizes. 

 

To determine the flow resistance in channels with large scale roughness the form drag 

of the roughness elements and the distortion of the flow as it pass around roughness 

elements should be accounted for. The flow-resistance formula must take account skin 

friction and form drag. The Manning's form of equation for this flow condition is given 

by Steep-gradient channel design      

Where the function f (Fr) accounts for the free surface drag of the elements, f (REG) 

accounts for the roughness geometry; f (CG) accounts for the relative roughness area.  

The main force acting on a lining composed of large particles is the drag force. The 

effect is to increase the shear parameter and consequently.    

 

2.3.1 Types of vegetation 

Two major types of Vegetation are widely known 

1. Emergent Vegetation and 

2. Submerged Vegetation (Mazda et al., 1997) 

 

2.4 Composite-Section Channel  

Highest shear stresses occur on the bed of channel or on the channel bank near bed. 

Composite lining is generally used with higher strength lining used selectively in high 
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shear areas. Low-flow channels are within the main channel. Channel banks are 

vegetated for environmental or ecological considerations.    

 

2.4.1 Channels with sediment transport  

If there is no lining, sediment will generally be transported in flood control channel. 

Routine maintenance will be required to prevent excessive accumulation. Sediment is 

transported in a stream channel as a combination of bed load (sediment that is in 

frequent contact with the bed of the channel) and suspended load (sediment from the 

bed that is mixed with the water flow by turbulence).   

 

Sediment transport begins when the critical shear stress of the bed sediment is exceeded. 

As the mean shear stress and flow velocity increase, the total rate of sediment-transport 

increases. The sediment particle must be transported by the flow to the cross section.  If 

the supply of sediment from the catchment exceeds the sediment transport at a cross-

section, sediment will accumulate, that is aggrade (Naot, 2000).  

 

The plant life, such as trees, grass, and bushes, always grows in the channels, rivers and 

wetlands. The vegetation can increase the resistance and reduce the velocity in flow, 

which has the negative influence on the flood control. However, the vegetation in flow 

can promotes sediment deposition, reduces the river bed erosion, improves water 

environment and restores the river ecological systems. Therefore, it is important to 

study the influences of vegetation on the flow. At earlier time, researchers focused on 

the resistance of vegetation to flow and established some empirical relationships 

between the vegetation and the flow. With the development of measuring equipment, 

researchers became more interested in the distributions of the velocity and the Reynolds 

stress. They adopted three different study schemes, namely experimental study, 

theoretical analysis, and mathematical model. But the difference of vegetation types and 
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experimental conditions restrict the generalization of the experimental results. So at 

present researchers put forward several mathematical models based on the experimental 

study. Many approaches have been proposed to construct the models. For example, 

Naot combined the continuity equation, energy equation, and momentum equations in 

three dimensions and established mathematical models, and other 3-D models include 

two-equation k Z turbulence model, Large Eddy Stimulation (LES) etc. The 3-D models 

can give relatively accurate results, but these models are complex with large 

computation quantities. So, simpler, valid mathematical models are needed. Another 

method is to derive the momentum equations regarding the flow with vegetation as a 1-

D one. By adopting the mixing length expression, the model can give the vertical 

distributions of the stream-wise velocity and the Reynolds stress. But these models 

always involve some unknown parameters which are difficult to estimate. Recently, a 

new and interesting approach regards vegetation layer and soil layer as homogeneous 

and isotropic media and applies the turbulent flow theory and Biot’s poroelastic theory 

to study the vegetated flow. The method may be useful when the porosity of soil is 

large, while its application in the situation of small porosity still needs to be affirmed. 

To analyze the turbulence structure in the vegetated region of the flow with submerged 

vegetation, this article applies the mixing length approach and improves its expression 

according to the Karman similarity theory, and adopts the conception of penetrated 

distance to distinguish the regions in the vegetated area. In the case of emerged 

vegetation, the vertical distribution of stream-wise velocity is almost uniform, which is 

especially evident when the vegetation is stiff (Huai et al., 2009). 

 

2.4.2 Theory of vegetation flow 

Vegetation flow generally exists in nature, and plays a significant role in flood control 

and sediment transport. In addition, Aquatic plants can purify sewage and provide 
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habitat for microorganism and aquatic animals, which is beneficial to the river 

ecosystem. Therefore, the research on vegetation flow has become a focus in 

environmental hydraulics. 

 

Previous scholars have made numerous achievements on open-channel flow through 

rigid vegetation, but they assumed vertical porosity to be constant during calculation 

and selected rigid cylinder to simulate vegetation in their experiments. For example, 

Ghisalberti and Nepf, (2004), applied a one-dimensional numerical model to predict the 

vertical velocity distribution of submerged vegetation flow by assuming a single mixing 

length above the vegetation. The model was verified with experimental data. Cui and 

Neary (2008) investigated fully developed turbulent flows with submerged vegetation 

by using Large Eddy Simulation. In addition, their study analyzed the role of coherent 

structures on the momentum transfer across the water-plant interface. By placing a 

typical cylindrical stem in the middle of a vegetation zone, Kothyari et al. (2009), used 

strain gauge to directly measure drag force. To investigate the effects of vegetation on 

flow structure, Gao et al. (2011) applied a model with the two-layer mixing length 

turbulence closer to a physical model channel. Based on the Navier-Stokes equation, 

Guo et al. (2000) focused on velocity distributions for laminar and turbulent flows 

through emergent and submerged vegetation.  

 

Their study reported that brief Jacobi elliptical functions can exactly describe laminar 

flow through both emergent and submerged vegetation, whereas turbulent submerged 

vegetation flow was approximated by a hyperbolic sine law. Recently, some scholars 

paid attention to the influence of spatial variation of vegetation on channel flow. For 

example, Berger et al. (2011) measured flow in a channel with spatially varying 

distribution. The variation was achieved by changing longitudinally the stem area 
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number density and stem distribution. But they still did not consider the varying vertical 

porosity. In nature, practical porosity varies vertically with stem thickness and the leaf 

density. If a circular cylinder is selected to simulate rigid vegetation in the numerical 

simulation and experiments, the research results may cause deviation in practical 

engineering. 

 

Many previous researchers modeled vegetation flow in channels as porous media flow 

because of the similarity. For example, Hsieh and Shiu, (2006) investigated the vertical 

velocity profile of flow passing over a vegetal area by applying Boit’s theory of 

poroelasticity and discussed five factors’ effect on vegetation flow. In their researches, 

permeability is the most important factor in affecting flow characteristics. However, 

there was not an accurate expression of permeability in submerged vegetation flow. 

Recently, Xu, have summarized some modifications of the permeability and presented 

an analytical expression for the permeability based on the fractal characters of porous 

media and capillary model. Nevertheless, none of them can be used in submerged 

vegetation flow directly. 

 

In order to obtain more practical results, a truncated cone is selected to simulate rigid 

vegetation to explore the influence of the varied vertical porosity on submerged 

vegetation flow. A three-layer model (upper free water layer, interface layer and 

vegetation layer) for submerged vegetation flow with variation of vertical porosity is 

proposed to predict vertical distribution of velocity. The governing equation for velocity 

in the whole area of submerged vegetation flow is presented by applying the poroelastic 

media flow theory.  

 

The fitting expression of permeability (k) in submerged vegetation flow is also obtained 

from experimental data. With the finite analytic method, the new finite analytic solution 



     

28 

 

for velocity in the vegetation layer and the interface layer is presented with high 

accuracy. Furthermore, the calculated velocity distribution agrees with experimental 

data in a flume experiment. The model and approach presented in this publication can 

predict velocity distribution of submerged vegetation flow in river ecological 

restoration. Even if aquatic plants have complex shapes, the velocity distribution can be 

obtained accurately with the finite analytic method because of considering the influence 

of varying vertical porosity on vegetation flow. Therefore, the research provides a new 

vision for researching submerged vegetation flow in a complex environment. 

 

2.4.3 Methods of solving fluid flow problems in presence of vegetation 

In most ideal conditions, flows are modeled using the Navier-Stokes equation, this due 

the fact that the equation gives the most unbiased and total description of flow of fluids. 

Though, being that the Navier-Stokes equation is not linear, it becomes complicated to 

have a comprehensive computation of flow. This has therefore made it unavoidable to 

obtain a more simplified flow description for practical applications, as illustrated by 

drag-dominated flows, simple shear flows, numerical solution techniques or a simple 

combination of two out of the three. The following major techniques may be employed 

for this process, 

1. Direct Numerical Simulation, DNS (Solving the Navier-Stokes Equation) 

a. Large-Eddy Simulation (LES) 

b. Incorporating Vegetation Flow Resistance 

2. Solving the Reynolds-averaged Navier-Stokes equation 

a. Incorporating Vegetation flow resistance 

3. Using Spatially-averaged flow descriptions. 
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2.5 Dimensional Analysis 

In engineering and science, dimensional analysis is the analysis of the relationships 

between different physical quantities by identifying their base quantities (such 

as length, mass, time, and electric charge) and units of measure (such as miles vs. 

kilometers, or pounds vs. kilograms) and tracking these dimensions as calculations or 

comparisons are performed. The conversion of units from one dimensional unit to 

another is often easier within the metric or SI system than in others, due to the regular 

10-base in all units. Dimensional analysis, or more specifically the factor-label 

method, also known as the unit-factor method, is a widely used technique for such 

conversions using the rules of algebra. 

 

The concept of physical dimension was introduced by Joseph Fourier in 1822. Physical 

quantities that are of the same kind (also called commensurable) (for example, length or 

time or mass) have the same dimension and can be directly compared to other physical 

quantities of the same kind (that is, length or time or mass, respectively), even if they 

are originally expressed in differing units of measure (such as yards and meters). If 

physical quantities have different dimensions (such as length versus mass), they cannot 

be expressed in terms of similar units and cannot be compared in quantity (also 

called incommensurable). For example, asking whether a kilogram is larger than an 

hour is meaningless. 

 

Any physically meaningful equation (and any inequality) will have the same dimensions 

on its left and right sides, a property known as dimensional homogeneity. Checking for 

dimensional homogeneity is a common application of dimensional analysis, serving as a 

plausibility check on derived equations and computations. It also serves as a guide and 
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constraint in deriving equations that may describe a physical system in the absence of a 

more rigorous derivation. 

 

2.6 Mathematical Modeling and Simulation; Numerical Methods 

In simple terms, a Mathematical Model is a description of a system using mathematical 

concepts and language. The process of developing a mathematical model is 

termed mathematical modeling. 

Numerical Methods are techniques by which mathematical simulations/models are 

formulated so as to obtain their solutions using arithmetic operations. They usually 

comprise of large number of tedious calculations. Numerical solutions are often 

approximate values which may be the exact solutions, thus, are generally acceptable and 

valid. They can be determined either experimentally or analytically, the analytical 

method is applied in the case of this study as experimental methods have become more 

cumbersome and less economical, whose results are easily prone to error due to 

environmental conditions and human factors. A simple principle of numerical method is 

discretization, which is dependent on time and space of flow considered which gives an 

approximate result. It is also important to note, that the smaller the time interval, the 

more accurate the approximate result obtained. 

 

In Hydraulics and the likes, we have what is referred to as Computational Fluid 

Dynamics, is the use of computer aided design to determine, suggest and analyze fluid 

flow. It is the study of complex fluid flow, by solving the equations of flow velocity and 

motion, known as Navier-Stoke’s Equations (also referred to as Momentum equation, is 

used for the complete set of equations solved by computation fluid dynamics, which 

also includes the energy and continuity equations.), in a certain geometry and physical 

environment. Such flow environments could be considered waters channels with free 

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Language_of_mathematics
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surfaces, porous packed beds or porous concrete/metallic structures. Application of 

Computation Fluid Dynamics is of high significance as compared to physical 

experiment, due to its operation within the evolving Computer Aided Design/ 

Information Technology structure in conjunction with drawing and manufacturing tools, 

making it more accessible than experimental methods. The major issue in river 

modeling is the uncertainty in the predictions of flow resistance (Galema, 2009). 

For a Vegetated Region, there are four major zones apparent in its Model. 

1. Clear-view Zone 

2. Top Vegetated Zone 

3. Transition Zone and Finally 

4. The Viscous Zone. These shall all be considered in the cause of this Research. 

 

 
Figure 2.1: Sketch of four layer model 

 

For highly flexible blade or under high discharge, the vegetation along the river channel 

can be submerged partially or completely depending on the flow magnitude. The flow 

can be analyzed as a uni-directional fully developed uniform turbulent flow (Figure 

2.1). 

With the recent intensity of discussions on flooding as a result Climate Change, the 

common acceptance that Vegetation is a cause of hindrance to flow or a cause of flow 

resistance is in high contrast to the findings by research and studies. This has further 
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influenced the possibility that vegetation along a flow path or path line does not only 

have environmental benefits, but might also be a means of regulating excesses as a 

result of certain flow conditions. The use of Mathematical Model shall further elaborate 

the significance of the need for more results and evidences to reinforce this theory. 

The 3-D models can give relatively accurate results, but these models are complex with 

large computation quantities. So, simpler, valid mathematical models are needed. 

Another method is to derive the momentum equations regarding the flow with 

vegetation as a 1-Dimension. By adopting the mixing length expression, the model can 

give the vertical distributions of the stream-wise velocity and the Reynolds stress, 

though these models always involve some unknown parameters which are challenging 

to estimate. 

 

Advantages of 1-D models 

1. Accurate hydraulic description in river/channel which behave predominantly one 

– dimensional. 

2. Automatic access to sub-models such as the advanced structure operation 

module and flood forecasting module. 

3. Less computational points than 2-d model, i.e less CPU time. 

4. Easy to overview and comprehend reports. 

 

Disadvantages of 1-D models 

5. Flow paths must be known beforehand in cases where floodplain branches and 

link-channels are established. 

6. Generally more effort in measuring schematization than in 2-D model. 

7. No detailed result (for example, velocity profile) on flood plain. 
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CHAPTER THREE 

3.0         RESEARCH METHODOLOGY 

3.1 Preamble 

To attain significant outcomes, one or two major procedures/stages are likely to be 

taken, for high degree of accuracy. Here, the manner and method of approach that shall 

be implemented in achieving this research result and documentation are stated 

explicitly. 

This study is expected to be conducted through the following stages,   

i. Dimensional Analysis 

ii. Theory of Vegetated flow path 

iii. Derive analytic relationship between velocity, flow and vegetation parameters. 

iv. Application of numerical methods to the equations that relates these parameters. 

v. Develop a Model and use the model to generate Velocity Profile and Reynolds 

stresses. 

 

3.2  Modeling of highly flexible submerged dense vegetation (Buckingham Pi 

method of dimensional analysis) 

 

3.2.1 Simulation procedure 

Using the experimental dataset of Busari and Li, (2014), the simulation consists of five 

(5) categories. For each category, the number of vegetation per unit area, (N) and water 

level, (h) is fixed. Modulus of elasticity, (E) was constant throughout the simulation. 

The plant height (hv) varies from 0.18 to 0.08m for the categories. The range of (h/hv) is 

between 2 and 4.5 for the considered categories. For each category, vegetation stem size 

(𝑏𝑣) varies from 0.002 to 0.006 at 0.0005 intervals. The moment of inertia (I) also 

varies, 𝐼 = 𝑓{𝑏𝑣}. 
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3.2.2 Model outputs and computed variables 

The output of the model are the mean streamwise velocity (U), Reynolds Shear Stresses 

(-/u2w2/) and deflected height of plants, whereas mean velocity, Uav, shear velocity (U*) 

and mean streamwise velocity in the vegetation layer, Uveg are the computed variables. 

3.2.3 Effect of flow on EI 

The flexural rigidity, R is denoted as  

𝑅 = 𝐸𝐼             (3.1) 

By defining R as a function of flow characteristics and vegetation parameters, we have 

𝑅 = 𝑓{𝑔, 𝜌, 𝜇, 𝑈, 𝐴𝑝, ℎ𝑣 , 𝐸, ℎ, 𝑁}         (3.2) 

Where 𝐴𝑝  ≅ 𝑏𝑣ℎ𝑣 cross section area of submerged vegetation. Taking E = constant 

when the bv, perpendicular to flow is unchanged, therefore equation (3.2) becomes 

𝑅 = 𝑓{𝑔, 𝜌, 𝜇, 𝑈, 𝑏𝑣, ℎ𝑣 , ℎ, 𝑁}          (3.3) 

Applying dimensional analysis to equation (3.3), with 𝑈, ℎ𝑣  𝑎𝑛𝑑 𝜌 as repeated 

variables, the relationship between the flexural rigidity, flow parameters and vegetation 

parameters is given by 

                 
𝑅

𝜇𝑈𝑘3 = 𝑓 {𝑅𝑒, 𝐹𝑟,
ℎ

ℎ𝑣
,

𝐷

𝑘ℎ𝑣
, 𝑁𝑏𝑣ℎ𝑣}                   (3.4) 

For dense vegetation of high flexibility, equation 3.4 can be expressed as  

𝑹

𝝁𝑼𝒌𝒅
𝟑 = 𝑓 {𝑹𝒆𝒗𝒆𝒈, 𝑭𝒓,

𝒉

𝒌𝒅
,

𝑫

𝒌ℎ𝑣
, 𝑵𝒃𝒗𝒉𝒗}                    (3.5) 

 

3.3 Theory of Vegetated Flow Path 

In most cases, a flow path is subjected to the growth of lining/vegetation in its route, as 

a result natural habitats and the ecosystem in the flow path are enhanced. Vegetation 

flow generally exists in nature, and plays a significant role in flood control and sediment 

transport. In addition, Aquatic plants can purify sewage and provide habitat for 

microorganism and aquatic animals, which is beneficial to the river ecosystem. 
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Therefore, the research on vegetation flow has become a focus in environmental 

hydraulics. 

 

For highly flexible blade under high discharge, the vegetation along the river channel 

can be submerged partially or completely depending on the flow magnitude. The flow 

can be analyzed as a uni-directional fully developed uniform turbulent flow. By 

considering a control volume in vegetated flow, equation based on the balance of active 

forces can be derived as follows: 

𝜕𝜏

𝜕𝑧
+ 𝜌𝑔𝑆𝑜 − 𝐹𝑐𝑑 = 0          (3.6) 

As the stress τ is made up of the Reynolds stress 𝜏𝑥𝑧 and the viscous stress 𝜏′, the 

density of water 𝜌, the bottom slope 𝑆𝑜 , which serves as an alternate to energy slope 

due to the uniform nature of the flow, and 𝑓𝑐𝑑 is termed drag as a result of vegetation 

which is obtained using: 

𝑓𝑐𝑑 = 
1

2
 𝜌𝑁𝐶𝑑𝑏 𝑣𝑢²                                                 (3.7) 

Where N governed by 

𝑁 =  
1

𝑆𝑥𝑆𝑦 
          (3.8) 

𝑆𝑥 𝑎𝑛𝑑 𝑆𝑦, are the vegetation spacing in the x-y direction respectively, 

𝑏 𝑣 = blade width (m) 

N = number of vegetation 

u = mean flow velocity 

𝐶𝐷 = the drag coefficient of the stem stated by Schlichting. 

To adequately solve the equation (3.6) in the drag zones, we are required to proportion 

the entire flow area into just two zones of external and vegetated zones, as in (Figure 

2.1), since there is no case of drag in any zone above vegetation. The Reynolds stress at 

the subordinate part of the vegetated zone is so little and significantly negligible, 
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considering the outcome of the experiments, hence, we may further partition the 

vegetated zone into two to further make a total of four zones namely: 

1. Clear-water zone, where ℎ𝑑 < z < H, as ℎ𝑣 is deflected height of the vegetation 

with the depth of water as H. Here, drag due to vegetation is not seen and the shear 

stress due to viscosity is too small to be considered, there the gravity and the turbulent 

shear stress balance: 

𝜕𝜏𝑥𝑧

𝜕𝑧
+ 𝜌𝑔𝑆𝑜 = 0          (3.9) 

2. Top vegetated zone, the zone governed by ℎ𝑣 −  𝛿𝑒 < z < ℎ𝑑  with 𝛿𝑒 signifying 

extent of penetration or downward reach, representing the effect of instability close to 

the upper part of a vegetation. In this zone, there is a consideration of drag force, as 

such, the gravity, Reynolds stress and the drag are balance, as illustrated in the 

proceeding equation: 

𝜕𝜏𝑥𝑧

𝜕𝑧
+ 𝜌𝑔𝑆𝑜 −

1

2
 𝜌𝑁𝐶𝐷𝑏 𝑣𝑢² = 0        (3.10) 

3. Transition zone, it states here that   𝛿0 < z <ℎ𝑣 −  𝛿𝑒 , where 𝛿0 is the thickness 

of the zone of viscosity. This zone shows that the whirlpool prompted by the stems is 

little, hence the Reynolds stress can be ignored as well the viscous stress, since the zone 

is a bit far from the bed: 

𝜌𝑔𝑆𝑜 −
1

2
 𝜌𝑁𝐶𝐷𝑏 𝑣𝑢² = 0          (3.11) 

4. Viscous zone, in this zone, here 0< z < 𝛿0 and is ruled by the viscous stress. 

𝜕𝜏′

𝜕𝑧
𝜌𝑔𝑆𝑜 −

1

2
 𝜌𝑁𝐶𝐷𝑏 𝑣𝑢² = 0         (3.12) 

The viscous stress here is determined by the Newton internal friction law, stated as, 

τ' = μ
𝜕𝑢

𝜕𝑧
          (3.13) 
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3.4 Analysis of Flow Structures 

3.4.1 Mix length approach 

The study applies Prandtdl’s mixing length theory to calculate the Reynold’s stress as 

shown in Equations. (3.9), (3.10): 

𝜏𝑥𝑧=𝜌𝑙2 |
𝜕𝑢

𝜕𝑧
|  

𝜕𝑢

𝜕𝑧
                      

(3.14) 

With l representing the mixing length, from the Karman similarity theory Nazarenko 

(2000), it is known that the mixing length can be determined by the actual velocity 

distribution, that is, 

𝑙 = 𝑘
|
𝜕𝑢

𝜕𝑧
|

𝜕²𝑢

𝜕𝑧²

          (3.15) 

 
Where 𝑘 is the Karman constant, 𝑘 = 0.41. Therefore, based on the velocity distribution, 

we can qualitatively analyze the mixing length in the clear water zone and top vegetated 

zone. While we have no past knowledge of the theoretical expression of velocity, this 

article uses the polynomial fitting method to understand the variation trend of velocity. 

According to Equation (3.15) and the polynomial, we obtain the variation of mixing 

length with water depth. 

 

The mixing length in the vegetated zone is approximately a constant, and in the clear-

water zone is proportional to the water depth. Huai et al. (2009) pointed out that the 

flow in the entire area can be regarded as the compressed flow on the new riverbed 

which is made up of vegetation, and presented a river compression coefficient to 

express the compression. From the conception of compressed channel, we give the 

mixing length as: 

 



     

38 

 

l = ηkz, ℎ𝑣 < z < H        (3.16a) 

 

l =  𝑙0, ℎ𝑣 −  𝛿𝑒 < z < ℎ𝑣         (3.16b) 

Where η is the compression coefficient of watercourse, which is = (H – hv)/H, 𝑙0 is the 

constant determined by the continuity of mixing length at z = hv, hence 𝑙0 = ηkhv, 𝛿𝑒 is 

the thickness of clear water zone, hv  is the height of blade. 

 

3.4.2 Thickness of each zone   

It has been stated that the array of the Clear water zone varies from hv to H, while that of 

the proceeding zones has not been specified yet. This is because the viscous zone is 

constantly thin, hence we adopt that its thickness 𝛿𝑒 = 0.005m. Making the distance of 

blade penetration, 𝛿𝑒 , the only problem left, which gives the boundary between the top 

vegetated zone and the transition zone. 

 

The top vegetated zone is also known as vegetation shear layer, Finnigan, (2000) 

suggested that numerous continuous vortices, induced by the K-H instability in the flow 

field, control the exchange of momentum and have a significant effect on the turbulence 

features, the vortices in the clear water zone grow repeatedly downstream, while that in 

the vegetated zone only enter through a fixed depth (𝛿𝑒  in Figure 2.1) from the top of 

vegetation. The distance of entrance 𝛿𝑒  splits the vegetation zone into the top layer and 

the lower layer having heavy turbulence and weak turbulence respectively Nepf and 

Vivoni, (2000), which are correspondingly named as the top vegetated zone, the 

transition zone. Nepf, (2004) gave a calculated result for 𝛿𝑒 in vegetation by 

experimental study, 

𝛿𝑒

ℎ𝑣
=  

0.23 ±0.06

𝐶𝐷𝜆ℎ𝑣
           (3.17) 

Hence, the zone of transition thickness is, ℎ𝑣 −  𝛿𝑒 − 𝛿0  
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3.4.3 Velocities in vegetation and clear water zones 

For the Clear water zone, combining equations (3.14), (3.16) and then write the 

governing equation (3.9) as 

𝜕

𝜕𝑧
(𝑧

𝜕𝑢

𝜕𝑧
) ² +

𝑔𝑆𝑜

(𝜂𝑘)²
= 0         (3.18) 

The effects of surface tension and wind at z = H is negligible, so one boundary 

condition is fixed in the calculation as 

(
𝜕𝑢

𝜕𝑧
)

𝑧=𝐻
= 0          (3.19) 

Applying the boundary condition (3.19) to equation (3.18), we find the analytical 

solution to the stream-wise velocity in the clear water zone: 

𝑢 = 2√
𝑔𝑆𝑜

(𝜂𝑘)²
𝐻 {𝑐𝑜𝑠 (𝑎𝑟𝑐𝑠𝑖𝑛√

𝑧

𝐻
) + 𝑙𝑛 [𝑡𝑎𝑛 (

𝑎𝑟𝑐𝑠𝑖𝑛
𝑧

𝐻

2
)]} + 𝐶    (3.20) 

As C stands for the integral constant that is equal to the velocity at boundary of the 

water surface. 

For the Top Vegetated zone, we put together equations (3.14) and (3.16) and rewrite the 

governing equation (3.10) as, 

𝜕

𝜕𝑧
(

𝜕𝑢

𝜕𝑧
)

2

+
𝑔𝑆𝑜

𝑙0
2 −

𝐶𝐷𝑁𝑏𝑣𝑢²

2𝑙0
2 = 0        (3.21) 

It is challenging to obtain an analytical solution of Equation (3.19), so the finite 

difference methods are adopted for this purpose, 

2
𝑢1−𝑢𝑖−1

∆𝑧
 
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

∆𝑧
2 +

𝑔𝑆𝑜

𝑙0
2 −

𝐶𝐷𝑁𝑏𝑣𝑢2

2𝑙0
2 = 0       (3.22) 

Where, ∆𝑧 is the spatial step, and here ∆𝑧 = 0.0001m, 𝑢1 is the instantaneous velocity at 

the ith node, the boundary condition of the variation in pattern (3.22) is the velocity at z 

= ℎ𝑣 −  𝛿𝑒, which can be determined from equation (3.11) as shown below: 

𝑢𝑧 = ℎ𝑣 − 𝛿𝑒, = u =√
2𝑔𝑆𝑜

𝐶𝐷𝑁𝑏𝑣
        (3.23) 
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The velocity in the transition zone is said to be constant, according to equation (3.11), 

which is also obtainable by equation (3.23).  

In the case of the viscous zone, the governing Equation (3.12) can be interpreted into the 

finite difference scheme as, 

τ' = μ
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

∆𝑧²
+  𝜌𝑔𝑆𝑜 −  

1

2
𝜌𝐶𝐷𝑁𝑏𝑣𝑢𝑖

2 = 0     (3.24) 

Also, the scheme needs two different boundary conditions z = 0 and at z = 

𝛿𝑒 respectively: 

𝑢𝑧=0 = 0           (3.25) 

𝑢𝑧=𝛿0
= √

2𝑔𝑆𝑜

𝐶𝐷𝑁𝑏𝑣
         (3.26) 

A Summary of expected findings are as stated in the aim and objectives of this study. 

 

3.5 Mathematical Model; Direct Numerical Simulation 

The use of DNS in designing a model as adopted in this study, the Navier-Stokes 

equations are resolved to the smallest details of fluid flow (Huthoff et al., 2005). The 

associated Kolmogorov micro-scales, given by the equation 3.27 and 3.28 below 

𝜂𝑘 =  (
𝜐ᶾ

𝜖
) 1

4⁄                                                       (3.27) 

𝜏𝑘 =  (
𝜐

𝜖
) 1

2⁄                                                       (3.28) 

These prescribe the required spatial and temporal resolutions to capture all relevant 

patterns of flow. At smaller scales, forces on molecules governing energy losses, that 

for common flow situations are well represented by an energy sink based on viscosity.  

 

For turbulent flows with relatively small Reynolds numbers and in simple geometric 

domains, DNS has already been applied successfully (Vincent & Meneguzzi 1991; 

Moin & Mahesh 1998; Breugem 2004; Williams & Singh 2004). However, clear 

disadvantages of DNS are the large computational cost, which increases with Reᶾ, Pope 
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(2000) and the amount of memory capacity needed. A simple calculation reveals that 

the passage of a flood wave over a distance of 1km in a typical lowland water body 

could easily require tens or hundreds of years of DNS computation time. 

 

The mean velocity and its instabilities were measured by 3-D Micro Acoustic Doppler 

Velocimeter (Micro ADV). The sample frequency was 50 Hz and the time of testing 

was 30s, so one measurement could collect 1500 samples. Carollo et al. (2002) had 

indicated that more than 700 samples data could obtain a constant velocity and 

guarantee the accuracy of the measurement. We selected two typical locations for the 

measurements. One (Point B) situate behind the rod and the other (Point A) was on the 

centre-line between two cable ties. 

 

3.5.1 Theoretical analysis 

Entire flow analysis 

Mix length 

The study applies Prandtdl’s mixing length theory to calculate the Reynold’s stress as 

shown in Equations. (3.09), (3.10): 

With l representing the mixing length, from the Karman similarity theory l, Nazarenko, 

(2000) it is known that the mixing length can be determined by the actual velocity 

distribution. 

Where k is the Karman constant, K = 0.41. Therefore, based on the velocity distribution, 

we can qualitatively analyze the mixing length in the clear water zone and top vegetated 

zone. While we have no past knowledge of the theoretical expression of velocity, this 

article uses the polynomial fitting method to understand the variation trend of velocity. 

According to Equation (3.15) and the polynomial, we obtain the variation of mixing 

length with water depth. 
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The mixing length in the vegetated zone is approximately a constant, and in the clear-

water zone is proportional to the water depth. Huai et al. (2009) pointed out that the 

flow in the entire area can be regarded as the compressed flow on the new riverbed 

which is made up of vegetation, and presented a river compression coefficient to 

express the compression.  

 

The compression coefficient of watercourse, which is = (H – hv)/H, is the constant 

determined by the continuity of mixing length at z = hv, hence = ηkhv, is the thickness 

of clear water zone, hv is the height of blade. 
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Preamble 

This chapter presents the results as obtained from the procedures stated in chapter three; 

it also discusses the results hence giving a meaningful interpretation to the entire 

process. The output of the model as illustrated in a test analyses are shown the figures. 

From dimensional analysis, 

Geographically, aquatic vegetation appears in numerous varieties of geometrical 

features. Out of the various parameters, here are some standard ranges, enlisted. For a 

normal foliage, 

 0.001 ≤ ℎ ≤ 0.01𝑚 (Leonard and Luther, 1995; Lightbody and Nepf, 2006);  

For sea grasses0.003 ≤ ℎ ≤ 0.01𝑚; 𝑡 ≈ 10−3𝑚; 10 ≤ 𝜆 ≤ 100 𝑚−1(Luhar et al., 

2010; Nepf, 2012);  

For grasses,10 ≤ ℎ𝑣 ≤ 20 𝑐𝑚; 5 × 10−6 ≤ 𝐸𝐼 ≤ 1 × 10−3𝑁𝑚𝑚2 (Nepf & Vivoni, 

2000; Ghisalberti & Nepf, 2002).  

These were applied to the available data set for the simulations, data as shown in Table 

4.1 

 

4.2 Analysis of Results of Application of Buckingham pi (𝝅) Method to the 

Modeling of Highly Flexible Vegetation 

 

This is as illustrated in a test analysis is shown in the sections below. 

4.2.1  Variation mean vertical streamwise velocity with flexibility parameters  

In section 3.1, dimensional analysis was applied to vegetation and flow parameters for 

highly flexible, dense vegetation in submerged states. Based on the results (equation 

3.5), numerical simulations has been carried out relating the mean velocity and 

vegetation parameters for different submergence ratio and results are as shown in Figure 
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4.1. The graphs follow log-law and the coefficients of correlations are approximately 

unity (𝑅 ≅ 1). 

Based on the fitted equations from the curves, a generalized equation that related mean 

vertical flow velocity, mean vegetal velocity, plants flexibility and average deflected 

height of plants is proposed in equation 4.1. The deflection increases with increasing 

flow velocity for higher submergence. 

𝑈

𝑈𝑣𝑒𝑔
= 𝐴′ 𝑙𝑛 (

𝐸𝐼

𝜇𝑈𝑘𝑑
2) + 𝐵′       (4.1) 

Where 𝐴′  and  𝐵′ are approximately equal to 1.6 and 4.8 respectively. 

 

Figure 4.1: Normalized mean vertical streamwise velocity against normalized plant’s 

flexural rigidity for varying submergence ratio 

 

4.2.2 Variation mean vertical streamwise velocity with induced drag coefficient 

Figure 4.2 display the graph of mean streamwise velocity and the vegetation induced 

drag for different submergence ratio. Increasing flow velocity increases the induced 
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drag from the vegetation in order to balance gravity force and the vegetal drag force. 

The fitting equation from the graphs yield equation 4.2 as follows: 

𝑈

𝑈𝑣𝑒𝑔
= 𝜛𝑙𝑛(𝐶𝑑𝐴𝑝) + 𝜉         (4.2) 

Where   𝜛 and 𝜉 are 4.9 and 52.8 respectively for (2 ≤ ℎ
ℎ𝑣

⁄ ≤ 5) 

         

     

Figure 4.2: Normalized mean vertical streamwise velocity against induced drag 

 

4.2.3 Variation mean stem Reynolds number with drag coefficient 

Figure 4.3 shows the relationship between stem Reynolds number and drag coefficient 

under different submergence ratio. It can be observed that the drag coefficient decreases 

with increasing submergence ratio due to streamlining of the vegetation subjected to 

deflection. The stem Reynolds number also decreases with increasing submergence ratio 

due to the diversion of more flows over the vegetation. The Reynolds number increases 
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with the induced drag due to low flow in the vegetation zone and corresponding 

increase in flow velocity in the clear water zone. 

 

      

      
Figure 4.3: Variation of Reynolds number with induced drag for different submergence 

ratio 

 

 

4.3 Velocity Profiles and Reynolds Shear Stresses 

The parameters in the laboratory experiment by Busari, (2016) is as shown in Table 4.1. 

 

Table 4.1: Parameters in the experiments (Busari, 2016) 
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Run bv (m) N (m -²) hv (m) Cd h (m) u (m/s) gSo h/hv 

1. 0.005 5000 0.1 3 0.151 0.03 0.0051 1.51 

2. 0.005 5000 0.1 3 0.253 0.11 0.0100 2.53 

3. 0.005 5000 0.085 3 0.382 0.367 0.0300 4.49 

4. 0.005 5000 0.1 3 0.152 0.098 0.0500 1.52 

5. 0.005 5000 0.1 3 0.151 0.143 0.1001 1.51 

6. 0.005 5000 0.05 3 0.242 0.560 0.0939 4.84 

7. 0.005 5000 0.1 3 0.350 0.205 0.0100 3.5 
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From Figure 4.4, a careful examination shows that the model predicted the velocity 

profiles and the Reynolds shear stresses perfectly well for low submergence ratio due 

low vortex shedding at the interface between the top of the deflected vegetation and the 

clear water zone (Figures 4.4a, 4.4d and 4.4e). However, the prediction became bias 

above the vegetation layers in the other figures due high submergence ratio resulting to 

large diverted flows  above the vegetation and large scale of eddies formulation 

(Figures, 4.4b, 4.4c, 4.4f, and 4.4g). Generally, the model replicated the velocity well 

within the vegetation zone. The maximum Reynolds shear stresses increases with 

submergence ratio. The zero shear stresses in the vegetation layer resulted from a 

balance between the gravity and vegetation drag forces. 

 

 

   
Figure 4.4a:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN1) 
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Figure 4.4b:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN2) 

 

 

   
Figure 4.4c:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN3) 

 

  
Figure 4.4d:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN4) 
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Figure 4.4e: Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN5) 

 

 

   
Figure 4.4f:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN6) 

 

 

        
Figure 4.4g:  Plot of mean vertical streamwise velocity profile and Reynolds shear 

stresses (RUN7) 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The study formulate the required theory of vegetated flow based on vertical mean 

streamwise velocity and Reynolds shear stresses. 

The most significant hydraulic parameters have been evaluated using Buckingham pi 

(π) method of dimensional analysis. The variation of the parameters yield a hydraulic 

roughness equation relating the flow and the plants flexibility. More so, a clear 

explanation of increasing Reynolds number with increasing submergence ratio has been 

provided. 

A Mathematical model has been developed for aquatic canopies. The model predicts 

well the velocity within and above the vegetation zone as well as the Shear stresses.  

Finally, the model outputs were compared with the experimental datasets. The 

predictions of mean velocity profile and Reynolds stress for different hydraulic 

conditions shows the capability of the model in modeling of vegetated open channel 

flows. 

 

5.2 Recommendations 

i. This thesis aimed at reinforcing sustainable development and Engineering 

growth through innovations, hence, it is advised to start at lower Engineering 

Researchers from as low as undergraduate levels. However Vegetation and other 

linings maybe effective in checking erosion and similar environmental 

conditions in place of the conventional use of concrete and other rigid structures, 

where the channel longitudinal slope is less than (<) 10%. 
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5.3 Contribution to Knowledge 

The study applies a modified one-dimensional (1-D) hydraulic model to replicate the 

vegetative velocity profile and Reynolds stresses from laboratory experimental and field 

datasets found in laboratory investigation from Literature. The model is as shown 

 
𝑹

𝝁𝑼𝒌𝒅
𝟑 = 𝑓 {𝑹𝒆𝒗𝒆𝒈, 𝑭𝒓,  

𝒉

𝒌𝒅
,

𝑫

𝒌ℎ𝑣
,  𝑵𝒃𝒗𝒉𝒗}  flow parameters used from 

dimensional analysis 

𝜕

𝜕𝑧
(𝑧

𝜕𝑢

𝜕𝑧
) ² +

𝑔𝑆𝑜

(𝜂𝑘)²
= 0  

𝜕

𝜕𝑧
(

𝜕𝑢

𝜕𝑧
)

2
+

𝑔𝑆𝑜

𝑙0
2 −

𝐶𝐷𝑁𝑏𝑣𝑢²

2𝑙0
2 = 0       

2
𝑢1−𝑢𝑖−1

∆𝑧
 
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

∆𝑧
2 +

𝑔𝑆𝑜

𝑙0
2 −

𝐶𝐷𝑁𝑏𝑣𝑢2

2𝑙0
2 = 0 
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APPENDIX 

Script Code 

c......velocity profile and Reynolds shear stresses for flexible vegetation 

        real*4 u1(2000),xn1(2000),xn2(2000),xn3(2000),u2(2000) 

        real*4 rke(2000),rys(2000),dist(2000),z(2000),zp(2000) 

        rk=0.41 

        sigm=0.6667 

        cb1=0.1355 

        cb2=0.622 

        cv1=7.1 

        cw1=cb1/rk**2+(1+cb2)/sigm 

        cw2=0.3 

        cw3=2. 

        pi=3.14159265 

        xnu=1.e-6 

        cmu=0.09 

        rho=1000.         

        open(1,file='1dfl.dat') 

        open(7,file='vel.out') 
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        open(8,file='rke.out') 

        open(9,file='rys.out') 

        open(10,file='xnu.out') 

        open(13,file='defl.out') 

        read (1,*) yh,aa,kmax,uav,dt,nt,iout,gs0,yhv,frk,rz0 

        read (1,*) cd,width,EI 

        read (1,*) alpha,beta 

        

c       stokes layer 

c        stok=sqrt(2.e-6/omega) 

c        ustar=u0/25. 

        ustar=sqrt(yh*gs0) 

        ustar1=ustar 

c       grid layout 

        if (aa.eq.1.) then 

        dz0=yh/(kmax-1) 

        else 

        dz0=yh*(aa-1)/(aa**(kmax-1)-1) 

        endif 
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c        write (*,*) 'dz0 ', dz0 

        zp(1)=0. 

        dist(1)=0. 

        do k=1,kmax-1 

        z(k)=dz0*aa**(k-1) 

        zp(k+1)=zp(k)+z(k) 

        dist(k+1)=max(zp(k+1)-rz0*yhv,zp(k+1)*(1-rz0)) 

        enddo 

        write (7,'(1000f12.5)') 0.,(zp(k)/yh,k=1,kmax) 

        write (7,'(1000f12.5)') 0.,(zp(k),k=1,kmax) 

        write (10,'(1000f12.5)') 0.,(zp(k)/yh,k=1,kmax) 

        write (8,'(1000f12.5)') 0.,(zp(k)/yh,k=2,kmax-1) 

        write (9,'(1000f12.5)') 0.,(zp(k)/yh,k=2,kmax-1) 

        write (7,'(1000f12.5)') 0.,(zp(k)*ustar/xnu,k=1,kmax) 

        write (7,'(1000f12.5)') 0.,0.,(1./rk*log(zp(k)*ustar/xnu)+8.5,    &   k=2,kmax) 

c        write (10,'(1000f12.5)') 0.,(zp(k)*ustar/xnu,k=1,kmax) 

c        write (8,'(1000f12.5)') 0.,(zp(k)*ustar/xnu,k=2,kmax-1) 

c        write (9,'(1000f12.5)') 0.,(zp(k)*ustar/xnu,k=2,kmax-1) 

        write (10,'(1000f12.5)') 0.,(zp(k),k=1,kmax) 
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        write (8,'(1000f12.5)') 0.,(zp(k),k=2,kmax-1) 

        write (9,'(1000f12.5)') 0.,(zp(k),k=2,kmax-1) 

c        write (*,*) (z(k),k=1,kmax) 

c        write (*,*) yh  

c        pause 

c       intitial condition 

c       power law 

        al=0.1 

        u0=uav*(1+al) 

        do k=1,kmax 

        if (k.gt.1) then 

        u1(k)=u0*(zp(k)/yh)**al 

        else 

        u1(1)=0. 

        endif 

        xn1(k)=ustar*rk*zp(k) 

        xn2(k)=3.*xn1(k) 

        xn3(k)=xn2(k) 

        enddo 
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c        write (*,*) (xn1(k),k=1,200) 

c        pause 

        hv=yhv 

        do it=1,nt 

        t=it*dt 

c 

c       boundary conidtion 

        u1(kmax)=u1(kmax-1) 

c        u1(1)=0. 

c        u2(1)=0. 

        u2(kmax)=u1(kmax) 

        xn1(1)=0. 

        xn2(1)=0. 

        xn3(1)=0. 

        ustar1=u1(2)/(1./rk*log(zp(2)*ustar1/xnu)+8.5) 

c        ustar2=u1(3)/(1./rk*log(zp(3)*ustar/xnu)+8.5) 

c        ustar=0.5*(ustar1+ustar2) 

        xn1(2)=ustar1*rk*zp(2) 

        xn2(2)=xn1(2) 
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        xn3(2)=xn2(2)ro766i6 

        u1(1)=u1(2)-ustar1**2/xn1(2)*(zp(2)-zp(1))*2 

c       u1(2)=2*ustar/rk+u1(1) 

c        u1(2)=ustar*(1./rk*log(zp(2)*ustar/xnu)+5.0) 

        u2(1)=u1(1) 

c        u2(2)=u1(2) 

 

c        xn1(1)=xn1(2) 

c        xn2(1)=xn2(2) 

c        xn3(1)=xn3(2) 

        xn1(kmax)=xn1(kmax-1) 

        xn2(kmax)=xn2(kmax-1) 

        xn3(kmax)=xn3(kmax-1) 

 

c 

c       determine deflected height 

c 

        if (mod(it,iout).eq.0) then 

        Q=0. 
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        do k=2,kmax-1 

c        if (zp(k).lt. 2./3*hv+1./3*yhv) then 

c        if (zp(k).lt.yhv) then 

        if (zp(k).lt.hv) then 

c       single stem         

        Q=Q+0.5*rho*u1(k)*abs(u1(k))*z(k-1)*width*cd 

        endif 

        enddo 

c        Q=Q/(2./3*hv+1./3*yhv) 

c        Q=Q/yhv 

        Q=Q/hv 

        qyn=abs(Q*yhv**3/EI) 

c        qyn=abs(Q*yhv**2/EI) 

c        qyn=abs(Q*hv*yhv**2/EI) 

        qyn = min (1000., qyn) 

        if (qyn.gt. 100.) then 

       rkend=yhv*(5.4583e-18*qyn**6-1.9598e-14*qyn**5+2.8577e-11*qyn**4 

     &  -2.1897e-8*qyn**3+9.5802e-6*qyn**2-2.5010e-3*qyn+0.55942) 

        else          
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       rkend=yhv*(-1.1093e-12*qyn**6-7.9352e-12*qyn**5+7.3301e-8*qyn**4 

     &  -1.2141e-5*qyn**3+8.5414e-4*qyn**2-3.171e-2*qyn+1.0143) 

        endif 

        hv=rkend 

        endif 

 

        do k=2,kmax-1 

           difz1=(xnu+(xn1(k)+xn1(k+1))*0.5) 

     &       *(u1(k+1)-u1(k))/z(k) 

           difz2=(xnu+(xn1(k)+xn1(k-1))*0.5) 

     &       *(u1(k)-u1(k-1))/z(k-1) 

           diffz=(difz1-difz2)/(z(k)+z(k-1))*2. 

        u2(k)=u1(k)+dt*(gs0+diffz) 

 

        if (zp(k).le.hv) u2(k)=u2(k)-dt*frk*u1(k)*abs(u1(k))*0.5 

c       secondary current 

        if (zp(k).gt.hv) u2(k)=u2(k)-dt*0.5*(1+tanh(beta*(zp(k)/yh- 

     &   alpha)))*gs0 
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c        write (*,*) u1(k),diffz,xn1(k) 

        enddo 

c        pause 

        do k=2,kmax-1 

        sv=abs((u1(k+1)-u1(k-1))/(z(k)+z(k-1))) 

           difz1=(xnu+(xn2(k)+xn2(k+1))*0.5) 

     &       *(xn2(k+1)-xn2(k))/z(k) 

           difz2=(xnu+(xn2(k)+xn2(k-1))*0.5) 

     &       *(xn2(k)-xn2(k-1))/z(k-1) 

           diffz=(difz1-difz2)/(z(k)+z(k-1))*2. 

           xnuxyz=((xn2(k+1)-xn2(k-1))/(z(k)+z(k-1)))**2            

        phi=xn2(k)/xnu 

        fv1=phi**3/(phi**3+cv1**3) 

        fv2=1-phi/(1+phi*fv1)         

        svb=sv+xn2(k)*fv2/(rk*dist(k))**2 

c....to avoid potential stability problem 

        svb=max(svb,0.3*sv) 

        rrr=xn2(k)/svb/(rk*dist(k))**2 

        rrr=min(rrr,10.) 



     

64 

 

        ggg=rrr+cw2*(rrr**6-rrr) 

        fw=ggg*((1+cw3**6)/(ggg**6+cw3**6))**(1./6) 

           xn3(k)=xn2(k)+dt*(cb1*svb*xn2(k)+ 

     &       (diffx+diffy+diffz+cb2*xnuxyz)/sigm 

     &       -cw1*fw*xn2(k)**2/dist(k)**2) 

        enddo 

        do k=2,kmax-1 

        xn2(k)=xn3(k) 

        phi=xn2(k)/xnu 

        fv1=phi**3/(phi**3+cv1**3) 

        xn1(k)=xn2(k)*fv1 

        u1(k)=u2(k) 

        enddo 

 

        if (mod(it,iout).eq.0) then 

        do k=2,kmax-1 

        sv=abs((u1(k+1)-u1(k-1))/(z(k)+z(k-1))) 

        rke(k)=xn1(k)*sv/sqrt(cmu)*1.3 

        rys(k)=xn1(k)*(u1(k+1)-u1(k-1))/(z(k)+z(k-1)) 
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        enddo 

        uav1=0. 

        do k=1,kmax-1 

        uav1=0.5*(u1(k)+u1(k+1))*z(k) 

        enddo 

        uav1=uav1/yh 

        time=t 

c        write (7,'(1000e12.4)') time,(u1(k)/ustar,k=1,kmax) 

        write (7,'(1000e12.4)') time,(u1(k),k=1,kmax),uav1 

        write (8,'(1000e12.4)') time,(rke(k),k=2,kmax-1) 

        write (9,'(1000e12.4)') time,(rys(k),k=2,kmax-1) 

        write (10,'(1000e12.4)') time,(xn1(k),k=1,kmax) 

c        write (8,'(1000e12.4)') time,(rke(k)/ustar**2,k=2,kmax-1) 

c        write (9,'(1000e12.4)') time,(rys(k)/ustar**2,k=2,kmax-1) 

c        write (10,'(1000e12.4)') time,(xn1(k)/xnu,k=1,kmax) 

        write (13,'(1000e12.4)') time,hv,hv/yh,qyn 

        endif 

        if (mod(it,iout*10).eq.0) then 

        write (*,*) 'time step = ',it 
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c       residual stress 

        ustar2=ustar**2 

        do k=kmax,2,-1 

        if (zp(k).lt.hv) ustar2=ustar2- 

     &   frk*u1(k)*abs(u1(k))*0.5*z(k-1) 

        enddo 

        write (*,*) 'ustar2', ustar2,ustar**2,ustar1**2 

        endif 

        enddo 

        stop 

        end 


