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COMPARATIVE DECOMPOSITION APPROACH OF 

MAGNETOHYDRODYNAMICS ROTATIONAL STAGNATION ON POINT FLOW 

BETWEEN A STRETCHING AND SHRINKING SHEET WITH HEAT 

GENERATION 

 

 

   

                                                            ABSTRACT 

The problem of Magnetohydrodynamics rotational stagnation point flow over a shrinking and 

stretching sheet with heat generation and absorption was considered . The Partial differential 

equations were transformed using similarity variables to ordinary nonlinear coupled 

differential equations. The analytical solutions were presented using the Adomian 

decomposition method. The results presented were validated with the literature and a good 

agreement was observed.  The effects of various dimensionless parameters like Rotational 

parameter , Thermal Grashof number , Concentration Grashof number , Magnetic parameter , 

Prandtl number , Heat generation , Schimidt number , shrinking/stretching parameter and 

Suction/injection parameter that appeared were graphically presented and the magnetic 

parameter was found to enhanced the fluid temperature. 
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 CHAPTER ONE 

1.0                                                      INTRODUCTION 

1.1      Background to the Study 

Magnetohydrodynamic flows with or without the movement of heat in an electrically 

conducting fluids have attracted a large interest in the context of metallurgical fluid dynamics, 

aerothermodynamics, astronautics, geophysics, nuclear engineering and applied mathematics. 

Carrier and Greenspan (1960) considered unsteady hydromagnetic flows past a semi-infinite 

flat plate moving impulsively in its own plane. Gupta (1960) considered unsteady magneto-

convection under buoyancy forces. Singer (1965) carried out further study rtyon unsteady free 

convection heat transfer with magnetohydrodynamic effects in a channel regime. Pop (1969) 

works on transient buoyancy-driven convective hydromagnetics from a vertical surface. Tokis 

(1986) implored the Laplace transforms to analyze the three dimensional free-convection 

hydromagnetic flows near an infinite vertical plate moving in a rotating fluid when the plate 

temperature undergoes a thermal transient. The influence of oscillatory pressure gradient on 

transiently rotating hydromagnetic flow was reported by Ghosh (1993). 

 

Abd-El Aziz (2006) carried out a study on the thermal radiation flux effects on unsteady 

Magnetohydrodynamics micropolar fluid convection. Ogulu and Prakash (2006) in their work, 

presented an analytical solutions for variable suction and radiation effects on dissipative-free 

convective, optically-thin, Magnetohydrodynamic flow using a differential approximation to 

describe the radiative flux. Recent studies involving thermal radiation and transient 

hydromagnetic convection with specie transfer and viscous heating can be found in the analyses 

of Prasad et al. (2006) and Zueco (2007). In many geophysical and metallurgical flows, porous 

medium can arise also. Classically, the Darcian model is used to showcase the bulk effects of 

porous materials on flow dynamics and is valid for Reynolds numbers based on the pore radius. 

Chamkha (1996) works on the transient-free convection Magnetohydrodynamic boundary 
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layer flow in a fluid-saturated porous medium channel, and later Chamkha (2001) extended the 

study to consider the influence of temperature-dependent properties and inertial effects on the 

convection regime. B´eg et al. (2005) presented perturbation solutions for the transient 

oscillatory hydromagnetic convection in a Darcian porous media with present of heat source. 

Chaudhary and Jain (2008) carried out the influence of oscillating temperature on 

Magnetohydrodynamic convection heat transfer past a vertical plane in a Darcian porous 

medium. Lately, Variational iteration method was applied for squeezing MHD Nano fluid flow 

in a rotating channel with the lower stretching porous surface, see Shahmohamadi and Rashidi 

(2016) for example. More extensive works as contained in the works of Mishra and Bhatti 

(2017), Rashidi et al. (2014), Sheikholeslami and Bhatti (2017), Abbas et al. (2017) and Bhatti 

and Rashidi (2016). 

 

1.2   Statement of the Problem 

 

Das and Ahmed (1992) employed the perturbation technique to analyze the buoyancy-driven 

magnetohydrodynamic (MHD) flow and heat transfer for a viscous incompressible fluid 

confined between a long vertical undulated plate and a parallel flat plate. They considered the 

effects of relative temperature of the channel walls on the velocity and temperature profiles 

without considering the wavy wall amplitude and inclination angle effects.  

Recently, Bhatti et al. (2018) consider the problem of magnetohydrodynamic boundary layer 

flow with suction on a stretching and shrinking sheet. In their work, they used numerical 

approach to obtain the solution to the problem formulated. Natural convection, fluid rotation, 

fluid temperature and concentration were neglected. There by, no temperature and 

concentration dependent variables were considered.  
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1.3 Justification of the Study 

A wide variety of industrial processes involve the transfer of heat energy. Throughout any 

industrial facility, heat must be added, removed, or moved from one process stream to another 

and it has become a major task for industrial necessity. These processes provide a source for 

energy recovery and process fluid heating/cooling.  

Several works have been cited in this research work and we have decided to consider the areas 

that have been left out by the previous researchers, thus making the present study justifiable.  

 

1.4 Aim and Objectives of the Study 

1.4.1 Aim of the study 

The aim of this study is to carry out a comparative analysis of magnetohydrodynamics 

boundary layer flow between stretching and shrinking sheet with heat generation and fluid 

rotation.  

1.4.2 Objectives of the study 

The objectives of this present study are :- 

i. To transform the Partial differential equation (PDE) formulated to ordinary differential 

equations (ODE) using the similarity equations. 

ii. To solve the set of transformed non linear, coupled, ordinary differential equations (ODE) 

using the Adomian Decomposition Method (ADM). 

iii. To validate the results obtain with the work of Wang (2008) and Bhatti et al.(2018). 

iv. To present and analyse the solutions with the help of the graphical representations. 

v.  To verify the effects of the various dimensionless parameters that appears in the solutions 

on both stretching and shrinking sheet.  

 

1.5   Scope and Limitation 
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The Partial Differential Equation (PDE) formulated from the problem is presented in its 

rectangular coordinate system. The appropriate similarity transformations and stream functions 

are used to transform the partial differential equations to ordinary differential equations.  Non 

linear coupled ordinary differential equations are derived, corresponding to momentum, energy 

equation and concentration equations. These equations are solved using improved Adomian 

Decomposition Method. The effect of various parameters that appears are analysed with the 

help of graphs. This work is limited to incompressible fluid dynamics. 

1.6 Definition of Terms 

Fluid: A substance which deforms continuously when shear stress is applied to it no matter 

how small, such as liquid or gas which can flow, has no fixed shape and offers little resistance 

to an external stress. 

Grashof number:  is a dimensionless number in fluid dynamics and heat transfer which 

approximates the ratio of the buoyancy to viscous force acting on a fluid. It frequently arises 

in the study of situations involving natural convection. It is named after the German engineer 

Franz Grashof.   

Prandtl number: the relationship between the thickness of two boundary layers at a given 

point along the  plate depend on the dimensionless prandtl number which is the ratio of the 

momentum diffusivity 𝜈 or 
𝜇

𝜌
 to the thermal diffusivity ∝ or 

𝑘

 𝜌𝐶𝑝
. 

Boundary Layers:-  boundary layer is defined as that part of moving fluid in which the fluid 

motion is influenced by the presence of a solid boundary. As a specific example of boundary 

layer formation, consider the flow of fluid parallel with a thin plate, when a fluid flows at htigh 

Reynolds number past a body, the viscous effects may be neglected everywhere except in a 

thin region in the vicinity of the walls . This region is termed as the boundary layer. 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Buoyancy
http://en.wikipedia.org/wiki/Viscous
http://en.wikipedia.org/wiki/Natural_convection
http://en.wikipedia.org/wiki/Franz_Grashof
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Magnetohydrodynamics: is the study of magnetic properties and behavior of electrically 

conducting fluids.  

Convection: is the conveying of heat from part of a liquid or gas to another by the movement 

of heated substances.  

Stagnation Point: A point in the flow where the local velocity is zero. 

𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐛𝐥𝐞 𝐟𝐥𝐮𝐢𝐝: change in density of fluid with time  

  0
t





                                                                                                                            (1.1) 

Incompressible flow: fluid motion with negligible changes in density 𝜌  

0




t


                                                                                                                               (1.2) 

 

 

                                                                     

 

 

 

 

 

CHAPTER TWO 

2.0              LITERATURE REVIEW 

2.1 Reviews on Fluid Dynamics 
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Stagnation-point flow generally describes the fluid motion near the stagnation region of a solid 

surface, which exists in the case of fixed as well as a moving body in a fluid. Stagnation-point 

flow with various physical effects has greater physical importance, including the prediction of 

the skin friction as well as the heat/mass transfer near the stagnation regions of bodies in high-

speed flows; design of thrust bearings and radial diffusers; and drag reduction, transpiration 

cooling, and thermal oil recovery, among others. The flow in the neighbourhood of a stagnation 

line has attracted many investigations during the past several decades. Ramachandra et al. 

(1988) have investigated the mixed convection flow in the stagnation flow region of a vertical 

plate. The steady stagnation-point flow towards a permeable vertical surface was investigated 

by Ishak et al. (2008). Li et al. (2011) introduced an analysis of the steady mixed convection 

flow of a viscoelastic fluid stagnating orthogonally on a heated or cooled vertical flat plate. 

Makinde (2012) examined the hydromagnetic mixed convection stagnation-point flow towards 

a vertical plate embedded in a highly porous medium with radiation and internal heat 

generation. Mabood and Khan (2014) introduced an accurate analytic solution (series solution) 

for MHD stagnation-point flow in a porous medium for different values of the Prandtl number 

and the suction/injection parameter An unsteady boundary layer plays important roles in many 

engineering problems like a start-up process and a periodic fluid motion. An unsteady boundary 

layer has different behaviors due to extra time-dependent terms, which will influence the fluid 

motion pattern and the boundary-layer separation. Kumari et al. (1992) have studied the 

unsteady mixed convection flow of an electrically conducting fluid at the stagnation point of a 

two-dimensional body and an axisymmetric body in the presence of an applied magnetic field. 

Seshadri et al. (2002) studied the unsteady mixed convection in the stagnation-point flow on a 

heated vertical plate where the unsteadiness is caused by the impulsive motion of the free 

stream velocity and by sudden increase in the surface temperature (heat flux). Hassanien et al. 

(2004) analyzed the problem of unsteady free convection flow in the stagnation-point region 
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of a rotating sphere embedded in a porous medium. The unsteady flow and heat transfer of a 

viscous fluid in the stagnation region of a three-dimensional body embedded in a porous 

medium was investigated by Hassanien et al. (2006). Hassanien and Al-Arabi (2008) studied 

the problem of thermal radiation and variable viscosity effects on unsteady mixed convection 

flow in the stagnation region on a vertical surface embedded in a porous medium with surface 

heat flux. Fang et al. (2011) investigated the boundary layers of an unsteady incompressible 

stagnation-point flow with mass transfer. Shateyi and Marewo (2014) have numerically 

investigated the problem of unsteady MHD flow near a stagnation point of a two-dimensional 

porous body with heat and mass transfer in the presence of thermal radiation and chemical 

reaction. Rosali et al. (2014) discussed the effect of unsteadiness on mixed convection 

boundary-layer stagnation-point flow over a vertical flat surface embedded in a porous 

medium. 

During the past decade, the study of nanofluids has attracted enormous interest from 

researchers due to their exceptional applications to electronics, automotive, communication, 

computing technologies, optical devices, lasers, high-power X-rays, scientific measurement, 

material processing, medicine, and material synthesis, where efficient heat dissipation is 

necessary. Nanobiotechnology is also a fast-developing field of research and application in 

many domains, such as in medicine, pharmacy, cosmetics and agro-industry. Nanofluids are 

prepared by dispersing solid nanoparticles in base fluids such as water, oil, ethylene glycol, or 

others. According to Yacob et al. (2011), nanofluids are produced by dispersing the nanometer-

scale solid particles into base liquids with low thermal conductivity such as water and ethylene 

glycol. Nanoparticles are usually made of metal, metal oxide, carbide, nitride, and even 

immiscible nanoscale liquid droplets. Congedo et al. (2009) compared different models of 

nanofluids (regarded as a single phase) to investigate the density, specific heat, viscosity, and 

thermal conductivity, and discussed the water–Al2O3 nanofluid in detail by using CFD. Hamad 
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et al. (2011) introduced a one-parameter group to represent similarity reductions for the 

problem of magnetic field effects on free-convective nanofluid flow past a semi-infinite 

vertical flat plate following a nanofluid model proposed by Buongiorno (2006). Hady et al. 

(2012a) studied the radiation effect on viscous flow of a nanofluid and heat transfer over a 

nonlinearly stretching sheet with variable wall temperature. Also, Hady et al. (2012b) studied 

the problem of natural convection boundary-layer flow past a porous plate embedded in a 

porous medium saturated with a nanofluid using Buongiorno’s model. Further, Abu-Nada and 

Chamkha (2010) presented the natural convection heat transfer characteristics in a 

differentially heated enclosure filled with CuO–ethylene glycol (EG)–water nanofluids for 

different variable thermal conductivity and variable viscosity models. Rudraswamy and 

Gireesha (2014) studied the problem of flow and heat transfer of a nanofluid over an 

exponentially stretching sheet by considering the effect of chemical reaction and thermal 

radiation. Besthapu and Bandari (2015) presented a study on the mixed convection MHD flow 

of a Casson nanofluid over a nonlinear permeable stretching sheet with viscous dissipation. 

Numerical solutions of the natural convection flow of a two-phase dusty nanofluid along a 

vertical wavy frustum of a cone is discussed by Siddiqa et al. (2016a). The bioconvection flow 

with heat and mass transfer of a water-based nanofluid containing gyrotactic microorganisms 

over a vertical wavy surface is studied by Siddiqaet al. (2016b). Kameswaran et al. (2016) 

studied convective heat transfer in the influence of nonlinear Boussinesq approximation, 

thermal stratification, and convective boundary conditions on non-Darcy nanofluid flow over 

a vertical wavy surface. 

Vasu and Manish (2015) studied the problem of two-dimensional transient hydrodynamic 

boundary-layer flow of an incompressible Newtonian nanofluid past a cone and plate with 

constant boundary conditions. Gireesha et al. (2015) introduced a numerical solution for 

hydromagnetic boundary-layer flow and heat transfer past a stretching surface embedded in a 
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non-Darcy porous medium with fluid-particle suspension. The unsteady forced convective 

boundary-layer flow of an incompressible non-Newtonian nanofluid over a stretching sheet 

when the sheet is stretched in its own plane is investigated by Gorla and Vasu (2016). Gorla et 

al. (2016) investigated the transient mixed convective boundary-layer flow of an 

incompressible non-Newtonian quiescent nanofluid adjacent to a vertical stretching surface. 

The unsteady flow and heat transfer of a nanofluid over a contracting cylinder was studied by 

Zaimi et al. (2014). Srinivasacharya and Surender (2014) studied the effects of thermal and 

mass stratification on natural convection boundary-layer flow over a vertical plate embedded 

in a porous medium saturated by a nanofluid.  

Abdullah et al. (2018) studies the effects of Brownian motion and thermophoresis on unsteady 

mixed convection flow near the stagnation-point region of a heated vertical plate embedded in 

a porous medium saturated by a nanofluid. The plate is maintained at a variable wall 

temperature and nanoparticle volume fraction. The presence of a solid matrix, which exerts 

first and second resistance parameters, is considered in the study. A suitable coordinate 

transformation is introduced and the resulting governing equations are transformed and then 

solved numerically using the local nonsimilarity method and the Runge-Kutta shooting 

quadrature. The effects of various governing parameters on the flow and heat and mass transfer 

on the dimensionless velocity, temperature, and nanoparticle volume fraction profiles as well 

as the skin-friction coefficient, Nusselt number, and the Sherwood number are displayed 

graphically and discussed to illustrate interesting features of the solutions. The results indicate 

that as the values of the thermophoresis and Brownian motion parameters increase, the local 

skin-friction coefficient increases whereas the Nusselt number decreases.  

Moreover, the Sherwood number increases as the thermophoresis parameter increases, and 

decreases as the Brownian motion parameter increases. On the other hand, the unsteadiness 
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parameter and the resistance parameters enhance the local skin-friction coefficient, local 

Nusselt number, and the local Sherwood number. 

The effects of radiation on unsteady free convection flow and heat transfer problem have 

become more important industrially. At high operating temperature, radiation effect can be 

quite significant. Many processes in engineering areas occur at high temperature and 

knowledge of radiation heat transfer becomes very important for design of reliable equipments, 

nuclear plants, gas turbines and various propulsion devices or aircraft, missiles, satellites and 

space vehicles. Based on these applications, Cogley et al. (1968) showed that in the optically 

thin limit, the fluid does not absorb its own emitted radiation but the fluid does absorb radiation 

emitted by the boundaries. Hossain and Takhar (1996) have considered the radiation effects on 

mixed convection boundary layer flow of an optically dense viscous incompressible fluid along 

a vertical plate with uniform surface temperature. Makinde (2005) examined the transient free 

convection interaction with thermal radiation of an absorbing emitting fluid along moving 

vertical permeable plate. Satter and Hamid (1996) investigated the unsteady free convection 

interaction with thermal radiation of an absorbing emitting plate. Rahman and Satter (2007) 

studied transient convective flow of micropolar fluid past a continuous moving porous plate in 

the presence of radiation. Heat and mass transfer effects on unsteady magneto hydrodynamics 

free convection flow near a moving vertical plate embedded in a porous medium was presented 

by Das and Jana (2010). Olajuwon (2008) examine convection heat and mass transfer in a 

hydromagnetic flow of a second grade fluid past a semi-infinite stretching sheet in the presence 

of thermal radiation and thermal diffusion. Haque et al. (2011) studied micropolar  fluid 

behavior on steady magneto hydrodynamics free convection flow and mass transfer through a 

porous medium with heat and mass fluxes. Soret and Dufour effects on mixed convection in a 

non- Darcy porous medium saturated with micropolar fluid was studied by Srinivasacharya 

(2011). Rebhi (2007) studied unsteady natural convection heat and mass transfer of micropolar 
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fluid over a vertical surface with constant heat ux. The governing equations were solved 

numerically using McCormack's technique and the effects of various parameters were 

investigated on the flow. Eldabe and Ouaf (2006) solved the problem of heat and mass transfer 

in a hydromagnetic flow of a micropolar uid past a stretching surface with ohmic heating and 

viscous dissipation using the Chebyshev finite difference method. Keelson and Desseaux 

(2001) studied the effect of surface conditions on the flow of a micropolar fluid driven by a 

porous stretching surface. The governing equations were solved numerically. Sunil et al. (2006) 

studied the effect of rotation on a layer of micropolar ferromagnetic fluid heated from below 

saturating a porous medium. The resulting non-linear coupled differential equations from the 

transformation were solved using finite-difference method. Mahmoud (2007) investigated 

thermal radiation effect on magneto hydrodynamic flow of a micropolar fluid over a stretching 

surface with variable thermal conductivity. The solution was obtained numerically by iterative, 

Runge-Kuta order-four method. Magdy (2005) studied unsteady free convection flow of an 

incompressible electrically conducting micropolar fluid, bounded by an infinite vertical plane 

surface of constant temperature with thermal relaxation including heat sources. The governing 

equations were solved using Laplace transformation. The inversion of the Laplace transforms 

was carried out with a numerical method. The obtained self-similar equation was solved 

numerically by an efficient implicit, iterative, infinite-difference method. Reena and Rana 

(2009) investigated double diffusive convection in a micropolar fluid layer heated and saluted 

from below saturating a porous medium. A linear stability analysis theory and normal mode 

analysis method was used. Kandasamy et al. (2005) studied the nonlinear MHD flow, with heat 

and mass transfer characteristics, of an incompressible, viscous, electrically conducting, 

Boussinesq uid on a vertical stretching surface with chemical reaction and thermal stratification 

effects. Modather et al. (2009) studied MHD heat and mass transfer oscillatory flow of a 

micropolar fluid over a vertical permeable plate in a porous medium. Seddek (2005) studied 
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the effects of chemical reaction, thermophoresis and variable viscosity on steady 

hydromagnetic flow with heat and mass transfer over a at plate in the presence of heat 

generation/absorption. Patil and Kulkarni (2008) studied the effects of chemical reaction flow 

of a polar fluid through porous medium in the presence of internal heat generation. Double-

diffusive convection radiation interaction on unsteady MHD flow over a vertical moving 

porous plate with heat generation and Soret effects was studied by Mohamed (2009).  

Chaudhary (2008) studied the effect of chemical reactions on MHD micropolar fluid flow past 

a vertical plate in slip flow regime. When heat and mass transfer occur simultaneously in a 

moving fluid, the relations between the fluxes and the driven potential are important. It has 

been found that an energy flux can be generated not only by temperature gradients but by 

composition gradient as well. The energy caused by a composition gradient is called the Dufour 

or the diffusion-thermo effect, also the mass fluxes can also be caused by the temperature 

gradient and this is called the Soret or thermal diffusion effect, the diffusion-thermo effect is 

neglected in this study because it is of a smaller order of magnitude than the magnitude of 

thermal radiation which exerts a stronger effect on the energy flux. Thermal diffusion effect or 

Soret effect has been utilized for isotope separation in mixtures between gases with very light 

molecular weight and medium molecular weight  and it was found to be of a magnitude that it 

cannot be neglected due to its practical applications in engineering and sciences. For some 

industrial applications such as glass production and furnace design, and in space technology 

applications such as cosmic alight aerodynamics rocket and spacecraft re-entry 

aerothermodynamics which operate at higher temperature, thermal radiation effect can be 

significant. 

 
 Flow of a nanofluid in a boundary layer in an inclined moving sheet at angle Θ is considered 

analytically by Yusuf et al. (2019), the Mathematical formulation consists of the Magnetic 

parameter, thermophoresis, and Brownian motion. Solutions to momentum, temperature and 
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concentration distribution depends on some parameters. The non linear coupled Differential 

equations were solved using the improved Adomian decomposition method and a good 

agreement was established with the numerical method (Shooting technique). 

Bhatti et al. (2018) Considered a steady three-dimensional incompressible, non rotational flow 

of a Magnetohydrodynamics fluid, near a stagnation point over a permeable 

shrinking/stretching sheet coinciding with the plane at z=0,  the governing equations for 

continuity and momentum equation were given as: 
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,  where 0P  is the stagnation pressure.  

The present work extends Bhatti et al. (2018) by introducing the rotational parameter, natural 

convection, heat generation parameter, temperature and concentration equations. Considering 

the literatures available to us, this innovation is new in the literature.  
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                                                           CHAPTER THREE 

3.0                                            MATERIALS AND METHODS 

3.1   Problem Formulation 

Considering a steady three-dimensional incompressible rotational flow of a 

Magnetohydrodynamics fluid, near a stagnation point over a permeable shrinking/stretching 



 

16 
 

sheet coinciding with the plane at z=0. Following the work of Bhatti et al. (2018) with 

 and  Cw wT  as temperature and concentration at wall and  and  CT 
far away from the wall 

respectively,    with heat generation 
oQ  and buoyancy effects. The governing equations for 

continuity, momentum, temperature and concentration equations can be written as: 
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,  where 0P  is the stagnation pressure. 

The similarity variables are defined as follows: 
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Introducing equation (3.9) into (3.1) to (3.7), the equations reduces to  
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With the corresponding boundary condition: 
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the Rotational parameter, Thermal Grashof number, Concentration Grashof number,  Magnetic 

parameter, Prandtl number, Heat generation, Schimidt number, shrinking/stretching parameter, 

and Suction/injection parameter  respectively.  

3.2  Implementation of  Adomian Decomposition Method 

Begin with an equation    Fu t g t , where F represents a general nonlinear ordinary 

differential operator involving both linear and nonlinear terms. The linear term is decomposed 

into L R , where L  is  easily invertible and R  is the remainder of the linear operator. For 

convenience, L  may be taken as the highest order derivative which avoids difficult integrations 

which result when complicated Green’s functions are involved (Adomian, 1994). Thus the 

equation may be written 

Lu Ru Nu g                                                                                                                 (3.12) 

where Nu  represents the nonlinear terms. Solving for Lu , 

Lu g Ru Nu                                                                                                                (3.13) 

Because L  is invertible, an equivalent expression is 
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1 1 1 1L Lu L g L Ru L Nu                                                                                                  (3.14) 

If this corresponds to an initial-value problem, the integral operator 1L  may be regarded as 

definite integrals from 0t  to t . If L  is a second-order operator, 1L  is a twofold integration 

operator and      1 /

0 0 0L Lu u u t t t u t     . For boundary value problems (and, if desired, 

for initial-value problems as well), indefinite integrations are used and the constants are 

evaluated from the given conditions. Solving (3.73) for u  yields 

1 1 1u A Bt L g L Ru L Nu                                                                                            (3.15) 

The nonlinear term Nu  will be equated to 
0

n

n

A




 , where the nA , are special polynomials to be 

discussed, and u  will be decomposed into 
0

n

n

u




 , with 0u  identified as 1A Bt L g    

1 1

0

0 0 0

n n n

n n n

u u L R u L A
  

 

  

                                                                    (3.16)  consequently, 

we can write 

1 1

1 0 0

1 1

2 1 0

1 1

1

.

.

.

n n n

u L Ru L A

u L Ru L A

u L Ru L A

 

 

 



  


  







   

                                                                                                     (3.17) 

 

The polynomials nA , are generated for each nonlinearity so that 0A , depends only on 0u , 1A , 
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depends only on ,and 
1u , 

2A , depends on 
0u , 

1u , 
2u , etc. All of the 

nu , components are 

calculable, and 
0

n

n

u u




 . If the series converges, the n -term partial sum 
1

0

n

n i

i

u




  will be 

the approximate solution since 
0

lim n i
n

i

u u





  by definition. It is important to emphasize 

that the 
nA  can be calculated for complicated nonlinearities of the form 

    /,  ,...  or .f u u f g u  

 

We start by introducing the improved Adomian decomposition method to get the solution by 

letting 
3 2

1 23 2
   and 

d d
L L

d d 
   and from equation (3.10) we have 

 / / / / / /2 /

/ / / /

/ / /

0

// /

2 1 1

2 0

r rT rC

r

r r

f ff f K f M f G G

h f h fh Mh K f

P f PQ

Scf

 

  

 

        

    


   


  

               (3.18) 

Introducing the operators into equations (3.10) we have 

  

 Type equation here. 

   

 

 

 

1 1 // /2 /

1 1 1

1 1 / /

2 2 2

1 1 /

2 2 2 0

1 1 /

2 2 2

1 2 1

2

r rT rC

r

r r

c

L L f L ff f K M f G G

L L h L f h fh Mh K

L L L P f PQ

L L L S f

  



   

  

 

 

 

 

              
          



         


         

                                 (3.19)                                                                    

 

Where    1 1

1 2   and    L d d d L d d                                        

(3.20) 

Introducing the Adomian polynomials into (3.19) we have 

0u
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 1 1 1 1 /

1 1 1 1

0 0 0

1 1

1 1

1 1 1 1

2 2 2 2

0 0 0

1 1

2 0 2

0 0

1

2

0 0

2 1

2

n n n r n n

n n n

rT n rC n

n n n r n n

n n n

n r n r n

n n

n c n

n n

f L A L B K L f ML f

L G L G

h L C L D K L f ML f

P L E PQ L

S L F

 

 



  
   

  

 

  
   

  

 
 

 

 


 




      

 



    



   



  


  

  

 

 

           

(3.21)   

Where   

/ / / / / /

/ /

,  B , C , D , 

, F  

n n n k n n n k n n n k n n n k

n n n k n n n k

A f f f f f h f h

E f f 

   

 

   

 
         

               

 1 // 1 / / 1 1 /

1 1 1 1 1

0 0

1 1

1 1

1 / 1 / 1 1

1 2 2 2 2

0 0

1 / 1

1 2 0 2

0

1 /

2

0

2 1

2

n n

n k n k k n k r n n

k k

rT n rC n

n n

n k n k k n k r n n

k k

n
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k
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      (3.22)                                 

Where       
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1
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0 3
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2

1

1
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                                                (3.23)      

are the starting points.                                                                                   

 

Using maple18 to evaluate the integrals we have the final solutions as: 
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CHAPTER FOUR 

4.0                           RESULTS AND DISCUSSION 

4.1 Results 

In this chapter, The table, showing the comparison of   Adomian  Decomposition Method and 

the results obtained by Bhatti et al. (2018) are presented and the variation of each dimensionless 

property that appear such as thermal Grashof number,concentration Grashof number,Schimidt 

number, Prandtl number  and  Magnetic parameter (M) are also presented graphically with the 

aid of Maple 18. 

4.2 Presentation of Tables of Comparison Between the Present Work and the 

Literature 

Table 4.1: Comparison of Results between Numerical and Analytical for 0   with 

0rC rTM S G G     

  

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

 Wang 

(2008) 

Bhatti et al. 

(2018) 

Present 

Results 

Wang 

(2008) 

Bhatti et 

al. (2018) 

Present 

Results 

 0 1.232588 1.23258777 1.23276 0.8113 0.8113013 0.812251 

 0.1 1.14656 1.146561 1.14678 0.86345 0.8634517 0.863281 

 0.2 1.05113 1.05112999 1.05162 0.9133 0.9133028 0.910313 

 0.3 - 0.94681611 0.94786 - 0.9611159 0.952974 

 0.5 0.7133 0.71329495 0.71666 1.05239 1.0514584 1.025327 

 1 0 0 0 1.25331 1.2533141 1.202451 

 2 -1.88731 -1.8873067 -1.9861 1.58957 1.5895668 1.07536 

  5 -10.2647 -10.264749 -9.3979 2.3381 2.338099 1.965189 

 

 

 

 

 

 

 

 

 

 

0 f  / / 0f  / / 0f  / / 0f  / 0h  / 0h  / 0h
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Table 4.2: Comparison of results between Numerical and Analytical for 0 p  with 

0rC rTM S G G     

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

  

 Wang 

(2008) 

Bhatti et 

al (2018) 

Present 

Results 

Wang 

(2008) 

Bhatti 

et al 

(2018) 

Present 

Results 

 

-0.25 1.40224 1.402241 1.40278091 0.66857 0.66857 0.6697137  

-0.5 1.49567 1.495668 1.49643034 0.50145 0.50145 0.5044947  

-0.75 1.4893 1.489298 1.49156502 0.29376 0.29376 0.2977485  

-1 1.32882 1.328817 1.33300894 0 0 0  

-1.15 1.08223 1.082231 1.07144745 -0.298 -0.298 -0.258003  

-1.2465 0.5543 0.584282 0.69677895 -0.999 -0.9478 -0.558264   

 

Tables 4.1 and 4.2 shows present the comparison of the present work and previous works 

published in the literature shrinking and stretching sheet respectively. A good agreement is 

observe between the present method and the previous ones as seen on the tables.  

4.3 Presentation of Results on the Shrinking Sheet 

 

Figure 4.1: Variation of thermal Grashof number on velocity f  on a stretching sheet 

0 f  / / 0f  / / 0f  / / 0f  / 0h  / 0h  / 0h



 

25 
 

 

Figure 4.2: Variation of thermal Grashof number on velocity h  on a stretching sheet 

 

 

 

Figure 4.3: Variation of thermal Grashof number on temperature on a stretching sheet 
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Figure 4.4: Variation of thermal Grashof number on concentration on a stretching sheet 

Figures 4.1 to 4.4 display the variation of thermal Grashof number on velocities, temperature, 

and concentration.  It is observe that the thermal Grashof number enhances the velocity f due 

to the presence of buoyancy while the  velocity h, temperature and concentration dropped. 

 

Figure 4.5: Variation of thermal Grashof number on velocity f on a shrinking sheet 

 



 

27 
 

 

Figure 4.6: Variation of thermal Grashof number on velocity h on a shrinking sheet 

 

 

Figure 4.7: Variation of thermal Grashof number on temperature on a shrinking sheet 
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Figure 4.8: Variation of thermal Grashof number on concentration on a shrinking sheet 

 

Figures 4.5 to 4.8 shows the effects of thermal Grashof number on velocities, temperature, and 

concentration on the shrinking sheet.  It is observe that as the the thermal Grashof number 

increases the velocity profile f thickens due to the presence of buoyancy while the  velocity h, 

temperature and concentration dropped on the shrinking sheet.  

Generally, it is observe that velocity profile f on the stretching sheet is thicker than on the 

shrinking sheet while the velocity profile h, temperature and concentration profiles are thicker 

on the shrinking sheet.  
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Figure 4.9: Variation of concentration Grashof number on velocity f on a stretching sheet 

 

 

Figure 4.10: Variation of concentration Grashof number on velocity h on a stretching sheet 
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Figure 4.11: Variation of concentration Grashof number on temperature on a stretching sheet 

 

 

Figure 4.12: Variation of concentration Grashof number on concentration on a stretching sheet 

 

Figures 4.9 to 4.12 present the variation of concentration Grashof number  on velocities, 

temperature, and concentration on stretching sheet.  It is observe that the concentration Grashof 

number increases the velocity f due to the presence of buoyancy while the velocity h, 

temperature and concentration dropped on the stretching sheet. 
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Figure 4.13: Variation of concentration Grashof number on velocity f on a shrinking sheet 

 

 

Figure 4.14: Variation of concentration Grashof number on velocity h on a shrinking sheet 
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Figure 4.15: Variation of concentration Grashof number on temperature on a shrinking sheet 

 

 

Figure 4.16: Variation of concentration Grashof number on concentration on a shrinking sheet 

Figures 4.13 to 4.8 displays the effects of concentration Grashof number on velocities, 
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temperature, and concentration on the shrinking sheet.  It is observe that as the concentration 

Grashof number increases the velocity profile f thickens due to the presence of buoyancy while 

the velocity h, temperature and concentration dropped on the shrinking sheet.  

Generally, it is observe that velocity profile f on the stretching sheet is thicker than on the 

shrinking sheet while the velocity profile h, temperature and concentration profiles are thicker 

on the shrinking sheet than the stretching sheet. 

 

Figure 4.17: Variation of magnetic parameter on velocity f on a stretching sheet 
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Figure 4.18: Variation of magnetic parameter on velocity h on a stretching sheet 

 

 

Figure 4.19: Variation of magnetic parameter on temperature on a stretching sheet 
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Figure 4.20: Variation of magnetic parameter on concentration on a stretching sheet 

 

Figures 4.17 to 4.20 present the variation of magnetic parameter on velocities, temperature, 

and concentration on stretching sheet.  It is observe that the magnetic parameter increases the 

velocity f and temperature profile while the velocity h reduces due to drag like force and 

concentration dropped on the stretching sheet. 

 

Figure 4.21: Variation of magnetic parameter on velocity f on a shrinking sheet 
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Figure 4.22: Variation of magnetic parameter on velocity h on a shrinking sheet 

 

 

Figure 4.23: Variation of magnetic parameter on temperature on a shrinking sheet 
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Figure 4.24: Variation of magnetic parameter on concentration on a shrinking sheet 

 

Figures 4.21 to 4.24 display the effects of magnetic parameter on velocities, temperature, and 

concentration on the shrinking sheet.  It is observe that as the magnetic parameter increases the 

velocity profile f and temperature thickens while the velocity h and concentration dropped on 

the shrinking sheet.  

Generally, it is observe that velocity profiles and temperature profile on the stretching sheet 

has a  thicker boundary layer than on the shrinking sheet and concentration boundary layer  are 

thicker on the shrinking sheet than the stretching sheet. 
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Figure 4.25: Variation of rotational parameter on velocity f on a stretching sheet 

 

 

Figure 4.26: Variation of rotational parameter on velocity h on a stretching sheet 
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Figure 4.27: Variation of rotational parameter on temperature on a stretching sheet 

 

 

Figure 4.28: Variation of rotational parameter on concentration on a stretching sheet 

Figures 4.25 to 4.28 present the variation of rotational parameter on velocities, temperature, 

and concentration on stretching sheet.  It is observe that the rotational parameter increases the 

velocity h, and concentration profiles while the velocity f  and temperature reduces as the fluid 

rotation increases stretching sheet. 
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Figure 4.29: Variation of rotational parameter on velocity f on a shrinking sheet 

 

Figure 4.30: Variation of rotational parameter on velocity h on a shrinking sheet 
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Figure 4.31: VariatioJHn of rotational parameter on temperature on a shrinking sheet 

 

Figure 4.32: Variation of rotational parameter on concentration on a shrinking sheet 

Figures 4.29 to 4.32 present the variation of rotational parameter on velocities, temperature, 

and concentration on shrinking sheet.  It is observe that the rotational parameter increases the 

velocity h, and concentration profiles while the velocity f  and temperature reduces as the fluid 

rotation increases shrinking sheet. The boundary layers on the shrinking sheet are found to be 

thicker than the stretching sheet. 
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Figure 4.33: Variation of heat generation parameter on temperature on a stretching sheet 

 

Figure 4.34: Variation of heat generation parameter on temperature on a shrinking sheet 
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Figures 4.33 to 4.34 are the variation of heat generation parameter on the stretching sheet and 

shrinking sheet respectively. As the heat generation parameter increases, temperature also 

increases on both sheets. But the temperature boundary layer on the shrinking sheet is thicker 

than on the stretching sheet.  
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CHAPTER FIVE 

5.0     CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

  

This present work considered the work of Bhatti et al. (2018) with natural convection, heat 

generation. The PDE formulated in rectangular system was reduced to ODE via some similarity 

variables. The non linear coupled ODE depends on some physical parameters such as magnetic 

parameter, shrinking/ stretching parameter, and Grashof number. The following observations 

were made:- 

1.  The graphs presented in this work clearly satisfy the boundary conditions, which imply that 

the problem is well posed. 

2. The larger values of the dimensionless distance is choosing to be at 5  . 

3. The results presented in this work were compared with the results of the existing literatures 

as seen in Table 4.1 and 4.2 for stretching sheet and shrinking sheet and a good agreement was 

established. 

4. The values of the stretching sheet 0.6   and for shrinking sheet 0.6    as seen on the 

graphs. 

5. All the parameters varied on velocities, temperature and concentration have same effects on 

both stretching and shrinking sheet, but the boundary layer thickness varies. 
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5.2 Recommendations 

It is recommended that researchers: 

- Who wish to extend this problem by introducing more parameters are advice to do so. 

 - Should employ another method to obtained better results than what we have here. 
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