Advances in Science, Technology & Innovation IEREK Interdisciplinary Series for Sustainable Development

Mustapha Meghraoui · Narasimman Sundararajan · Santanu Banerjee · Klaus-G. Hinzen · Mehdi Eshagh · François Roure · Helder I. Chaminé · Said Maouche · André Michard *Editors*

Advances in Geophysics, Tectonics and Petroleum Geosciences

Proceedings of the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), Tunisia 2019

Advances in Science, Technology & Innovation

IEREK Interdisciplinary Series for Sustainable Development

Editorial Board

Anna Laura Pisello, Department of Engineering, University of Perugia, Italy Dean Hawkes, University of Cambridge, Cambridge, UK Hocine Bougdah, University for the Creative Arts, Farnham, UK Federica Rosso, Sapienza University of Rome, Rome, Italy Hassan Abdalla, University of East London, London, UK Sofia-Natalia Boemi, Aristotle University of Thessaloniki, Greece Nabil Mohareb, Faculty of Architecture - Design and Built Environment, Beirut Arab University, Beirut, Lebanon Saleh Mesbah Elkaffas, Arab Academy for Science, Technology, Egypt Emmanuel Bozonnet, University of la Rochelle, La Rochelle, France Gloria Pignatta, University of Perugia, Italy Yasser Mahgoub, Qatar University, Qatar Luciano De Bonis, University of Molise, Italy Stella Kostopoulou, Regional and Tourism Development, University of Thessaloniki, Thessaloniki, Greece Biswajeet Pradhan, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia Md. Abdul Mannan, Universiti Malaysia Sarawak, Malaysia Chaham Alalouch, Sultan Qaboos University, Muscat, Oman Iman O. Gawad, Helwan University, Egypt Anand Nayyar¹, Graduate School, Duy Tan University, Da Nang, Vietnam Series Editor

Mourad Amer, International Experts for Research Enrichment and Knowledge Exchange (IEREK), Cairo, Egypt

Advances in Science, Technology & Innovation (ASTI) is a series of peer-reviewed books based on important emerging research that redefines the current disciplinary boundaries in science, technology and innovation (STI) in order to develop integrated concepts for sustainable development. It not only discusses the progress made towards securing more resources, allocating smarter solutions, and rebalancing the relationship between nature and people, but also provides in-depth insights from comprehensive research that addresses the 17 sustainable development goals (SDGs) as set out by the UN for 2030.

The series draws on the best research papers from various IEREK and other international conferences to promote the creation and development of viable solutions for a **sustainable future and a positive societal** transformation with the help of integrated and innovative science-based approaches. Including interdisciplinary contributions, it presents innovative approaches and highlights how they can best support both economic and sustainable development, through better use of data, more effective institutions, and global, local and individual action, for the welfare of all societies.

The series particularly features conceptual and empirical contributions from various interrelated fields of science, technology and innovation, with an emphasis on digital transformation, that focus on providing practical solutions to **ensure food, water and energy security to achieve the SDGs.** It also presents new case studies offering concrete examples of how to resolve sustainable urbanization and environmental issues in different regions of the world.

The series is intended for professionals in research and teaching, consultancies and industry, and government and international organizations. Published in collaboration with IEREK, the Springer ASTI series will acquaint readers with essential new studies in STI for sustainable development.

ASTI series has now been accepted for Scopus (September 2020). All content published in this series will start appearing on the Scopus site in early 2021.

More information about this series at https://link.springer.com/bookseries/15883

Mustapha Meghraoui · Narasimman Sundararajan · Santanu Banerjee · Klaus-G. Hinzen · Mehdi Eshagh · François Roure · Helder I. Chaminé · Said Maouche · André Michard Editors

Advances in Geophysics, Tectonics and Petroleum Geosciences

Proceedings of the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), Tunisia 2019

Editors Mustapha Meghraoui EOST - Institut Terre et Environnement de Strasbourg University of Strasbourg, CNRS - UMR Strasbourg, France

Santanu Banerjee Department of Earth Sciences Indian Institute of Technology Bombay Mumbai, Maharashtra, India

Mehdi Eshagh University West Trollhättan, Västra Götalands Län, Sweden

Helder I. Chaminé Laboratory of Cartography and Applied Geology School of Engineering (ISEP), Polytechnic of Porto Porto, Portugal

André Michard Paris-Sud University Paris, France Narasimman Sundararajan Department of Earth Sciences Sultan Qaboos University Muscat, Oman

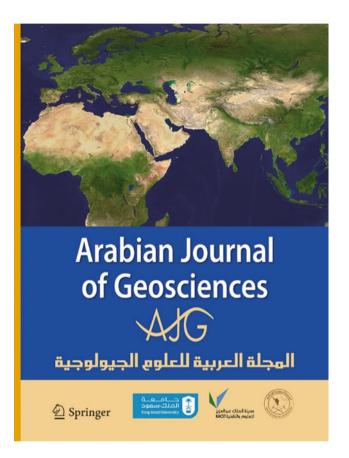
Klaus-G. Hinzen University of Cologne Bergisch Gladbach Nordrhein-Westfalen, Germany

François Roure Géosciences IFP Energies Nouvelles Rueil-Malmaison, France

Said Maouche Center for Research in Astronomy Astrophysics and Geophysics Alger, Algeria

ISSN 2522-8714ISSN 2522-8722 (electronic)Advances in Science, Technology & InnovationIEREK Interdisciplinary Series for Sustainable DevelopmentISBN 978-3-030-73025-3ISBN 978-3-030-73026-0 (eBook)https://doi.org/10.1007/978-3-030-73026-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022


This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

About the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), Tunisia 2019

The Arabian Journal of Geosciences (AJG) is a Springer journal publishing original articles on the full range of Earth sciences in partnership with the Saudi Society for Geosciences. The journal focuses on, but is not limited to, research themes which have regional significance for the Middle East, the Euro-Mediterranean, Africa, Asia and some other regions of the world. The journal receives on average 4000 submissions a year and accepts around 1000 papers for publication in its 24 annual issues (acceptance rate around 25%). It benefits from the participation of an editorial team of 100 international Associate Editors who generously help in evaluating and selecting the best papers.

In 2008, Prof. Abdullah Al-Amri, in close partnership with Springer, founded the Arabian Journal of Geosciences (AJGS). In 2018, the journal celebrated its 10th anniversary. To mark the event, the founder and Editor-in-Chief of the AJGS organized the 1st Conference of the Arabian Journal of Geosciences (CAJG) in close collaboration with Springer on 12–15 November 2018. The conference was an occasion to endorse the journal's long-held reputation

and brought together 450 authors from 70 countries, who work in the wide-ranging fields of Earth sciences. The dynamic four-day conference in a stimulating environment in Hammamet, Tunisia provided attendees with opportunities to share their latest unpublished findings and learn about the latest geosciences studies. The event also allowed attendees to meet and talk to the journal's editors and reviewers. Three field trips were organized alongside the conference, and many participants enjoyed the wonders of the geology of Tunisia.

In a continuation of the successful 1st CAJG, the 2019's conference aimed to bring geoscientists from all over the world to present and discuss their most recent findings. The 2nd CAJG was an occasion to publish the newest findings in its proceedings by Springer and a special issue in the AJGS, with a clear mission to drive greater North-South (Europe-Africa) scientific cooperation and to open doors to new and enriching collaborations with geoscientists based in Asia and the Americas. The 2nd CAJG devoted a special session (workshop) to studies focusing on unraveling the undiscovered oil and gas resources in the Mediterranean and North Africa. Many international experts took part in the discussion.

The conference covered all cross-cutting themes of geosciences and focused principally on the following 15 tracks:

- Track 1. Atmospheric Sciences, Meteorology, Climatology, Oceanography
- Track 2. Biogeochemistry, Geobiology, Geoecology, Geoagronomy
- Track 3. Earthquake Seismology and Geodesy
- Track 4. Environmental Earth Sciences
- Track 5. Exploration & Theoretical Geophysics, Seismic & Well Logging Methods, Mathematical Geosciences
- Track 6. Geo-Informatics and Remote Sensing
- Track 7. Geochemistry, Mineralogy, Petrology, Volcanology
- Track 8. Geological Engineering, Geotechnical Engineering
- Track 9. Geomorphology, Geography, Soil Science, Glaciology, Geoarchaeology, Geoheritage
- Track 10. Hydrology, Hydrogeology, Hydrochemistry
- Track 11. Marine Geosciences, Historical Geology, Paleoceanography, Paleoclimatology
- Track 12. Numerical and Analytical Methods in Mining Sciences and Geomechanics
- Track 13. Petroleum and Energy Engineering, Petroleum Geochemistry
- Track 14. Sedimentology, Stratigraphy, Paleontology, Geochronology
- Track 15. Structural Geology, Tectonics and Geodynamics, Petroleum Geology

The dynamic four-day conference provided more than 400 attendees with opportunities to share their latest unpublished findings and learn the newest geosciences studies. The event also allowed attendees to meet and discuss with the journal's editors and reviewers.

More than 710 short contributing papers to the conference were submitted by authors from more than 74 countries. After a pre-conference peer review process by more than 500 reviewers, 462 papers were accepted. These papers are published as chapters in the conference proceedings which consist of four edited volumes, each edited by the following group of Arabian Journal of Geosciences (AJGS) editors and other guest editors:

Proceedings Volume 1: New Prospects in Environmental Geosciences and Hydrogeosciences

Haroun Chenchouni: University of Tebessa, Tebessa, Algeria

Helder I. Chaminé: School of Engineering—ISEP, Polytechnic of Porto, Porto, Portugal Md Firoz Khan: Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Contents

Earthquake Seismology and Geodesy (T3): IGCP-659 Meeting—Seismic Hazard and Risk Assessment in Africa	
Tsunami Hazard Along the Eastern African Coast from Mega-Earthquake Sources in the Indian Ocean Amir Salaree and Emile A. Okal	3
Preliminary Tsunami Hazard Map for Africa Asem Salama, Mohamed ElGabry, Mustapha Meghraoui, and Hesham Hussein Moussa	7
The AD 365 Crete Earthquake/Tsunami Submarine Impacton the Mediterranean RegionAlina Polonia, Alberto Armigliato, Luca Gasperini, Giulia Giorgetti,Gianluca Pagnoni, Stefano Tinti, and Filippo Zaniboni	11
The AD 365 Alexandria (Egypt) Tsunami, Revisited Stathis C. Stiros	15
Seismotectonics of the Easternmost Cyprus Arc: Implications for Tsunami Hazard Assessment	19
Seismic Hazard and Risk in Africa, a Hidden Hazard in an ExtremeVulnerable ContextMustapha Meghraoui	23
Seismotectonics of the Khurutse Region, Botswana	25
Kinematic and Elastic Modeling of Fault-Related Folds: Examples from Active Structures of the Tell Atlas (Northern Algeria)	29
Magmatic Rifting and Seismicity in Afar and Northern Main EthiopianRift (MER)Atalay Ayele	33
Architecture and Evolution of the Kivu Rift Within the Western Branch of the East African Rift System: Implications for Seismic Hazard Assessment Damien Delvaux, Gloire Bamulezi Ganza, Silvanos Bondo Fiama, and Hans-Baalder Havenith	37
Stress Transfer and Poroelasticity Associated to Major Earthquakes:From the East African Rift to the African-Eurasian Plate BoundaryJugurtha Karciche and Mustapha Meghraoui	41

Seismic Risk in Ghana: Efforts and Challenges	45
Toward an African Seismological Data Center	49
An Overview of the Seismic Hazard in Sudan	53
Seismic Hazard Assessment in Kenya and Its Vicinity Sophie J. Kipkwony, Justus. O. Barongo, Edwin. W. Dindi, Josphat. K. Mulwa, and Georges. T. Mavonga	57
Probabilistic Seismic Hazard Assessment for the Main Cities Along the Continental Section of the Cameroon Volcanic Line	63
Assessing Seismic Hazard for the Democratic Republic of Congo and Its Vicinity Based on New Seismic Zoning Source Model	67
AEON Transdisciplinary Natural Baseline in the Karoo (South Africa) Moctar Doucouré	71
Earthquake Geodesy	
Active Deformation in Tunisia from Continuous GPS Data	79
Active Deformation in Northern Algeria from Continuous GPS Measurements and Recent Seismic Data Abdel Karim Yelles-Chaouche, Amina Bougrine, Eric Calais, and Mohamed Hamdache	83
How InSAR Can Help on the Seismic Hazard Assessment Esra Cetin	87
Surface Deformation Monitoring from SAR Interferometry for SeismicHazard Assessment Around Major Active Faults: Case of ZemmouriEarthquake (Algeria)Samir Aguemoune, Abdelhakim Ayadi, Aichouche Belhadj-Aissa,and Mourad Bezzeghoud	91
The Use of an ELMI for Measuring the Movement of the Trougout	
and the Ajdir-Imzouren Faults—(North East of the RIF)MOROCCO—Between 2017 and 2019Morad Taher and Taoufik Mourabit	95
Land and Sea Earthquakes Triggered by Groundwater Fluctuation Due to the Hydrologic Cycle in South Korea Suk Hwan Jang, Kyoung Doo Oh, Jae-Kyoung Lee, and Jun Won Jo	101
Seismotectonics, Archeoseismology and Active Faulting	

Advances in Archaeoseismology	107
Klaus-G. Hinzen and Sharon Kae Reamer	

Possible Tectonic Styles of Future Earthquakes from Seismic MomentTensors of Previous Events: An Example in ItalySilvia Pondrelli, Carlo Meletti, Andrea Rovida, Francesco Visini, Vera D'Amico,and Bruno Pace	113
Stress Transferred by the May 2010 Beni-Ilmane Seismic Sequence	117
Contribution of the Pleiade Satellite Image Processing in the Characterization of the Active and Seismogenic Structures in the Tell Atlas (Northern Algeria) Souhila Bagdi-Issaad, Mustapha Meghraoui, Elise Kali, and Ahmed Nedjari	123
Historical and Archeoseismic Investigations in Kairouan Region(Central Tunisia): Evidence for the 9 October 859 AD Large EarthquakeNejib Bahrouni, Mustapha Meghraoui, Klaus Hinzen, Mohamed Arfaoui,Ridha Maamri, and Faouzi Mahfoud	127
Algerian's Seismic Catalogue Completeness from Historical InstrumentalMonitoring, Archeoseismological and Paleoseismological StudiesAbdelhakim Ayadi, Farida Ousadou, Kahina Roumane, Assia Harbi, Said Maouche,Mourad Bezzeghoud, and Mustapha Meghraoui	131
Analysis of the Bejaia Seismic Sequence of 2012–2013, Northeastern, Algeria Oualid Boulahia, Issam Abacha, Abdelkarim Yelles-Chaouche, Hichem Bendjama, and Abdelaziz Kherroubi	135
The Hammam Melouane Seismic Sequences (North Algeria) 2014–2016 Abdel Karim Yelles-Chaouche, Chafik Aidi, Mohamed Fedl Elah Khelif, Abderahmene Haned, Hamoud Beldjoudi, Fethi Semmane, Adel Chami, and Athman Belheouane	141
Statistical Study of Earthquake Swarms in Northeastern Algeria with SpecialReference to the Ain Azel Swarm; Hodna Chain, 2015Issam Abacha, AbdelKarim Yelles-Chaouche, and Oualid Boulahia	145
Deep Rupture Process of the 3rd of April, 2017 Earthquake in Stable Continental Region, Botswana Jima Asefa and Atalay Ayele	149
Moho Depth Variation and Crustal Velocity Structure in Northern Algeriaby Teleseismic Receiver Function AnalysisBillel Melouk, Abdelkrim Yelles-Chaouche, Juan Jose Galiana-Merino, Chafik Aidi,and Fethi Semmane	155
Shear Velocity Structure of the Crust and Upper Mantle of North Algeriafrom Rayleigh Wave Dispersion AnalysisZohir Radi, Abdelkrim Yelles-Chaouche, and Salim Guettouche	159
S-Wave Velocity Structure in the City of Oued-Fodda, Northern Algeria, by Inversion of Rayleigh Wave Ellipticity	163
Studying the Evolution of Earthquake Network Measures for the Main Shockof the 24th of June 2015 in EgyptKhaled Omar and Dimitris Chorozoglou	167

Geodesy and Exploration & Theoretical Geophysics

Gravity Data Assessment as Support to Explore Surface and Subsurface Structural Elements of a Challenged Area Case Study: Northern East Tunisia Benen Sarsar Naouali, Imen Hamdi Nasr, Rihab Ghallali, and Mohamed Hadi Inoubli	287
The Relationship Between Surface Atmospheric Potential Gradient Dropand Earthquake PrecursorsXiaobing Jin, Junwei Bu, Jingxuan Tian, Xiaoxiao Wu, Guilan Qiu, and Liang Zhang	291
Key Issues in the Research on Loess Flow Slides Under Hydraulicand Gravitational Soil ErosionAidi Huo, Jianbing Peng, Yuxiang Cheng, Xiaolu Zheng, and Yiran Wen	295
Determination of Sedimentary Thickness of Parts of Middle Benue Trough,Northeast Nigeria, Using High-Resolution Aeromagnetic DataKazeem Adeyinka Salako, Abbass Adebayo Adetona, Abdulwaheed Adewuyi Rafiu,Usman Defyan Alhassan, Aisha Alkali, and Abdulateef Aliyu	299
Geological and Geophysical Characterization Using Electrical Resistivity Imaging of Certain Landslides at Djimla region (Jijel, Northeast Algeria) Hassiba Kherrouba, Mohammed Lamara, and Riad Benzaid	305
Computer Technology for Modeling the Sources of Magnetic Anomalies in the Layers of the Earth's Crust. Natalia Fedorova, Peter Martyshko, and Alexey Rublev	309
Singular Spectral Analysis Applied to Magnetotelluric Time Series Collected at Medea (Algiers, Algeria) to Detect Electromagnetic Signal Signature Associated with Earthquake: First Results	313
Migration of GPR Data Based on Phase-Shifting Interpolation Method in Attenuation Media Jun Chen and Dingkai Chen	317
Characterizing the Subsurface Structure Using 3-D Magnetotelluric Inversion: A Case Study of M'rara Basin, Algerian Sahara	321
Design of New Model for Water Saturation Based on Neural Networkfor Low-Resistivity Phenomenon (Algeria)Said Eladj, Mohamed Zinelabidine Doghmane, and Brahim Belahcene	325
Change in Streaming Potential with Earthquakes	329
Radio Direction Finding for Short-Term Crustal Diagnosis (Italy)	333
Application of Electrical Imaging and Seismic Tomography in the Studyof Viaduct Site in Tabellout, Jijel, Northeast AlgeriaRiad Benzaid, Mustapha Tekkouk, and Chahra Yellas	341

Tectono-Sedimentary Evolution of the Uranium Deposits in the DASA Graben	640
(Northern Niger)	649
Impact of Bioturbation on Quality of Early-Middle Miocene ShorefaceReservoirs, Coastal Swamp Depobelt, Niger Delta Basin (Nigeria)Ayonma Wilfred Mode, Christopher Jackson, Ogechi Clementina Ekwenye,and Sunny Chibuzor Ezeh	655
Orientation of Maximum Horizontal Stress in Pilot Well of Akan Oilfield, Russia Ilmir Nugmanov, Karsten Reiter, and Andreas Henk	659
Geological Structure and Hydrocarbon Bearing Prospects of the Northwestern Part of the Persian Gulf Basin (The Western Desert of Iraq) Kostantin Osipov and Enver Ablya	663
The Glacial Episodes of the Arabian Peninsula Abdulaziz Laboun	667

Determination of Sedimentary Thickness of Parts of Middle Benue Trough, Northeast Nigeria, Using High-Resolution Aeromagnetic Data

Kazeem Adeyinka Salako, Abbass Adebayo Adetona, Abdulwaheed Adewuyi Rafiu, Usman Defyan Alhassan, Aisha Alkali, and Abdulateef Aliyu

Abstract

The sedimentary thickness covering parts of middle Benue Trough, Northeast Nigeria, was determined with the purpose of assessing its hydrocarbon potentials. Longitude 9° E covers the area—10° E, and Latitude 8° N—9.50° N, and with total area coverage of $18,150 \text{ km}^2$. Polynomial fitting method of order one was used to obtain its regional-residual separation. The residual data obtained were analysed using the analytic signal, source parameter imaging (SPI) and spectral depth analytical techniques. Results from the analytic signal technique showed that the area is made up of high and low magnetic anomaly amplitude. The high amplitude anomaly dominates the northern region while the southern region is dominated with low amplitude anomalies. Similarly, results from the SPI revealed a sedimentary thickness ranging between 101.8 and 2550.0 m while that of the spectral analytical method showed that the sedimentary thickness of the study area ranges between 1.20 and 3.20 km. The highest sedimentary thickness from both methods agreed in terms of space. This sedimentary covered could be found around the central and southern parts of the study area, which also agreed with the areas with low amplitude anomalies of the analytical signal results. The estimated depths from the spectral analytical method were contoured to portray the basement isobaths for the study area. The sedimentary thickness of about 3 km *might* be sufficient for hydrocarbon maturation in the area.

Department of Geophysics, Federal University of Technology, Minna, Nigeria

M. Meghraoui et al. (eds.), Advances in Geophysics, Tectonics and Petroleum Geosciences,

Advances in Science, Technology & Innovation, https://doi.org/10.1007/978-3-030-73026-0_69

Keywords

Aeromagnetic data • Polynomial fitting • Source parameter imaging • Spectral analytical • Sedimentary thickness and hydrocarbon maturation

1 Introduction

Exploration of the subsurface Earth has been of particular concern to geoscientists who seeks to investigate the subsurface structures using various means, basically to acquire the knowledge of the subsurface lithology, for exploration activities such as minerals and hydrocarbon (oil/gas) deposits for economic growth of a nation (Azizi et al. 2015; Farhi et al. 2016; Adewumi and Salako 2018).

Efforts are geared towards the exploration of the Cretaceous segment of Nigeria looking for possible hydrocarbon presence and bearing in mind its mineral resources potentialities. The present study seeks to estimate the sedimentary thickness over parts of the middle Benue trough section of the Cretaceous sediments of Nigeria for possible hydrocarbon potentials. If it is probable, it will add to the country's hydrocarbon reserve, however, with the confirmation of other methods.

The magnetic method is **one** of the best geophysical techniques (in terms of coverage and or as a reconnaissance tool) used in delineating or estimating sedimentary thickness and other subsurface structures (Azizi et al. 2015; Farhi et al. 2016; Adewumi and Salako 2018; Salako and Udensi 2015).

1.1 Location and Brief Geology

The study area (Fig. 1) lies in the north-eastern part of Nigeria and lying between Latitudes $8^{\circ}.00'$ N and $9^{\circ}.50'$ N and longitudes $9^{\circ}.00'$ E and $10^{\circ}.00'$ E. It is housed by middle Benue Trough (Fig. 1). (Abdullahi et al. 2014) pointed out that the

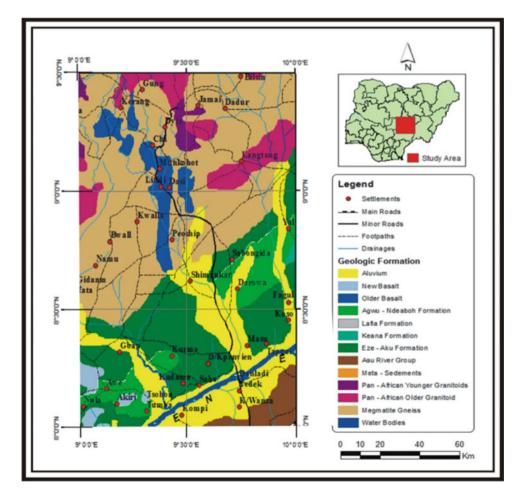
K. A. Salako (\boxtimes) · A. A. Adetona · A. A. Rafiu · U. D. Alhassan · A. Alkali · A. Aliyu

e-mail: s.kazeem@futminna.edu.ng

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Benue Trough generally has been geographically and structurally subdivided into three parts, namely: the "lower Benue Trough", the "middle Benue Trough" and the "Upper Benue Trough". The study conducted by Benkhelil (1989) distinguishes six sedimentary Formations in the middle Benue trough only, which are Asu River Group, Keana Formation, Awe Formation, Ezeaku Formation, Awgu Formation and Lafia Formation. The work of Benkhelil (1989), Offodile (1976), Cratchley and Jones (1965), Burke et al. (1970), Offodile (1984), Osazuwa et al. (1981), Ofoegbu (1985) has more on the geology of the Benue Trough.

2 Materials and Methods


(i) Six aeromagnetic maps with sheets numbers 190, 191, 211, 212, 231 and 232 covering the study area were acquired from the Nigerian Geological Survey Agency (NGSA) Abuja as part of the across the nation aeromagnetic survey carried out in 2009 by Fugro Airborne survey. The survey was conducted along NW–SE flight lines, and tie line along NE-SW direction with 500 m flight line spacing, terrain clearance of 80 m and line spacing of 2 km were used. The magnetic data recording interval during the survey was 0.1 s. All grid data were saved and delivered in Oasis Montaj Geosoft raster file format. Each 1:100,000 topographical sheet covers an area of about 3025 km² (i.e. 55 km \times 55 km) totalling a superficial area of 18,150 km².

- (ii) The residual anomaly map was later subjected to three automated processing techniques to determine the depth to magnetic basement. The three automated processing techniques are (i) analytic signal, (ii) source parameter imaging and (iii) spectral analysis.
- (iii) Analytical Signal the equation used is (Nabighian 1972):

$$|A(x,y)| = \sqrt{\left(\frac{\partial M}{\partial x}\right)^2 + \left(\frac{\partial M}{\partial y}\right)^2 + \left(\frac{\partial M}{\partial z}\right)^2} \qquad (1)$$

where

- A(x, y) amplitude of the analytic signal at (x, y) and M observed magnetic field at (x, y).
- (iv) The SPI method (Thurston and Smith 1997) estimates the depth parameter using the local wave number of the analytical signal (Thurston and Smith 1997). The two wave numbers as related by Hilbert transformation (⇔) are given as:

Fig. 1 Geological map of part of middle Benue Trough (Geological Survey of Nigeria 1984)

$$k_{1} = \frac{\partial}{\partial x} \tan^{-1} \left[\frac{\partial M}{\partial z} / \frac{\partial M}{\partial x} \right] \text{ and}$$

$$k_{2} = \frac{\partial}{\partial x} \tan^{-1} \left[\frac{\partial^{2} M}{\partial^{2} z} / \frac{\partial^{2} M}{\partial z \partial x} \right]$$
(2)

for analytical signal defined for the first (A_1) and second (A_2) order, respectively.

The k_1 and k_2 are used to determine the most appropriate model and depth estimate of any assumption about a model.

(v) Spector and Grant (1970) demonstrated that the depth could be made using the equation

$$E(r) = \mathrm{e}^{-2\,\mathrm{h}};\tag{3}$$

where

E(r) is the spectral energy,

- *r* the frequency and
- *h* the depth.

The energy or amplitude spectrum is plotted on the logarithmic scale against frequency. The plot shows the straight line segments which decrease in slope with increasing frequency. The slopes of the segments yield estimates of depths to magnetic sources.

3 Results and Discussion

3.1 Results (Analytical Signal)

Figure 2 shows the analytical signal of the study area. The high amplitude magnetic anomalies were very much pronounced in the northern part and at the edges of the study area. The low amplitude magnetic anomalies were located at the central part and trend towards the south-eastern parts. The high amplitude magnetic anomaly is probably due to basement intrusion close to the surface.

3.2 Results (Source Parameter Imaging)

The source parameter imaging (Fig. 3) of the study area shows that most of the features were aligned in the same manner and trends like the results obtained from the analytic signal map (Fig. 2). The area of highest sedimentary thickness in SPI (Fig. 3) conforms to the area of lower amplitude magnetic anomalies in the analytical signal map (Fig. 2).

From Fig. 3, the depth (below mean sea level) to sedimentary/basement interface varies between 101.8 and 2550.0 m. The highest sedimentary thickness dominates the southern portion of the area while the least basement depth

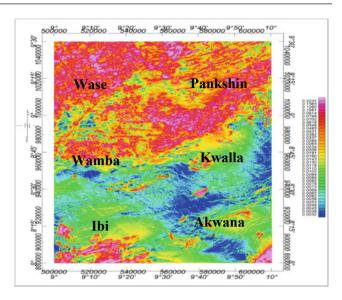


Fig. 2 Analytical signal map of the study area (unit: A/m)

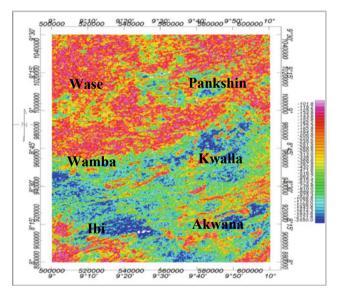
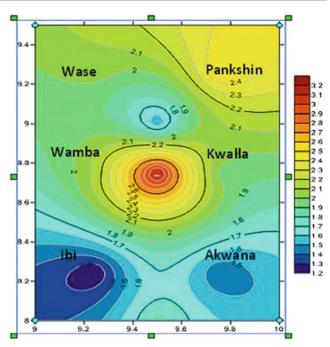


Fig. 3 Source parameter imaging map of the study area (unit: m)

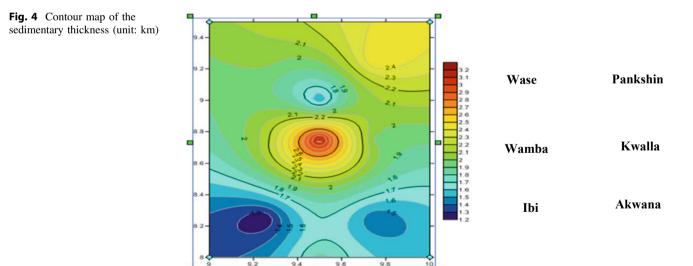

dominates a significant part of the southern portion. However, relatively lower depths are seen scattered around the southern part.

3.3 Results (Spectral Depth Analysis)

The residual map of the study area was divided into fourteen (Blocks A–N) overlapping magnetic sections in which none of the blocks has less than 55 by 55 km data coverage window (Table 1). The sedimentary thickness of 1.20 km to a maximum of 3.20 km were obtained from the spectral analysis

Blocks	Longitude (°)	Latitude (°)	Sedimentary thickness Z_t (km)
А	9.25	9.25	2.04
В	9.75	9.25	2.50
С	9.25	8.75	2.14
D	9.75	8.75	1.98
Е	9.25	8.25	1.20
F	9.75	8.25	1.40
G	9.5	9.25	2.00
Н	9.5	8.75	3.20
I	9.5	8.25	1.70
J	9.5	9.0	1.50
K	9.5	8.0	1.84
L	9.25	8.25	2.08
М	9.75	8.25	1.86
N	9.5	8.25	1.65

 Table 1
 Results from spectral plots



agrees mostly with the result obtained earlier with SPI, most notably concerning the location (Figs. 4, 5, 6 and 7).

Results from the two depths estimate approach agreed largely with other published works in the studied area. Nwogbo (1997) got 2–2.62 km for deeper source from spectral analysis of upper Benue trough; (Aliyu et al. 2018) obtained two-layer depths with the deeper magnetic sources varying between 1.2 and 4.8 km and the shallower magnetic sources varying between 0.5 and 1 km. (Salako and Udensi 2015) got an average depth of 1079.5 m for shallower

Fig. 5 Residual map of the study area

source while the deeper magnetic source bodies have an average depth of 4.5 km. Similarly, (Nwogwugwu et al. 2017) using spectral analysis obtained values ranging between 1.22 and 3.45 km for depth to magnetic basement and (Mohammed et al. 2019) and (Salako 2014) got the sedimentary thickness of over 4.0 km while working over upper Benue trough and Bornu Basin, Nigeria, (Ofoha et al.

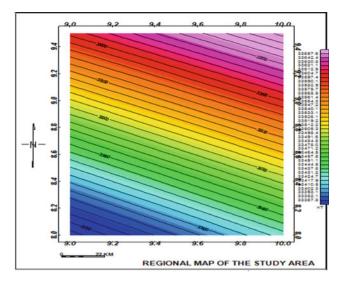
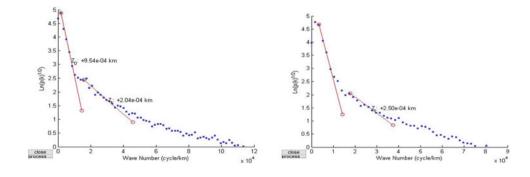


Fig. 6 Regional map of the study area

2016) got sedimentary thickness of less than 3 km while working Sokoto Basin, Nigeria, where the highest sedimentary thickness was obtained from SPI, and spectral methods agreed with the areas with low amplitude anomaly of the analytical signal.


4 Conclusions

The results of this study suggest that the sedimentary thickness of the study area varies between 1.20 and 3.20 km. The highest sedimentary thickness of about 3 km can be obtained from the central part to the south-eastern part of the study area. These areas correspond to areas delineated as low amplitude anomaly of the analytical signal. However, according to Wright et al. (1985), the minimum thickness for the concealment of hydrocarbon is about 2.3 km; hence, the sedimentary thickness of over 3 km might be sufficient for hydrocarbon (at least for gas) maturation in the area.

Fig. 7 Typical plots of the logarithm of spectral energies against frequencies obtained for blocks A and B

References

- Abdullahi, U.A., Ugwu, G.Z., Ezema, P.O.: Magnetic exploration of the upper and lower Benue trough for metallic deposits and hydrocarbons using 2D/3D. J. Nat. Sci. Res. 4(20), 41–46 (2014)
- Adewumi, T., Salako, K.A.: Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central, Nigeria. Egypt. J. Petrol. 27, 759–767 (2018). Available at https://doi.org/10.1016/j.ejpe.2017.11.002
- Aliyu, A., Salako, K.A., Adewumi, T., Mohammed, A.: Interpretation of high resolution aeromagnetic data to estimate the curie point depth isotherm of parts of middle Benue trough, North-East, Nigeria. Phys. Sci. Int. J. 17(3), 1–9 (2018)
- Azizi, M., Saibi, H., Cooper, G.R.J.: Mineral and structural mapping of the Aynak-Logar Valley (Eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data. Arab. J. Geosci. 8, 10911–10918 (2015)
- Benkhelil, J.: The origin and evolution of the cretaceous benue trough (Nigeria). J. Afr. Earth Sci. 8, 251–282 (1989)
- Burke, K.C., Dessauvagie, T.F.J., Whiteman, A.J.: Geologic history of the Benue Valley and adjacent areas. In: Dessauvagie, T.F.J., Whiteman, A.J. (eds.) African geology, pp. 187–206. University of Ibaban Press, Nigeria (1970)
- Cratchley, C.R., Jones, G.P.: An interpretation of the geology and gravity anomalies of the Benue Valley, Nigeria. J. Geol. Geophys. 1, 1–26 (1965)
- Farhi, W., Boudella, A., Saibi, H., Bounif, M.O.A.: Integration of magnetic, gravity, and well data in imaging subsurface geology in the Ksar Hirane region (Laghouat, Algeria). J. Afr. Earth Sci. 124, 63–74 (2016)
- Geological Survey of Nigeria: Geological Map of Nigeria (1984)
- Mohammed, A., Adewumi, T., Salako, K.A., Rafiu, A.A., Adetona, A. A., Alhassan, U.D.: Assessment of geothermal potentials in some parts of Upper Benue Trough Northeast Nigeria using Aeromagnetic Data. J. Geosci. Eng. Environ. Technol. (JGEET) 4(1) (2019). https://doi.org/10.25299/jgeet.2019.4.1.2090
- Nabighian, M.N.: The analytic signal of two dimensional magnetic bodies with polygonal cross-section. Its properties and use for automated anomaly interpretation. Geophysics 37, 507–517 (1972)
- Nwogbo, P.O.: Mapping the shallow magnetic sources in the Upper Benue Basin in Nigeria from aeromagnetic. Spectra 4(3/4), 325–333 (1997)
- Nwogwugwu, E.O., Salako, K.A., Adewumi, T., Okwokwo, I.O.: Determination of depth to basement rocks over parts of Middle Benue Trough, North Central Nigeria, using high resolution

aeromagnetic data. J. Geol. Min. Res. (JGMR) **9**(3), 18–27 (2017). https://doi.org/10.5897/JGMR2017.0276. Available at http://www. academicjournals.org/journal/JGMR/article-full-text-pdf/8AE382A 66043

- Offodile, M.E.: The geology of the middle Benue Nigeria. Cretaceous research, paleontological institute: university of uppsala. Special Publ. 4, 1–166 (1976)
- Offodile, M.E.: The geology and tectonics of awe brine field. J. Earth Sci. 2, 191–202 (1984)
- Ofoegbu, C.O.: A review of the geology of the Benue trough, Nigeria. J. Afr. Earth Sci. 283–291 (1985)
- Ofoha, C.C., Emujakporue, G., Ngwueke, M.I., Kiani I.: Determination of magnetic basement depth over Parts of Sokoto Basin, within Northern Nigeria, using improved source parameter imaging (ISPI) technique. World Sci. News 50, 266–277 (2016)
- Osazuwa, I.B., Ajakaiye, D.E., Verheiien, P.J.T.: Analysis of the structure of part of the upper Benue rift valley on the basis of new geophysical data. Earth Evol. Sci. 2, 126–135 (1981)

- Salako, K.A.: Depth to Basement Determination Using Source Parameter Imaging (SPI) of Aeromagnetic Data: An Application to Upper Benue Trough and Borno Basin, Northeast, Nigeria, pp 74–86. Academic Research International, 2014. Retrieved from www.journals.savap.org.pk
- Salako, K.A., Udensi, E.E.: Two dimensional modeling of subsurface structure over upper Benue trough and Bornu basin in north eastern Nigeria. Nigeria J. Technol. Res. (NJTR) **10**, 94–104 (2015). https://doi.org/10.4314/njtr.v10i1.S11
- Spector, A., Grant, F.S.: Statistical models for interpreting aeromagnetic data. Geophysics 35, 293–302 (1970)
- Thurston, J.B., Smith, R.S.: Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method. Geophysics **62**, 807–813 (1997)
- Wright, J.B., Hastings, D.A., Jones, W.B., Williams, H.R.: Geology and Mineral Resources of West Africa. George Allen and Unwin (Publishers) Ltd., 40 Museum Street, London WCIA ILU, UK. 187 p. (1985)