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The prediction of propagation loss is a practical non-linear function approximation
problem which linear regression or auto-regression models are limited in their ability to
handle. However, some computational Intelligence techniques such as artificial neural
networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been
shown to have great ability to handle non-linear function approximation and prediction
problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial
basis function neural network (RBF-NN) and an ANFIS network were trained using
actual signal strength measurement taken at certain suburban areas of Bauchi metro-
polis, Nigeria. The trained networks were then used to predict propagation losses at the
stated areas under differing conditions. The predictions were compared with the
prediction accuracy of the popular Hata model. It was observed that ANFIS model
gave a better fit in all cases having higher R2 values in each case and on average is
more robust than MLP and RBF models as it generalises better to a different data.

Keywords: propagation loss; function approximation; signal strength; empirical
models; neuro-fuzzy

1. Introduction

Radiowave propagation mechanisms are very complex and diverse owing first to the
attenuation that occurs in the media between the receiver and the transmitter and the
additional components that often stem from diffraction, scattering, reflection and refrac-
tion phenomena. Hence, the prediction of the propagation path loss is of importance in the
design and planning of wireless telephone network either mobile or fixed wireless-access
systems. Unfortunately, existing empirical models though easier to implement are less
sensitive to the environment’s physical and geometrical structures and not so accurate
while the deterministic models which though are more accurate are computationally
inefficient and requires more detailed site-specific information which are often difficult
to come by (Abhayawardhana, Wassell, Crosby, Sellars, & Brown, 2005).

Computational intelligence techniques have been suggested as an alternative to linear
regression or auto-regression models which are limited in their ability to deal with natural
phenomenon whose trend is generally non-linear. According to Alotaibi, Abdennour, and
Ali (2008), artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems
(ANFISs) are among such newest techniques. Other authors affirm that the neural network
(NN) can be used to predict these losses from measured or theoretically produced data
with such parameters of the environment as the mean height and mean dimensions of the
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buildings and the mean width of the roads (Neskovic, Neskovic, & Paunovic, 2002;
Popescu, Kanatas, Angelou, Nafornita, & Constantinou, 2002; Ruben, Lorenzo, & Narcis,
2000).

In this study, ANN and ANFIS techniques were used to predict radio propagation path
loss based on signal strength measurement taken in several locations in the suburban areas
of Bauchi metropolis in Nigeria. These data were used to train these networks which were
later used to predict the loss in some specified locations both with sparse and dense
vegetations. The results of the predictions were compared for the different techniques and
also compared with that of the popular Hata (1980) model.

2. Artificial neural networks

ANNs are non-linear statistical data modelling tools inspired by biological NNs and have
found applications for function approximations, pattern recognition, prediction/forecast-
ing, optimisation, system identification, classification, data processing, robotics and con-
trol (Anil, Jianchang, & Mohiuddin, 1996). ANNs can be viewed as weighted directed
graphs in which artificial neurons are nodes and directed edges are connections between
neuron inputs and outputs. Figure 1 shows a simple neuron model. A neuron is the
processing element that takes a number of inputs, weigh them, sums them up together
with an additional scalar bias parameter and uses the result as the argument for a single-
valued function (svf) called the activation function, f(u).

The neuron is trained to minimise the error based on some optimisation criteria, where
[x1, x2, …, xn] is the vector of the input, [wi1… win] is the weight, b is an additional scalar
bias parameter and the output error, e, is given by

e ¼ t � y (1)

ANNs are composed of several interconnected neurons and the connection patterns can be
of Feed-Forward network architecture or Recurrent (or Feedback) network architecture.
However, the different network architectures must be trained with a set of typical input/
output data sets using appropriate learning algorithms. The final weight vector of a
properly trained NN represents its knowledge about the problem.

Application of ANN to the prediction of field strength and propagation loss in
different environments by Bargallo (1998), Ruben et al. (2000), Neskovic et al. (2002),
Popescu et al. (2002), Cerri, Cinalli, Michetti, and Russo (2004) and Östlin, Zepernick,
and Suzuki (2004) shows a very good performance. The main discrepancy between each

+f(u)
euΣ
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wi2

win

x1

x2

xn

Figure 1. A simple neuron model.
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work is given by the classification of the input and the network architecture. Two most
common types of NNs used for prediction purposes are the multilayer perceptron neural
network (MLP-NN) and the radial basis function neural network (RBF-NN).

2.1. Multilayer perceptron neural network

Feed-forward networks are extensions of the neuron model and have a layered structure
with each layer consisting of units receiving their input from units in a layer directly
below and sending their output to units in a layer directly above themselves. Figure 2
shows the configuration of a multilayer perceptron feed-forward network with one hidden
layer and one output layer (Popescu et al., 2002).

The overall output of the MLP network is described by Equation (2) as

y ¼ Fo

XM
j¼0

w0j Fh

XN
i¼0

wjixi

 ! ! !
(2)

where woj represents the synaptic weight from neuron j in the hidden layer to the single
output neuron, xi represents the ith element of the input vector, Fh and Fo are the
activation function of the neurons from the hidden layer and output layer, respectively,
and wji are the connecting weights between the neurons of the hidden layer and the inputs.

During the training phase, the network adaptively adjusts the free parameters of the
system, such as the weight and the bias based on the mean squared error, mse, defined by
Equation (3). The task of the training process is to minimise the mse by optimising the
weights using a set of training data.

mse ¼ 1

2

XN
i¼1

yi � ŷið Þ2 (3)

where yi is the desired output value and ŷi is the output predicted by the network.
Although multilayered networks with any number of layers may be built, Östlin et al.

(2004) have shown that NN with only one hidden layer can approximate any function
with finitely many discontinuities to an arbitrary precision, provided the activation func-
tions of the hidden units are non-linear. However, for their particular application, Ruben
et al. (2000) have shown that RBF-NNs when trained with supervised learning algorithms
can outperform MLP-NNs in terms of generalisation ability.

x0

x1

xn-1

... ... ...

wji

y

woj

Input
layer

Hidden
layer

Output
layer

Figure 2. Configuration of the MLP.
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2.2. Radial basis function neural network

The RBF network has a feed-forward structure with a single hidden layer of K locally
tuned nodes as shown in Figure 3. Unlike the MLP, the output of hidden nodes are not
calculated using the weighted-sum activation function; rather the output of each hidden-
node, φk is obtained by the closeness of input X to an M-dimensional parameter vector µk
associated with the kth hidden node (Popescu et al., 2002).

The response characteristics of the kth hidden node is taken as

’k ¼ P
X � μkkk
σ2k

� �
(4)

where k = 1, 2,…, K and P is a strictly positive radial symmetric function, µk is the centre of
the function and σk is the ‘width’. Given an input vector X, the output of the RBF network is
the L-dimensional activity vector Y, whose lth component (l = 1, 2, …, L) is given by

Yl Xð Þ ¼
XK
k¼1

wlk’k Xð Þ (5)

The most popular choice for the function φ is a multivariate Gaussian function with an
appropriate mean μk and autocovariance σk (Popescu et al., 2002). In this study, a
Gaussian basis function is assumed for the hidden nodes given as ’k .

’k ¼ exp � X � μkk2
��

2σ2k

 !
(6)

2.3. Neuro-Fuzzy techniques

Fusion of ANN and fuzzy inference systems (FIS) has attracted the growing interest of
researchers in various fields of science and engineering. An analysis reveals that the

1

k

K

i

x1

x2 ϕk (x)

xM

w1

wk

wK

Input layer Hidden layer Output layer

ϕ1 (x)

xm

ϕK (x)

y

Figure 3. RBF-NN architecture.
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drawbacks pertaining to ANN and FIS approaches seem complementary and therefore it is
natural to consider building an integrated system combining the concepts. This so-called
neuro-fuzzy (NF) networks have been used to solve complex problems.

2.3.1. Adaptive neuro-fuzzy inference systems

ANFIS was first proposed by Jang (1993) to combine the learning ability of NNs with the
ability of fuzzy systems to interpret imprecise information. ANFIS model is one of the
implementations of a first-order Takagi–Sugeno–Kang (TSK) fuzzy inference system. An
example of such fuzzy inference system with two inputs, x and y and one output which is
a function of the inputs is shown in Figure 4. For TSK inference system, the rule is
constructed as

If x is Ai and y is Bi, then fi = pix + qiy + ri
where Ai and Bi are the linguistic labels in the input spaces x and y, respectively, and fi

is a local function which depends on x and y.
Layer 1 is the fuzzification layer which generates membership grades for each

linguistic label for any input value; these values are defined by membership functions
(MFs). The common MFs are the bell and triangular functions depicted in Figure 5. The
bell function used in this study is described by the three premise parameters, a, b and c in
Equation (7).

A
1

A
2

B
1

B
2

N

N

=

=

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

w1 (x,y)

w2 (x,y)

x

y

w1

w1

w1 + w2

w2

w2

w1 + w2

w1f1

w2f2

f(x,y)

f(x,y)

f(x,y)

Figure 4. The structure of adaptive neuro-fuzzy inference system.

(a) (b)

ba c

µ

a b c

µ

Figure 5. (a) Bell and (b) triangular MFs.
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μAiðxÞ ¼
1

1þ x�ci
ai

h i2bi (7)

Layer 2 is the application of the fuzzy operator and the output of every node in this
layer is the product of all the incoming signals into the node as given by Equation (8).

wi ¼ μAiðxiÞXμBiðyiÞ (8)

Layer 3 produces an output which is the so-called normalised firing strength of each rule
according to Equation (9):

wi ¼ wiP2
j¼1

wj

(9)

Layer 4 is a layer of adaptive nodes each with a node function:

wi fi ¼ wiðpixþ qiyþ riÞ (10)

where, pi, qi and ri are called consequent parameters.
Layer 5 is the defuzzification layer that generates a crisp output given by Equation (11).

f ðx; yÞ ¼
X
i

wi fi ¼
P
i
wi fiP

i
wi

(11)

where wi fi is the output of node i in layer 4 denoting the consequent part of rule i.
ANFIS uses a hybrid learning algorithm which is a combination of gradient descent

and the least-squares approximation method in order to train the network. Gradient
descent back-propagation algorithm is used for training the premise parameters and
least-squares approximation is used for training the consequent parameters.

Several applications of ANFIS are reported. However, the first open literature that
used it as wireless signal predictor is Alotaibi et al. (2008) which was based on a private
mobile network- terrestrial trunked radio (TETRA) network. The result of their compara-
tive work shows that the ANFIS prediction model outperforms some other empirically
based prediction models and is also marginally better than RBF-NN predictor. Also,
ANFIS was used by Turkan, Berna, and Apaydin (2010) to predict path loss based on
data obtained in the 900 MHz band in Harbiye region of Istanbul, Turkey. ANFIS
prediction error was shown to be less than that obtained using Bertoni–Walfish model.

3. Data collection

The signal strength along a straight path was measured at intervals of 200 m of varying
radial distances from the test BSs (Figure 6). The longitude and latitude of each point Ai,
(i = 1, 2, …, n), as well as the elevation above sea level were taken using eTrex Garmin
GPS receiver while a NOKIA3310 handset equipped with net-monitor software was used
to measure the received signal strength level. Four different BSs in Bauchi belonging to

6 A.U. Usman et al.
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the same GSM service provider were selected and labelled as BS1, BS2, BS3 and BS4 for
investigation.

Measurements were taken several times at each point between June and May 2011, for
each site on the Broadcast Control Channel (BCCH) control channel to eliminate the
effect of frequency hopping and downlink power control algorithms. The coverage
distances were 2 km, 2.4 km, 3.8 km and 4.4 km from BS1, BS2, BS3 and BS4,
respectively, beginning at 200 m away from the base station (BS).

Further measurement was conducted in the Federal Polytechnic, Bauchi, in an envir-
onment well characterised with dense vegetation as shown in Figure 7. The typical neem
trees in the area have an average height of 6 m and the trees are nearly equally spaced
with a separation of 3 m. The leaves of neem trees form a dense canopy and the
environment and weather condition were wet. The measurement was taken up to
2.4 km from another BS (BS5) within the mainlobe of the sector.

BS

200 m 200 m 

A1 A2 An

Figure 6. Measurement set-up.

Figure 7. Test environment from BS5.
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3.1. Model input selection

In developing a satisfactory prediction model, the selection of the input variables is crucial
since the input is useful only if it is closely associated with the measured path loss values.
Analysis of result in Usman, Okereke, and Omizegba (2011) shows that the four measured
path loss data sets exhibit significant positive linear correlation with distance (ranging
from 0.63 to 0.94).

Also, the targeted area in this study is considered as a flat area because its terrain
undulation standard deviation is less than 17 m (Hernando & Pérez-Fontán, 1999), and the
percentages of area covered by buildings for the suburban BSs are fixed for each BS.
Thus, their effects on the signal strength are negligible, and as such, only one input to the
network is used which is the distance between the mobile station (MS) and BS, and the
single output is the path loss at each location. However, the algorithm was also tested on
data from an area with dense vegetation.

3.2. MLP networks design procedure

Our first approach to fit the N data points of distance versus path loss pairs for each
location is using the MLP-NN. A 1-3-1 feed-forward network is created having a one-
hidden layer with three Tansig neurons in the hidden layer and a linear neuron in the
output layer to approximate the path loss using the newff function of MATLAB (Neural
Network Toolbox™). The learning phase of the network proceeds by adaptively adjusting
the free parameters of the system (weights and biases) based on the mean square error
(mse) between the predicted and measured path loss. Normally, the NN starts with random
initial weights, and as such the results will differ every time it is run. Therefore, we set the
random seed using rand (‘seed’, 62734347) to avoid this randomness.

The MLP network was trained using the Levenberg–Marquardt algorithm (LMA)
which has been shown to conver considerably faster for function approximation problems
than the Back-Propagation Algorithm (BPA) with adaptive learning rates and momentum.
The LMA update rule is given by

ΔW ¼ ðJTJ þ μIÞ�1JTe (12)

where e is an error vector, µ is a scalar parameter,W is a matrix of network weights and J is
the Jacobian matrix of partial derivatives of the error components with respect to the
weights. For large values of µ, the above expression approximates the gradient descent
method. On the other hand, for small values of µ, Equation (12) becomes the Gauss–
Newton Method which is faster and more accurate near a minimum of the error surface. The
goal is then to adjust µ, to approach the Gauss–Newton method as quickly as possible.

3.2.1. Improving generalisation

One of the problems that occur during NN training is called overfitting. The error on the
training set is driven to a very small value, but when new data is presented to the network
the error is large. The network has memorised the training examples, but it has not learned
to generalise to new situations. Reducing the size of a network can prevent overfitting,
unfortunately, it is difficult to know beforehand how large a network should be for a
specific application. Two other methods for improving generalisation that are implemen-
ted in Neural Network Toolbox™ software are regularisation and early stopping. These

8 A.U. Usman et al.
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apply to those situations in which it is intended to make the most of a limited supply of
data as our case in this research is and are thus utilised.

3.3. RBF networks design procedure

Another approach we used to find a function which fits the N data points of distance and
Path loss pairs is with a radial basis network which is a network with two layers – a
hidden layer of radial basis neurons and an output layer of linear neurons. The newrb
function of MATLAB (Neural Network Toolbox™) is used to create a radial basis
network that approximates a function defined by the set of data points. In addition to
the input training set and targets, newrb takes two arguments, the sum-squared error goal
and the spread constant, and returns the desired network.

The RBF training parameter spread controls the smoothness and generalisation of the
approximation. The larger the spread is the smoother the function approximation will be.
Too large a spread means a lot of neurons will be required to fit a fast changing function.
Too small a spread means many neurons will be required to fit a smooth function, and the
network may not generalise well. The RBF was trained with different values of spread
constant and the optimal value of 0.2873 was obtained.

3.4. ANFIS design procedure

Apart from specifying the number of network inputs, designing an ANFIS network
involves the need to specify the number of fuzzy membership function (MF) per each
input, the type of fuzzy MF, and the number of epochs (Alotaibi et al., 2008). In this
study, the type of the MF is chosen to be the bell-shaped function, and the number of
fuzzy MF per each input and the number of epochs are 3 and 100, respectively.

3.5. Choice of optimal parameters

The various network parameter values were optimised using trial and error until the
minimal mse is achieved and presented in Table 1.

3.6. Data division

The goal of the prediction is not only to produce small errors for the set of training
examples, but to be able to perform well with examples, i.e. receiver locations, not used in
the training process. A model that performs well in previously unseen situations is said to
have good ‘generalisation properties’. It is clear that the latter is of utmost importance in
practical propagation prediction situations, where the intention is to use the propagation

Table 1. The value of MLP, RBF and ANFIS prediction model parameters.

Parameter Value

No. of MLP hidden neurons 3
No. of epochs 100
No. of RBF neurons Default length of data
RBF’s spread 0.2873
Error goal 0.01
No. of ANFIS MF 3

International Journal of Electronics 9
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loss prediction model to determine the coverage area of potential transmitter locations for
which none or limited measured data is available (Alotaibi et al., 2008; Bargallo, 1998;
Popescu et al., 2002).

Thus, after specifying the network structure and parameters, we created two data sets:
a training set and a testing test. The training set was used for the NN’s training process,
and to generate the fuzzy rules as well as tune the MFs. The trained networks were then
tested with the testing samples to give us a sense of how well the network will do when
applied to data different from those used during training. Also, for better generalisation
the inputs and targets of both the training and testing data were normalised so that they
have zero mean and unity variance. The output was reversed before the graphical plots.

3.7. Statistical basis of performance evaluation

The performances of the models developed in this study were evaluated based on;
absolute mean error (μ), standard deviation (σ) and root mean square error (RMSE) as
described in Usman et al. (2011) and R2 values.

R-square (R2) measures how successful the fit is in explaining the variation of the
data- the goodness of fit. It is also called the square of the multiple correlation coefficients
and the coefficient of multiple determinations and given by:

R2 ¼ 1�
PN
i¼1

yi � ŷið Þ2

PN
i¼1

yi � �yið Þ2
(13)

where yiis the measured path loss, ŷi is the predicted path loss and �yi is the mean of the
measured path loss.

R2 can take on any value between 0 and 1, but can be negative for models without a
constant, which indicates that the model is not appropriate for the data. A value closer to 1
indicates that a greater proportion of variance is accounted for by the model.

4. Results and discussion

In the first comparative approach, the overall data were divided into 60% training set and
40% testing set and the performance of the models were compared using the afore
mentioned statistical measures – µ, σ, RMSE and R2 – and the results are presented in
Tables 2–5, respectively. From these tables, it is found that performance of the proposed

Table 2. µ Comparison between AI models and the Hata empirical model.

Model

Base station MLP RBF ANFIS Hata

BS1 3.235 3.548 2.671 9.419
BS2 3.166 3.073 2.997 6.341
BS3 4.189 3.713 3.470 9.992
BS4 7.701 4.740 4.230 11.011
Average 4.572 3.769 3.342 9.191

10 A.U. Usman et al.
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ANFIS predictor model on average is the best having the lowest µ, σ, RMSE and the
highest R2 when compared to all other models. The average RMSE for the ANFIS model
is 4.387 dB, whereas for the MLP, RBF and Hata models, it is 5.949, 4.785 and
10.976 dB, respectively. The RMSE values of AI predictors for all BSs are almost half
of the corresponding values of the Hata empirical model. Also, we observed that in all the
statistical measures, the performance of the ANFIS model is followed closely with the
RBF predictions.

4.1. Training with one BS and testing with another

A second comparison approach taken is based on training the prediction models with
data from one base station and testing with data from another BS. This approach is
employed to test the robustness or the generalisation properties of the models as

Table 3. σ Comparison between AI models and the Hata empirical model.

Model

Base station MLP RBF ANFIS Hata

BS1 2.798 2.835 2.189 5.010
BS2 2.314 2.256 2.284 5.582
BS3 4.098 3.452 3.596 5.634
BS4 6.071 3.286 3.329 7.547
Average 3.820 2.957 2.849 5.943

Table 4. RMSE comparison between AI models and the Hata empirical model.

Model

Base station MLP RBF ANFIS Hata

BS1 4.264 4.529 3.444 10.663
BS2 3.915 3.807 3.762 8.442
BS3 5.828 5.043 4.967 11.458
BS4 9.789 5.759 5.373 13.341
Average 5.949 4.785 4.387 10.976

Table 5. R2 comparison between AI models and the Hata empirical model.

Model

Base station MLP RBF ANFIS Hata

BS1 0.870 0.853 0.915 0.221
BS2 0.858 0.866 0.869 0.419
BS3 0.391 0.544 0.557 –1.661
BS4 0.487 0.822 0.845 0.040
Average 0.652 0.771 0.797 –0.245

International Journal of Electronics 11
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summarised in Table 6. Similarly, Figures 8–11 show the graphical presentation of the
various model predictions in comparison with the measured data from the test BSs. Hata
model predictions presented here are based on the network configurations of the test
BSs for appropriate comparison. Again, we observed that ANFIS model gave a better fit
in all cases having higher R2 values in each case and on average is more robust as it
generalises better to a different data. Hata model on average gave R2, RMSE, σ and µ
values of −0.241, 9.739, 5.634 and 8.059 dB, respectively, and thus is the worst model
for this environment.

Table 6. Summary of training with one BS and testing with another.

Training/testing BSs

Model Perf. indices BS2/BS4 BS4/BS1 BS1/BS2 BS1/BS3 Average

MLP µ (dB) 7.354 5.558 4.640 4.951 5.625
σ (dB) 4.468 4.192 2.992 2.998 3.662
RMSE (dB) 8.543 6.855 5.484 5.709 6.648
R2 0.470 0.672 0.718 0.204 0.516

RBF µ (dB) 7.426 4.272 3.461 4.708 4.967
σ (dB) 4.454 4.622 2.998 1.649 3.431
RMSE (dB) 8.599 6.151 4.535 4.961 6.061
R2 0.463 0.736 0.807 0.399 0.601

ANFIS µ (dB) 7.493 4.303 3.551 4.226 4.893
σ (dB) 4.106 2.285 2.287 1.750 2.607
RMSE (dB) 8.492 4.828 4.195 4.540 5.514
R2 0.476 0.837 0.835 0.496 0.661

Hata µ (dB) 9.027 8.450 5.457 9.301 8.059
σ (dB) 6.441 5.129 4.887 6.077 5.634
RMSE (dB) 10.991 9.773 7.251 10.943 9.739
R2 0.123 0.333 0.506 −1.925 −0.241
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Figure 8. Model predictions for training with BS2 and testing with BS4.
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4.2. Testing on data from tree-dominated area

The result of a third approach which tested the algorithm on data from a tree-dominated
area is presented in Table 7 and plotted in Figures 12 and 13. ANFIS on average gave the
best prediction with the highest R2 value of 0.732 against the Hata model with the lowest
R2 value of 0.135.
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Figure 9. Model predictions for training with BS4 and testing with BS1.
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Figure 10. Model predictions for training with BS1 and testing with BS2.
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5. Conclusion

Recent developments using Artificial Intelligent techniques for prediction purposes have
been explored to model radio propagation path loss based on data taken from an existing
GSM network in the surburban areas of Bauchi, Nigeria. The use of MLP, RBF and
ANFIS networks for the prediction of the propagation loss was shown to provide a
significant improvement over conventional empirical models like Hata model even in
an environment with dense vegetation.
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Figure 11. Model predictions for training with BS1 and testing with BS3.

Table 7. Summary of training with one BS and testing on tree-dominated area.

Training/testing BSs

Model Perf. indices BS4/BS5 BS1/BS5 Average

MLP µ (dB) 5.094 8.187 6.641
σ (dB) 4.340 5.967 5.153
RMSE (dB) 6.574 9.983 8.279
R2 0.791 0.517 0.654

RBF µ (dB) 7.617 6.732 7.175
σ (dB) 4.026 4.476 4.251
RMSE (dB) 8.537 7.980 8.258
R2 0.647 0.692 0.669

ANFIS µ (dB) 6.004 5.687 5.845
σ (dB) 5.308 4.239 4.773
RMSE (dB) 7.866 6.986 7.426
R2 0.700 0.764 0.732

Hata µ (dB) 10.060 10.060 10.060
σ (dB) 9.182 9.182 9.182
RMSE (dB) 13.360 13.360 13.360
R2 0.135 0.135 0.135
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It was also discovered that ANFIS model is more robust when used on data different
from the training set. ANFIS was shown on average to provide standard error improve-
ment on the order of 1 dB over other AI models and 4 dB over Hata model. Hata model
on average gave R2, RMSE, σ and µ values of −0.241, 9.739, 5.634 and 8.059 dB,
respectively, and performs worse than even the worst AI model, MLP-NN, which gave R2,
RMSE, σ and µ values of 0.516, 6.648, 3.662 and 5.625 dB, respectively. ANFIS on
average gave the best prediction with the highest R2 value of 0.732 against the Hata model
with the lowest R2 value of 0.135 even when tested on data from dense vegetation.
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Figure 12. Model predictions for training with BS4 and testing with BS5.
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Figure 13. Model predictions for training with BS1 and testing with BS5.
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