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ABSTRACT 

Most largely sparse linear systems encountered in applied sciences and engineering 

requires efficient iterative methods to obtain an approximate solution. In this thesis, an 

Extended Accelerated Over-relaxation (EAOR) iterative method for solving linear 

systems was developed by introducing a new acceleration parameter to improve 

convergence rate of family of Accelerated Over-relaxation (AOR) methods. The method 

was developed through decomposition of the coefficient matrix    by the usual splitting 

approach and interpolation procedure on the sub-matrices. Analysis of convergence of 

the method were examined on some special matrices like   ,   , and Irreducible 

weak diagonally dominant matrices. In addition, the Refinement of Extended 

Accelerated Over-relaxation (REAOR) iterative method was also developed coupled 

with its convergence properties for the special matrices. To validate the effectiveness of 

the proposed methods, some numerical tests including problems from fuzzy linear 

systems and heat transfer were conducted to verify the theoretical results. The results 

obtained indicated that the spectral radii of the proposed methods are smaller than the 

compared methods reviewed in the work. Based on the spectral radii results and the 

convergence results produced, it was concluded that the developed methods converge 

with lower number of iterations and computational time than the compared methods. 

This reveals that the introduction of a parameter to the general two-parameter AOR 

family methods has improved the convergence results. From the results obtained, the 

EAOR iterative method converges approximately 1.4 times faster than the KAOR 

iterative method and 1.8 times faster than the Quasi Accelerated Over-Relaxation 

(QAOR) iterative method. While the REAOR method converges 1.2 times faster than 

the Refinement of Accelerated Over-relaxation (RAOR) iterative method. 
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CHAPTER ONE 

1.0          INTRODUCTION 

1.1 Background to the Study 

The problem of solving the linear (mostly sparse) systems 

                                                                                           

Where   is the coefficient matrix,   is the right hand side vector, and     is vector of 

unknowns, appears as a final stage in solving many problems in different areas of 

science and engineering. It is the result of discretization techniques of the mathematical 

models representing realistic problems. In most cases, the number of these equations is 

generally large and for this reason, their solution is a major problem itself. Accordingly, 

techniques employed for their solutions are essentially the direct methods or that of the 

iterative methods (indirect methods). If the coefficient matrix of the linear system is 

large and sparse (most of the elements are zero), then iterative methods are 

recommended against the direct methods (Youssef & Farid, 2015). Iterative methods are 

more attractive since they are very effective, requires less memory and arithmetic 

operations (Fiseha, 2020). 

Linear systems        are among the most important and common problem 

encountered in scientific computing. The existence of solution of a linear system is 

distinguished into three situations. From theoretical point of view, it is well understood 

when a solution exists, when it does not and when there are infinitely many solutions. In 

addition, explicit expression of the solution using determinants exists. However, from 

the numerical point of view, it is far more complex. Approximations may be available 

but it may be difficult to estimate how accurate they are. This clearly will depend on the 

data at hand, primarily on the coefficient matrix (Saad, 2003).  
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Undoubtedly, Partial Differential Equations (PDE) constitute the major source of linear 

systems or sparse matrix problems. One possible way to obtain solutions to such 

equations is to discretize them that is by approximating them with finite number of 

unknowns. Several different ways of discretizing a PDE is through some discretization 

procedures such as finite difference methods, finite element methods and finite volume 

method (Kiusalass, 2005). 

According to Behzadi (2019), a general iterative method involves a process that 

converts the system of linear equations (1.1), by splitting    into       and the matrix 

splitting     is required to be easily invertible such that 

                                                                       

This can be equivalently written as a system of the form 

                                                                                         

Where                       for some matrix J and vector      After an arbitrary 

initial guess       is selected, the sequence of approximate solution vectors is generated 

by the iteration and the sequence                       is required to converge to     

where     is the solution of      . In order to solve the linear system in equation (1.1) 

more effectively by using the iterative methods, usually, efficient splitting of the 

coefficient matrix   is required. 

Large and sparse linear systems often occur in scientific or engineering application 

when finding solutions to partial differential equations. Sparse linear solvers are mainly 

the iterative methods such as Jacobi, Gauss Seidel, Successive Over-Relaxation and 

Accelerated Over-Relaxation methods, this is due to their fast computations of matrix 

splitting techniques. The technique of iterative method in obtaining solution for linear 

systems involves one in which an initial estimation is utilized in computing a second 
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estimation, the second estimation is equally used to compute a third estimation and it 

goes on continuously until a desired result is achieved (Fadugba, 2015). 

As the difference between the exact solution and successive estimation tends to zero, the 

iteration procedure becomes convergent. The most important aspect of an iterative 

method is that the set of iterates from the iteration should converge fast to a desired 

accuracy (Anton & Rorres, 2013).  

When designing an iterative method for solving systems of linear equations, the major 

question is how to achieve rapid convergence, or to put this in other words, how to 

construct an iteration matrix with the smallest spectral radius possible. To do this, one 

should be able to exert control over the properties of iterative matrix  , and this can be 

realized by the use of a special procedure called the method of relaxation. A technique 

that involves the process of speeding up the convergence rate of virtually any iterative 

method is known as relaxation method. This method tends to converge under general 

conditions although it usually progresses slowly than competing methods, which 

implies that its major setback is that of slow convergence. For example, assuming we 

have an initial estimate say              , of a quantity and we desire to advance 

towards a target estimate say               by a particular method. Let the application 

of the particular method change the estimate from            to                 . If  

    is in the middle of      and               , which is nearer to     than    ,  then we 

can advance towards      faster by magnifying the change (     ) . In order to 

achieve the above aim, we ought to apply a magnifying factor     to obtain 
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This amplification process is an extrapolation and it is typically an example of Over-

relaxation. Over-relaxation method is seen as a process of over estimating the 

residual/error by a factor towards the true solution of the problem in a fast manner.  

Suppose the midway estimate       tends to exceed or surpass the target estimate     , 

then one will have to apply     which is known as Under-relaxation.  Examples of 

Over-relaxation methods are the methods of Successive Over-relaxation (SOR) and 

Symmetric Successive Over-relaxation (SSOR). 

1.1.1 Sparse matrix 

A sparse matrix is a matrix in which majority of its coefficients are mostly zero values. 

Such matrices are different from matrices that contains mostly non-zero coefficients 

which are termed dense matrices. These matrices are generally common and occur 

mostly in areas such as machine language, data representation and others. Additionally, 

sparse matrices are quite expensive computationally to work with compared to dense 

matrices. One possible way to improve their performance is through the use of 

representations and operations that can handle sparsity of the matrices specifically. The 

main interest in sparsity of a matrix stems from the fact that exploitation of such 

matrices leads to great computational savings and practically, various large matrix 

problems that occur are sparse (Duff et al., 2017). 

Matrix sparsity are measured by a certain computed score, this score is represented as 

                     
                               

                                 
 

For example the matrix below 

  

(

 
 

       
       
       
       
       )
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Contains 26 zero values out of the 35 entries in the matrix, thereby giving a sparsity of 

0.7428571429 or approximately 74%. A lot of memory is required by numerous large 

matrices. More so, representing the zero values in a 32-bit or 64-bit is a clear waste of 

memory because those values (zero) do not contain any vital information. It is quite 

wasteful to utilize some general methods on sparsity problems due to the fact that most 

mathematical operations of        designed to compute the linear equations constitute 

zero operands. This leads to an associated problem of increased in time complexity of 

matrix operations that increases with the size of the matrix. There are several efficient 

ways in storing and working with sparse matrix, although, iterative methods provides an 

excellent implementation that one can utilize directly with respect to sparse matrices 

(Strang, 2016). The survey of iterative methods will be carried out in the next chapter. 

It is an undisputable fact that in real world, time is of essence that is no one wants to 

waste time. In regards to the solution of linear system of equations, it can sometimes be 

more desirable to get a close approximation of the solutions than to get the exact 

solution, when time is taken into consideration, this is where the proposed Extended 

Accelerated Over Relaxation (EAOR) method comes in to play. The Gaussian 

elimination method which is an exact solution techniques requires approximately  
  

 
  

operations to solve the system, which becomes time-consuming when    gets big. The 

proposed EAOR iterative method on the other hand, even though it only produces an 

approximation, can give us these approximations much faster than Gaussian 

elimination. 

1.2 Statement of the Research Problem  

Many physical problems in science and engineering are modelled into differential 

equations. The discretization of these equations in most cases results into a system of 
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linear equations. These linear equations are usually large and sparse which necessitates 

the application of iterative solution method such as Jacobi and Gauss-Seidel methods. A 

basic requirement of such iterative method is convergence, it is not just enough for a 

method to converge, we are equally interested in how fast a method converges. This 

goes a long way in saving storage, time and reducing cost. The search for automation 

and increasing the efficiency of iterative methods led to the discovery of Successive 

Over Relaxation (SOR) method. The Accelerated Over Relaxation (AOR) iterative 

method is a two-parameter modification of the SOR method that results into better 

convergence and greater efficiency in certain cases. Several researchers have also 

worked on modifications of the AOR method including generalizations, extrapolation, 

block and refinement form. Yet, most of these methods fail for some kind of matrices, 

and even with very high number of iterations before convergence could be achieved. 

This present work is a further attempt at developing an iterative method that would be 

effective and efficient, towards solving real life problems that are modelled as system of 

linear equations, which will in turn help to reduce the iteration number, computational 

time and storage capacity. 

1.3 Aim and Objectives of the Study  

The aim of this research work is to construct a parameterized iterative method and a 

Refinement version of it for solving linear systems, especially those arising from 

discretization of partial differential equations.  

The objectives are to: 

I. develop an Extended Accelerated Over Relaxation (EAOR) iterative method. 

II. investigate the convergence of the proposed Extended Accelerated Over 

Relaxation method. 
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III. determine the conditions placed on the coefficient matrix with regards to the 

proposed method.  

IV.  develop a Refinement version of the Extended Accelerated Over Relaxation 

method. 

V. investigate the convergence of the proposed Refinement of Extended 

Accelerated Over-Relaxation method. 

VI. undertake some numerical experiments including fuzzy linear system and a real 

life problem for the purpose of evaluating and validating the new methods. 

1.4 Justification of the Study 

The proposed iterative method is required for usage in areas like computational fluid 

dynamics, oil and gas industry, machine learning, structural engineering, linear 

elasticity and others. 

Given that real life problems are usually transformed into mathematical equations or 

linear algebraic equations, therefore finding solutions of such equations becomes 

paramount for researchers in the quest to obtain solutions to real world problems. 

Solving large systems of linear equations cannot be handled by direct methods, 

especially in a case where the matrix of the system is sparse, thereby requiring an 

iterative method for obtaining its solution.  

Application of a speedy converging iterative method with regards to solution of linear 

systems would save computational time and considerable resources. Hence the desire to 

develop a speedy converging iterative method that would solve large linear systems 

efficiently. The basic idea behind constructing the proposed method is mainly to speed 

up convergence rate.  

1.5 Significance of the Study 
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The results and conclusion of this study are important, because iterative methods have 

important relevance in real world applications in the fields of computational fluid 

dynamics, mathematical programming, linear elasticity, machine learning, among many 

others. In dynamics, for example, the study of heat conduction, turbulent flows, 

boundary layer flows or chemically reacting flows are some of the application areas 

where the proposed Extended Accelerated Over Relaxation iterative method is 

important for both researchers and policy makers. In essence, real life problems 

encountered in areas of science and engineering would be simplified. 

1.6 Scope and Limitation of the Study 

In a quest to improve the convergence speed of parameterized stationary iterative 

methods, the need to introduce an efficient iterative method becomes pertinent, this 

research study strives to do just that. A new parameter is introduced into the family of 

general Accelerated methods to formulate the proposed iterative method in order to 

improve convergence rate. Certain restrictions placed on the coefficient matrix of the 

linear system        are derived, analyzed and discussed extensively. The study will 

also advance convergence theorems and establish their proofs. More so, it covers the 

development of the Refinement version of the proposed Extended Accelerated Over 

Relaxation (REAOR) method. Irreducible weak diagonally dominant,  - and   - 

matrices are investigated. This study is limited to Extended Accelerated Over 

Relaxation (EAOR) method for solving linear systems of the form     , where     is 

a square non-singular coefficient matrix,   is a column vector of constants and     is the 

solution vector to be determined. 

1.7 Definition of Terms 

Basic iterative method: Is a single-step method of the form                  for 

some invertible matrix   , where          and          which involves 
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obtaining successive approximate solutions from an initial estimation  to the true 

solution of a linear system          

Lower triangular matrix: Is a square matrix in which all the entries above the 

diagonal entries are zero that is         whenever     . 

Upper triangular matrix: Is a square matrix in which all the entries below the 

diagonal entries are zero that is         whenever       . 

Triangular matrix:  A square matrix which is either upper triangular or lower 

triangular matrix is called a triangular matrix. 

Strictly lower triangular matrix: Is a lower triangular matrix in which all its main 

diagonal elements are zero that is        whenever       

Strictly upper triangular matrix: Is a upper triangular matrix in which all its main 

diagonal elements are zero that is         whenever       

Nonsingular matrix: A square matrix  (   )   
 is said to be nonsingular if its 

determinant is not equals to zero, that is to say det    . 

Diagonally dominant (weak) matrix; A square matrix   is said to be diagonally 

dominant or weak diagonally dominant if and only if 

|   |  ∑ |   |

 

       

                                                       

Irreducibly diagonally dominant matrix; A square matrix   is said to be irreducibly 

diagonally dominant if matrix A is irreducible and satisfy the condition 

|   |  ∑ |   |

 

       

                                             

With strict inequality for at least one row. 

Directed graph: Let matrix         with any    distinct points              in the 

plane called nodes, then for every nonzero entries     of the specific matrix, the set of 
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connected nodes            through a directed path       ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is called a directed graph 

denoted as     . 

Strongly connected graph: A directed graph of square matrix         is said to be 

strongly connected if it possess a directed path from            and a directed path from  

         for every pair of the nodes      . For illustration, the directed graph of    

(
   
   
   

) shown in Figure 1.1 is strongly connected since it is possible to reach any 

of the points starting from a specific point. 

 

 

 

Figure 1.1: Directed graph of    

Similarly, the directed graph of matrix     (
   
   
   

)  shown in Figure 1.2 is not 

strongly connected since it is not possible to reach     or      from    . 

 

 

 

Figure 1.2: Directed graph of    

Irreducible matrix: A matrix         is irreducible if and only if its directed graph 

     is strongly connected  For example, from figures 1.1 and 1.2,        is irreducible 
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because its directed graph is strongly connected and       is not irreducible since its 

directed graph is not strongly connected. 

Refinement iterative method:  A Refinement iterative method is an iteration technique 

for improving the estimate solutions to the true solution of the linear system     . It 

involves the process of calculating the residual        , solving the specified 

iterative method         forming the updates   ̅            for some 

invertible matrix     and repeating these steps as necessary until accuracy is achieved. 

Sparse matrix: Is a matrix in which most of its elements are zero with few non-zero 

elements. A special type of sparse matrix is the band matrix. 

Nonnegative matrix: A matrix         where                        

Hermitian matrix: A hermitian matrix is a complex square matrix that is equal to its 

own conjugate transpose. If the conjugate transpose of a given matrix   is denoted as 

  , then the hermitian property is expressed as     .  

 -matrix: Is a square matrix                where               with        

         .  

 -matrix: Is an    -matrix               where   is nonsingular and       .  

 -matrix: A matrix         is said to be an   -matrix if its comparison matrix, that 

is, the matrix 〈 〉  with elements      |   |                        |   |     is 

an   -matrix. 

Property  : An       matrix          is said to possess property   if there exists a 

set   from matrix   containing the union of two disjoint subsets        , such that if 

either        or      , then                                   

Consistently ordered matrix: A square matrix         is considered a consistently 

ordered matrix if it is obtained from permutation of columns and corresponding rows of 

a given matrix provided the given matrix possess Property  . 
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Splitting: The decomposition of any given matrix   into the form       where   

is a non singular matrix is called a splitting of   . And such splitting is: 

I. Nonnegative if          

II. Regular if         and      

III. Convergent if             

Usual splitting:  For any matrix  , the splitting             where      is the 

strict upper component of  ,    is the strict lower component  of   and     is the 

diagonal part of  , is referred to as the usual splitting of     Also, if matrix     is 

assumed to have a non-vanishing diagonal elements, then the usual splitting becomes  

         where      
          

      and      
    . 

Spectral radius: is the greatest value among the absolute values of the eigenvalues     

of a square matrix, denoted as               |  |  

Fuzzy Number:  Fuzzy number is a generalization of a regular, real number in the 

sense that it does not refer to one single value but rather to a connected set of possible 

values, where each possible value has its own weight between 0 and 1. It is an ordered 

pair  (   ) on the functions           ,        that satisfies the requirement; 

I.       is a bounded non-decreasing function over       

II.       is a bounded non-increasing function over       

III.                    

Fuzzy Linear System:  Fuzzy linear system are systems of linear equations in which 

coefficients and variables are uncertain and this uncertainty is expressed using fuzzy 

numbers. Fuzzy linear system are used in practical situation where some of the system’s 

parameters or variables are uncertain. 
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CHAPTER TWO 

2.0    LITERATURE REVIEW  

2.1  Basic Iterative Methods 

Numerical methods in approximating solutions of linear system allow the possibility of 

obtaining values of the roots system with the desired accuracy. This procedure of 

developing such sequences is referred to as iteration. While the direct method tries to 

compute the true solution in a finite number of steps, iterative method begins with an 

initial guess and produces successive improved estimations in an infinite sequence 

whose limit is the true solution. Practically, the iterative technique has more advantage 

due to the fact that the direct solution is subjected to rounding errors (Karunanithi et al., 

2018).  

As discussed in chapter one, a general linear iterative scheme of the form         is 

termed stationary if    and   are not dependent on the iteration count   . This implies 

that at every step of the iteration,   and   remain constant. Such stationary iterative 

methods are the Jacobi, Gauss-Seidel, Successive Over-Relaxation methods and others.  

Jacobi method and the Gauss-Seidel method are well known classical iterative methods 

introduced in the late eighteenth century for solving linear system. Solution of linear 

system of small dimension usually do not require an iterative technique, simply because 

time needed for necessary accuracy exceeds that of the direct methods. Large linear 

system with high percentage of zero elements which is usually obtained when solving 

partial differential equations and boundary value problems, usually requires an iterative 

method for their solutions. An iterative procedure for solving        linear system  

    , begins with an initial guess       to the solution    and produces successive 

estimations of vectors [    ]
   

 
  which converge to    (Kisabo et al., 2016). A very 

basic idea that leads to effective iterative solvers is to split the matrix of a given linear 
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system in the sum of two or three matrices that would lead to a system that can easily be 

solved. 

For example, the classical Jacobi and Gauss-Seidel iterations are obtained by splitting 

the matrix   into its diagonal and off diagonal parts          and the coefficient 

matrix    can  be further transformed into              where   is the unit matrix 

of order  ,     is the strictly lower triangular and    is the upper triangular parts of    

respectively. 

2.1.1   The Jacobi method 

As discussed by Markatos and Karabeks (2015), the Jacobi method is an iterative 

method that cycles through each of the variables    ,   ,         in turn to refine an 

initial guess. The main idea of the Jacobi method is to determine the     variable of the 

next approximate solution in      in relation to the other variables. The iteration 

method involves solving one variable at once for a single step of the iteration process or 

simply, at each iteration stage. That is to say, we use the values of      to update the  

      at each stage for each iteration. The matrix form of the Jacobi method is 

formulated from the linear system in equation (1.1) based on the splitting of      

   , and its matrix form is given as: 

                                                                               

And the general iterative form of (2.1) is denoted as 

                                                                                            

Where              is the Jacobi iterative matrix and        . The algebraic 

form of the Jacobi method above is expressed as; 
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Where the    are the elements of   ,     are the elements of   and the     are the 

elements of the coefficient matrix          respectively.  

Salkuyeh (2007) in an attempt to enhance the rate of convergence of the Jacobi method 

proposed the generalized Jacobi (GJ) method and states that the generalized Jacobi 

method is convergent for     matrix, strictly diagonally dominant matrix and 

symmetric positive definite matrix. It was revealed that the generalized Jacobi method 

performed better than the conventional Jacobi method based on the outcome that the 

Jacobi method took a longer time to converge to the true solution than the generalized 

Jacobi method.      

Tesfaye (2016) introduced the second degree generalized Jacobi iteration method   The 

convergence rate properties and the spectral radius of the method were studied and 

discussed. The method was validated and it proves that the method converges faster                 

than first degree Jacobi, generalized first degree Jacobi and second degree Jacobi 

methods.  Also, the method can be further improved by the application of extrapolating 

procedures. 

2.1.2 The Gauss-Seidel method 

The Gauss-Seidel iterative method is a modification of the Jacobi method and 

essentially superior to the Jacobi method. This iterative scheme is also known as 

successive displacement method which is based on the process of updating the     

iterative values as soon as the new estimates are available. Regarding the method of 

Jacobi, the estimates of    
  obtained in the     iteration remains unchanged until the 
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entire         iteration has been computed. With regards to the Gauss-Seidel iterative 

method, we utilize the new estimates   
    as soon as they are known, (Saha and 

Chakrabarty, 2020).  For illustration, once we have calculated   
    from the first 

equation, its estimate is then utilized in the second equation of the linear system to 

obtain the new estimate    
   . The algebraic form of the method is given as 

  
    

 

   
(   ∑     

 

   

   

 ∑      
 

 

     

)         
         

           
                       

while the matrix form formulated from splitting of (1.1) into         is  

                                                                              

This is represented in the general iterative form as 

         
                                                             

where                is the Gauss-Seidel iteration matrix and                 

In a quest to enhance the rate of convergence of the Gauss-Seidel method, Salkuyeh 

(2007) presented a modified form of the Gauss-Seidel method called generalized Gauss-

Seidel (GGS) method. The convergence properties of the GGS for    matrix, strictly 

diagonally dominant matrix and symmetric positive definite matrix were studied. 

Analysis of the results indicates that the generalized Gauss-Seidel method is superior to 

the classical Gauss-Seidel method.  

On the other hand, Tesfaye (2014) presented a method called second degree generalized 

Gauss-Seidel method (SDGGS) and studied the convergence of the method for 

symmetric positive definite matrix, strictly diagonally dominant matrix and irreducible 

matrix. It was revealed that the second degree generalized Gauss-Seidel method in 

comparison with methods of first degree Gauss-Seidel and generalized Gauss-Seidel 
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performs better, due to the fact that the spectral radius of the second degree generalized 

Gauss-Seidel method is lesser than those of the methods examined in the work.  

Sebro (2018) improved on the refinement of Generalized Gauss-Seidel iterative scheme 

through extrapolation procedures and developed the scheme called Extrapolated 

refinement of Generalized Gauss-Seidel (ERGGS) method. The method was validated 

and compared with methods of Refinement of generalized Jacobi, generalized Gauss-

Seidel and refined version of generalized Gauss-Seidel. It was shown that the 

convergence rate of the Extraolated refinement of Generalized Gauss-Seidel (ERGGS) 

method is higher than other methods considered for comparison. 

2.2 Development of Successive Over-relaxation (SOR) Method 

Over the years, iterative methods of solving large sparse linear systems have been 

introduced starting from the Jacobi to Gauss-Seidel methods which are non-

parameterized. In an attempt to rectify the setback (low convergence rate) associated 

with non-parameterized iterative methods, some researchers came up with the idea of 

developing parameterized methods  so as to achieve greater convergence rate. Examples 

of such parameterized methods are the Successive Over-Relaxation and Accelerated 

Over-Relaxation which has proved to outperform the existing Jacobi and Gauss Seidel 

methods. 

As discussed in Hadjidimos (2000), the method of Successive Over-relaxation (SOR) 

was invented with the aim of solving linear systems on digital computer 

(computationally). This method essentially seeks to reduce the number of iterations 

needed to minimize the error of an initial guess of the solution through a predetermine 

factor and application of extrapolation on the Gauss-Seidel method. The main idea of 

this method is taking an average weight of the previous iterates and the new computed 
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iterates for each component successively. Setting    ̅
  as the Gauss-Seidel      

component, the iteration of the SOR method is given by the relation below 

  
     

         
                                                                  

 where the variable   [       is the relaxation parameter. This implies that the 

accepted value at step k is extrapolated from the Gauss-Seidel value and the previous 

computed values. The concept is to select a suitable value for   that will improve the 

convergence rate of the Gauss-Seidel method to the true solution. The SOR method 

reduces to that of Gauss-Seidel when     ,  the algebraic form of the SOR is given 

below as  

  
   {

 

   
(   ∑    

 

   

   

 ∑      
   

 

     

)}         
      

                                                                        

while the matrix form is represented as  

                                                                    

and the general iterative form is denoted as 

                                                                      

where                           is the iteration matrix of the SOR method 

and                 . It is well known that SOR iterative method are convergent 

for linear systems. 

Mayooran and Elliot (2016) discussed and analysed the significance of the Successive 

Over-relaxation iterative method for improving solutions concerning real world 

problems. They examined the performance of the classical SOR scheme by solving an 

heat equation when a steady boundary temperature is been applied to a flat plate, 

through finite difference approach. The result indicates a remarkable convergence rate 
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due to the fact that the SOR method is an effective iterative solver in the case of large 

sparse matrices. Future work was recommended to construct an AOR algorithm that 

could generate better and closer result to the true values. 

 

 

 

2.3  Variants of Successive Over-Relaxation Method 

Many researchers have shown interest in magnifying the convergence rate of the SOR 

method by developing several modifications and versions of the SOR iterative method 

used for computations of the linear system        . 

The Symmetric Successive Over-Relaxation (SSOR) method combines two SOR 

processes together in such a manner that the resulting matrix becomes a symmetric 

matrix. It is an iteration process where one of the two iterations is that of the forward 

SOR and the other iteration is that of the backward SOR. The forward SOR iteration is 

given as 

   
 
                                                                 

while the backward SOR is given as 

                         
 
                                      

Hence combining equations (2.13) and equation (2.14), gives rise to the SSOR iterative 

matrix form as  
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where we have                            and          

                                       is the SSOR iteration 

matrix. 

Youssef (2012) developed a version of the SOR method called modified Successive 

Over-Relaxation (KSOR) method. The method is based on the treatment of assumption 

that recent value can be utilized in the evaluation along with the most current computed 

values as in SOR method.  Apart from the range of values of SOR method, the KSOR 

method is capable of taking values from          . It also possess the same structure 

as the SOR method and advantage of the method over some iterative methods is that of 

updating the first computation from the first step, thereby reflecting rapid convergence 

from the start of the iteration process. Also, consistency, spectral radius, theoretical 

conditions and convergence of the KSOR method were proved in the research work. 

The spectral radius of the method was examined and the outcome reveals that KSOR 

spectral radius appears comparable to SOR spectral radius for a certain value of the 

relaxation parameter (    which corresponds to optimal (  .  

Yousef and Taha (2013) presented some modifications of the KSOR method in three 

different forms called MKSOR, MKSOR1 and MKSOR2 is a subclass of consistently 

ordered matrix.  The three schemes are improvements on the SOR and modified 

Successive Over-Relaxation (KSOR) methods, through the process of updating the 

residue simultaneously with the solution and utilizing the most current computed 

solution at the same time. They established the functional relationship between 

eigenvalues of Jacobi method and those of the MKSOR methods with restrictions on the 

relaxation parameters. Theoretical properties, consistency and convergence of the 

methods were proven. Validation of the methods were performed and compared with 

the MSOR method where it reveals that the MKSOR methods are more efficient. The 
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outcome of their research agrees with the theoretical findings, leading to the suggestion 

that acceleration procedures combined with SOR and KSOR formulas can be more 

efficient, however, determination of optimal values for the relaxation parameters was 

not considered in their work.  

Zhang et al. (2016a) extended the convergence of SOR method for non-Hermitian 

positive definite matrices in their paper. Some sufficient conditions for convergence as 

regards the SOR method were presented and they discovered that these conditions 

appear theoretically relevant but difficult in application to practical calculations. 

Numerical samples were verified to ascertain the convergence of the SOR method for 

non-Hermitian positive definite matrices, the results analysis indicates that the SOR 

iterative scheme converges for a non-Hermitian positive definite matrix.   

 Zhang et al. (2016b) in an attempt to verify if the SOR method is convergent for 

system of linear equations whose coefficient matric is a weak     matrix, presented a 

convergence analysis of the SOR method for linear system with weak   matrix in 

their work. They surveyed the convergence analysis of forward Successive Over-

Relaxation [FSOR] method, backward Successive Over-Relaxation [BSOR] method and 

symmetric Successive Over-Relaxation [SSOR] method for weak     matrix [whose 

comparison matrix is a singular  -matrix] and proposed some sufficient conditions for 

the methods to converge to the real solution. Evaluation and validation of the 

convergence of SOR methods for weak    matrices were carried out through some 

numerical samples and the results obtained reveals that the FSOR, BSOR and SSOR 

iterative methods are convergent for weak    matrices having singular comparison 

matrices. They suggested the idea of investigation on the convergence of Accelerated 

Over-Relaxation method for linear system with weak    matrices. 
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Chunping (2017) presented a generalization of the SSOR method with 3 parameters 

called 3 SSOR-like iteration method for solution to saddle point problems. Convergence 

of the method was discussed extensively. Numerical validation conducted confirms the 

theoretical proofs and effectiveness of the method. Although, the 3 SSOR- like 

parameters are not optimal and therefore further study on determination of optimal 

values was suggested. 

Vatti et al. (2020a) studied the Second Degree Successive Over-Relaxation (SDSOR) 

Method and compared its performance with other methods such as Jacobi, Second 

Degree (SDJ), Gauss-Seidel, Second Degree Gauss-Seidel (SDGS) and SOR methods. 

It was observed that the SDSOR iterative method exhibits higher rate of convergence. 

Firew et al. (2020) improved on the convergence rate of the Generalized Successive 

Over Relaxation (GSOR) method and developed the Second Degree Generalized SOR 

method. They discussed the convergence properties and compared the method with 

SOR and GSOR methods. It was reported that the SDGSOR iterative method converges 

faster than Successive Over Relaxation and Generalized Successive Over Relaxation 

methods. 

2.4  Development of Accelerated Over-Relaxation (AOR) Method 

The Accelerated Over-relaxation (AOR) iterative method which has been proven to be a 

powerful technique for solving linear systems of equation was developed by Apostolos 

Hadjidimos in 1978. The Accelerated Over-relaxation method which is viewed as an 

extrapolation of the Successive Over-relaxation method, having over-relaxation 

parameter     and extrapolated parameter  (  
 

 
), was derived through the 

interpolation procedure with respect to the sub-matrices in application of general linear 

stationary schemes. It is an improvement on the Successive Over-relaxation iterative 
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method which involves two parameters generalization of the Successive Over-relaxation 

scheme to accelerate the convergence of the Successive Over-relaxation method. The 

presence of two parameters used in speeding up the convergence of the AOR method 

instead of the usual one parameter in speeding up convergence of an iterative method 

proves the powerfulness of AOR method when compared with conventional method 

such as Successive Over-relaxation method. More so, exploiting the presence of these 

two parameters provides numerical solvers with a method that converges faster than any 

other equivalent method.  

The AOR method is considered as an improvement on the Successive Over-relaxation 

(SOR) method for the sole purpose of speeding up the convergence rate of the SOR 

method. He utilized the splitting          to established the below splitting 

method with an over-relaxation and acceleration parameters    and   of the coefficient 

matrix   of the linear system      . 

  
 

 
[            ]                                                                         

where       
 

 
                        

 

 
                    and the 

AOR method is governed by the relation 

            
                                                                            

where                                                           

By so doing, he introduced one more parameter into the Successive Over-relaxation 

method to obtain a faster convergence rate in the AOR method. He also made an effort 

to investigate the constraints or limitations enforced on the accelerated and relaxation 

(       ) under different notions on the original matrix    to enable the convergence of 

the AOR method. He obtained some convergence theorems based on the assumptions 

with regards to the original matrix   and equally established the proofs of the theorems 



24 
 

in his work. His theorem on an irreducible weak diagonal matrix states that: the AOR 

method tends to converge for values of       and       whenever the 

original matrix is an irreducible weak diagonally dominant matrix. For    matrix, the 

convergence theorem states that: if the original matrix is an    matrix such that 

        , then the AOR method converges if and only if the Jacobi method 

converges. The main results from his findings indicates that the AOR iterative method 

converges for some specific values of          when the coefficient matrix is     

matrix, irreducible weak diagonally dominant matrix or consistently ordered matrix. 

Numerical experiment performed showed the superiority of the AOR method over the 

SOR method. 

Finding an optimal acceleration parameter of the AOR method for a consistently 

ordered matrix is often associated with the relationship between the eigenvalue ( ) of 

Jacobi iteration matrix with eigenvalue   of AOR iteration matrix which is given as 

                                                                      

Hadjidimos (1978) considered the convergence analysis of a consistently ordered matrix 

with regards to the AOR method during his research work in 1978. He established a 

sufficient and necessary condition for the convergence of AOR method when the Jacobi 

method possesses real eigenvalues only. It was shown in the result that convergence 

domain of   relies on the estimate of   . He also established the fact that when the over-

relaxation and acceleration parameters are easily obtainable, the AOR tends to converge 

fast when compared to other iterative methods. Hence the matter of determining the 

optimal acceleration and over-relaxation factors requires further investigation. 

2.5  Variants of Accelerated Over-Relaxation Method 

Many researchers have been encouraged and are still interested in exploring the AOR 

method for solution of the linear system        . This led to several modifications 
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and versions of the AOR iterative method used in magnifying the convergence rate of 

the AOR method.  

Darvishi et al. (2011) considered the improvement of the AOR scheme and proposed a 

numerical method known as Symmetric Modified Accelerated Over-relaxation iterative 

method (SMAOR) They investigated the convergence region of the scheme and carried 

out numerical experiment of some problems for comparison of the method with AOR 

method. Their finding indicated that the SMAOR performs better than the AOR method 

as it shows that the convergence rate of the SMAOR method is greater than the 

convergence rate of AOR. 

Salkuyeh (2011) by applying the idea of Hadjidimos (1978), parameterized the AOR 

method and developed a new proposition of the AOR method called generalized 

Accelerated Over-Relaxation (GAOR) method. The splitting of matrix of the form 

            was considered, where          is a banded matrix with bandwidth  

    ,     and     are strictly lower and upper part of the matrix     . The 

method is formulated as; 

       (      )
  

[                   ]     

  (      )
  

                                                                  

He studied the convergence property of the GAOR method for   matrices, established 

that the generalized Accelerated Over-relaxation method converges for   matrices and 

proves that the GAOR method converges faster than the classical AOR method.  

On the other hand, Nasabzadeh and Toutounion (2013) utilized a block splitting of the 

coefficient matrix where the block matrix form is     (
    

    
)              

     , a different approach from Salkuyeh (2011), developed an improved version of 
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the AOR method called the generalized Accelerated Over-Relaxation method  which is 

designated as 

                
                                                            

           
                                                          

while the GAOR method of Salkuyeh (2011) is convergent for    matrices, this 

GAOR method has been proved to be convergent for other matrices such as    matrix, 

strictly diagonally dominant matrix, Hermitian positive definite matrix and   matrix. 

Also, the GAOR iterative method has shown to be more efficient than the basic AOR 

iterative method. 

Shaikh et al. (2013) further improved on the AOR method and presented a generalized 

one-parameter reduction of the AOR method called Critical Accelerated method. They 

applied a splitting of the form      
   ,   is the diagonal part  and    

   is 

combination of both the strictly lower and strictly upper triangular matrices of matrix  , 

unlike the usual splitting of          in Gauss-Seidel, Jacobi, SOR and AOR 

methods. The Critical Accelerated method is denoted as  

       {          }                                                               

where          
              , The method converges to the true solution for 

system of linear equations when         They investigated and discussed the 

restrictions on the acceleration parameter in the method to ascertain convergence of the 

method for irreducible diagonally dominant and positive definite matrices. It was 

observed from the outcome of the study that the critical accelerated method is more 

efficient and superior to SOR and AOR Gauss-Seidel. They recommended more 

research on determination of the optimal values of the acceleration parameter provided 

it will provide the Critical Accelerated method a fast convergence than its present form. 
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Wu and Liu (2014) presented a new version of the AOR method called Quasi 

Accelerated Over-Relaxation (QAOR) iterative method. Based on induced splitting of 

the AOR method, the Quasi Accelerated Over-relaxation iterative method is established 

as 

                                                           

                                                 

They examined some special matrices and obtained sufficient conditions with regards to 

the convergence analysis of the matrices. Findings from the convergence analysis 

indicates that  QAOR  method converges for  an irreducible matrix with weak diagonal 

dominance with values        and     ,  for    matrix with          

  ,  for     matrix with        ,       and for symmetric positive definite 

matrix.  The effectiveness and attainability of the QAOR iterative was examined and 

compared with the modified Successive Over-relaxation (KSOR) method by Yousef 

(2012) and AOR methods. Although the QAOR method is effective but not as efficient 

as the KSOR, that is to say the KSOR method performs better than the QAOR method 

under some conditions. 

Youssef and Farid (2015) through the use of extrapolation approach on the modified 

successive over-relaxation method (KSOR) method by Youssef (2012) from the AOR 

point of view, formulated the KAOR iterative method represented as; 

                                                                           

                                                                                

 Discussion and investigation for the convergence of the method were carried out in the 

study for matrices such as irreducible weak diagonally dominant matrix,     matrix 

and consistently ordered matrix. The study indicates that the method converges faster 

than the AOR iterative method however, this was possible due to the fact that they 
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considered the   negative value of the acceleration and relaxation parameters which was 

ignored in QAOR method by Wu and Liu (2014). Otherwise, the AOR method 

converges faster than the KAOR iterative method.  

By avoiding the computation of the spectral radius of the AOR method and employing 

the minimization of the residual properties of AOR method, (Luna et al., 2016) 

presented a method known as Asymptotically Optimum Accelerated Over-Relaxation 

(AOAOR) method. The method is an optimization procedure in finding optimum 

parameters of the AOR method. Optimum acceleration parameters for symmetric 

positive definite matrix and non-symmetric matrix were investigated, analyzed and 

discussed extensively. They were able to prove the efficiency of the AOAOR method 

over the AOR method and established the fact that the method is more robust than the 

AOR method in terms of larger intervals of the parameters.  

Akhir and Suleiman (2017) applied the idea of the classical Accelerated Over-

Relaxation scheme and considered a combination of triangle element approximation 

with the AOR method to produce an excellent iterative solver for a 2D Helmotz 

equations. Performance of the method was clarified through a numerical test. The result 

reveals that the associated Accelerated Over-Relaxation method as regards the 2D 

Helmotz equations exhibited greater convergence improvements as compared to the 

Successive Over-Relaxation method. 

Dahalan et al. (2018) proposed a method named Quarter- sweep Accelerated Over-

Relaxation (QSAOR) method, a family of AOR method for solving robotic problem 

such as free collision path from an initial location to a specific end within their 

environment. By application of finite difference procedures on the Laplace equation 

which was modelled from the problem, the numerical test conducted indicates that it is 
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able to generate smooth path between starting positions to specified destinations. Also. 

Based on their simulation result, performance of the QSAOR methods is far better and 

gives smooth path in comparison to previous research in literature. 

In an attempt to ensure high rate of convergence, increasing the number of parameters 

has proven to accelerate convergence. 

 Recently, in a quest for improvement on existing two-parameter stationary iterative 

methods (Vatti et al., 2019a) modified the AOR method and developed a three-

parameterized method called Parametric Accelerated Over-Relaxation (PAOR) method. 

The method is a modified version of the AOR method through introduction of a new 

acceleration parameter   and it is represented as; 

         (          )
  

                                                  

     (          )
    

                                                  

Convergence condition with regards to consistently ordered matrices for the method 

was studied and choices of the PAOR parameters were obtained in respect to the 

eigenvalues of the Jacobi iteration matrix. Efficiency of the method was verified and the 

result shows that the PAOR method although reduced to AOR method with     , its 

spectral radius is smaller compared to spectral radii of AOR, SOR, Gauss Seidel and 

Jacobi methods. This confirms that the PAOR method for any     , performs better 

than the other methods examined in the research work.     

Furthermore, Vatti et al. (2019b) generalizes the Parametric Accelerated Over-

Relaxation (PAOR) method for solving non-square linear systems. It was reported that 

the generalized PAOR method converges faster compared to AOR method.  

Again, Vatti et al. (2020b) embarked on modification of the AOR method and 

developed an iterative method called Reaccelerated Over-Relaxation (ROR) method. 
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Eigenvalues of the ROR method were obtained and choices of its parameters were 

equally established. The method is represented in the form; 

                                                  

                                                                             

Convergence of the method was only focused on linear systems with consistently 

ordered matrices, some theorems were proposed and proved with respect to such 

matrices. They compared the method with some existing methods such as SOR, AOR, 

Gauss-Seidel and Jacobi methods through some numerical tests and the results obtained 

indicates that the convergence rate of the ROR method is faster than the methods  of 

Jacobi, AOR, Gauss-Seidel and SOR examined in the study. 

Zhang et al. (2020) extended the AOR splitting scheme and proposed two iterative 

methods called Newton-Successive Over- Relaxation (NSOR) and Newton-Accelerated 

Over- Relaxation (NAOR) methods for solving multilinear systems such as the tensor 

equations. Convergence conditions with regards the two methods were established. The 

methods were validated and it was shown that the NAOR method outperform the other 

methods compared in the study. 

2. 6 Convergence of Stationary Iterative Methods 

First of all, convergence in terms of stationary iterative methods is a different concept 

from convergence of numerical schemes. In numerical schemes, convergence is focused 

on the analytical solution minus the numerical solution while convergence in terms of 

iterative methods is mainly concerned with the difference between the approximate 

solution    at step   minus the exact solution                , and the exact in 

         is not the exact of the differential equation, it is the exact solution of the linear 
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system        Two questions which are also very important to the choice of whether 

or not to use the iterative methods (Jacobi, Gauss-Seidel, SOR and AOR) are; 

I. What are the conditions under which these methods converge?  

II. What is the rate of convergence?  

Sufficient conditions for convergence of a particular iteration method can also be 

derived. 

Theorem 2.1 (Saad, 2003) 

The standard iterative scheme                   converges for any     or       

provided the spectral radius of   is less than one         . The spectral radius of an 

iteration matrix  , represented as     , is given as  

         |  |                                                       

The iteration matrix   determines the rate of not only the rate of convergence but also 

whether or not it would converge. So the iteration matrix      is the key to the behavior 

of this iterative scheme. So, once the matrix     is constructed even before going through 

iteration procedure, one can find out or can predict whether or not the method will 

converge by finding out the eigenvalue of the method to check if the spectral radius is 

less than one. It is a known fact that convergence rate of stationary iterative procedure 

lies greatly on the spectral radius of the iteration matrix. 

Theorem 2.2 (Varga, 2000) 

If  matrix     of the linear system       is irreducibly diagonally dominant 

(diagonally dominant), then the spectral radii of Gauss-Seidel and Jacobi  iteration 

matrices are less than 1, and both Gauss-Seidel and Jacobi methods converges. 

Theorem 2.3 (Young, 2014) 
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If   is symmetric with positive diagonal elements, then spectral radius of the SOR 

iteration matrix is less than 1, that is            provided    is positive definite and 

the range      . 

Theorem 2.3 (Hadjidimos, 1978) 

If   is an    matrix, then spectral radius of the AOR iteration matrix is less than 1 

[            provided   is an   matrix and        , the AOR method 

converges if and only if the Jacobi method converges. 

2.7 Refinement of Iterative Methods 

Sometimes an estimation to real solution of linear systems deviates from the real 

solution of the system and is usually described as the residual vector which simply 

means the left-over of the solution after approximations. In procedures of iterative 

methods such as Gauss-Seidel, Jacobi, Successive Over-relaxation (SOR) and so on, 

each computation component to the solution vector has an associated residual vector to 

it (Vatti et al., 2015). 

Suppose    is an invertible matrix, the refinement of iterative method is mainly 

concerned with generating better estimations successively for obtaining solutions to 

linear systems     .  For the solution        , suppose there is an invertible 

matrix     such that 

           , where the application of   is cheaper compared to application of 

solving the system matrix  . This estimate inverse   can come from either any of the 

direct methods or from carrying out few steps of a particular stationary iterative 

methods used in solving     . Now the question is, is there a possibility of 

improving the accuracy of the estimate solutions that is obtained from any of the 
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stationary iterative methods for a system of linear equations,     ? The basic idea 

associated with this method is to examine the iteration 

                                                                                   

             (       )                                            

And if         converges, then it means that the limit must satisfy the expression: 

                                                                       

Where         is the residual vector, likewise if convergence of the method is 

attained, it converges to the true solution of the linear system. Also, the refinement of 

iterative method               (       )  produces iterates in the form 

      ∑       

 

   

                                                             

And the method converges to the real solution of        as long as ‖    ‖    that 

is to say if    is sufficiently close to inverse of  . A method that utilizes this postulation 

is referred to as iterative refinement or iterative enhancement, consisting of carrying out 

iterations on the linear system having the residual vector at the right hand side, for 

successive estimations until accuracy of the results are satisfied. Iterative refinement is 

seen as an iterative technique which is used in improving the estimate solution  ̅  to the 

linear system      , (Burden and Faires, 2011) 

Refinement of iterative methods was introduced by in fifteenth century to enhance the 

accuracy of numerical estimations to systems of linear equations of the form     . 

Once an estimation to the solution   ̅   has been made with any of the iterative methods 

like methods of AOR, Jacobi, SOR and Gauss-Seidel, then the following steps needs to 

be carried out to achieve the refinement of the specific method; 

1. Commence with an initial estimate       (  
   

   
   

   
   

     
   

) 
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2. Substitute the estimate      into the desired iterative method                  

3. Insert the result of 2 into the refinement formula and 

4. Formulate the update using   ̅              (         ) 

5. Return to step 2 if convergence is not achieved. 

Then one checks if the solution that has been obtained is correct to the desire degree of 

accuracy, if so, then the iteration is stopped and if not, then the computations continues 

until the desired degree of accuracy is achieved. An important objective of the 

refinement of iterative methods is to produce sequence of estimations which will make 

the residual vector converge very quickly to zero, thereby enhancing the convergence 

rate of iterative methods. The iterations are usually terminated whenever norm of the 

residue ‖  ‖  ‖     ‖ becomes sufficiently small, (Guan and Chandio, 2017). 

It is in the light of the above that some researchers decided to research into the 

refinement of the various iterative methods in order to accelerate the convergence rate 

of the specified iterative method for solving linear systems. Jacobi method remains one 

of the iterative methods with fewer calculations and low convergence.  

In an attempt to enhance the convergence rate of the Jacobi method, Dafchahi (2008) 

modified the Jacobi method and developed a refinement of Jacobi (RJ) method. 

Convergence of the method was investigated and it was proved that the refinement of 

Jacobi method is convergent for a strictly diagonal dominant matrix and a consistently 

ordered matrix. The RJ method is more efficient when compared with methods of 

Jacobi and Gauss-Seidel and it is as fast as the SOR method. Also, the RJ method seems 

easier when comparing with method of SOR since finding optimal parameter is not 

required during iteration process.  
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Vatti and Gonfa (2011) improved on the generalized Jacobi method by Salkuyeh (2007) 

and developed Refinement of generalized Jacobi (RGJ) method. The convergence of the 

method for strictly diagonal dominant and   -matrices was discussed. Also, it was 

confirmed that the RGJ method exhibits faster convergence in comparison with 

generalized Jacobi method and this gives rise to the conclusion of their study that the 

refinement of generalized Jacobi is superior to the generalized Jacobi method and 

should be used in place of generalized Jacobi when solving linear system.   

Vatti and Tesfaye (2011) developed refinement of Gauss-Seidel (RGS) iterative method 

in order to enhance the convergence rate of Gauss-Seidel iterative method. They 

discussed the convergence of the method for strictly diagonally dominant matrix and 

positive definite matrix. It was proven that RGS method converges twice as fast as the 

GS iterative method when compared with Gauss-Seidel method, thereby confirms that 

the refinement of Gauss-Seidel method is superior to Gauss-Seidel method. 

Kyurkhiev and Iliev (2013) made some improvements on the SOR and SSOR schemes 

and proposed the methods called Refinement of Successive Over- Relaxation (RSOR) 

and Refinement of Symmetric Successive Over-Relaxation (RSSOR) methods based on 

the reverse of Gauss-Seidel method. The methods are convergent for strictly diagonally 

dominant and    matrices and the two methods yield reasonable improvements in 

convergence rate compared to SOR and SSOR iterative methods. 

 While surveying the refinement of Jacobi (RJ) method, refinement of generalized 

Jacobi (RGJ) method and refinement of Gauss-Seidel (RGS) method, Laskar and 

Behera (2014), discovered that the RJ method takes longer time to converge to the true 

solution than RGS and RGJ methods. Based on the outcome of their findings in terms of 

number of iterations, level of accuracy and performances of the three refinement 
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methods, it was observed that the RGJ method is highly efficient than the RGS and RJ 

iterative methods.  

Genanew (2016) improved on the convergence rate of the generalized Gauss-Seidel 

(GGS) method and developed the Refinement of generalized Gauss-Seidel (RGGS) 

method. He observed that the method is quite efficient than SOR and Refinement of 

generalized Jacobi methods.  

Vatti et al. (2018) refined the AOR method in order to speed up its convergence rate 

and proposed a two-parameterized method called Refinement of Accelerated Over-

Relaxation (RAOR) method. The residual vector of the AOR method was obtained and 

refined to achieve the RAOR method. The matrix splitting           with the 

formula of the AOR method                                        

          ̇  , were utilized to formulate the RAOR iterative method, which  results 

into the form; 

 ̅                                                                     

                                         ̇              

They discussed and investigated the convergence of the method for irreducible weak 

diagonally dominant and consistently ordered matrices. The RAOR method was 

compared with AOR method and it shows that the convergence rate of the RAOR 

method is faster than the AOR method. 

Muleta and Gofe (2018) in the quest to accelerate the convergence rate of the 

generalized Accelerated Over-relaxation method, developed the refinement of 

generalized Accelerated Over-relaxation (RGAOR) method. Convergence analysis of 

the RGAOR method for   matrix and strictly diagonally dominant matrix were 

studied. In comparison with the generalized AOR method, the refinement of the 



37 
 

generalized Accelerated Over-relaxation method converges to the true solution quicker 

than the generalized AOR method. Also, they arrived at a conclusion that the error of 

the refinement of generalization of AOR method at any predefined error of tolerance is 

lesser when compared to other methods examined in their study. 

Tesfaye et al. (2019), developed the second refinement of Jacobi (SRJ) method aimed at 

speeding up the convergence rate of the Refinement of Jacobi method. Convergence of 

the SRJ method for   matrix, strictly diagonally dominant matrix and symmetric 

positive definite matrix was investigated and discussed extensively. The second 

refinement of Jacobi method minimized the number of iterations by 1/3 (one third) of 

Jacobi and 2/3 (two-third) of refined Jacobi methods and thus proves that the SRJ 

method converges faster than refined Jacobi and Jacobi methods.  

 Recently, Tesfaye et al. (2020) proposed a method called second Refinement of Gauss-

Seidel (SRGS) method and proves that the method is more efficient than Refinement of 

Gauss-Seidel (RGS) method. 

Assefa and Teklehaymanot (2021) carried out a study to increase the convergence speed 

of the Refinement of Accelerated Over Relaxation (RAOR) Method. They introduced 

the second Refinement of Accelerated Over Relaxation (SRAOR) method and 

minimized the spectral radius of the RAOR iteration matrix. The two-parameter 

SRAOR method was equally refined to the third, fourth up to the     refinement 

versions of the Accelerated iterative methods. Numerical findings indicates that the 

second Refinement of Accelerated Over Relaxation method and other higher refinement 

versions of Accelerated iterative methods surpasses the Refined AOR method. 

2.8 Application of Stationary Iterative Methods  
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Linear systems play a vital role in several applications. Although, most of the 

applications make use of fuzzy numbers instead of crisp numbers for precision reason. 

This necessitate the need for numerical techniques that would treat and solve fuzzy 

linear systems appropriately (Kargar et al., 2014).  

Gebregiorgis and Gofe (2018) employed the splitting technique of an    matrix and 

embedding procedure with refinement process to solve some fuzzy linear systems 

through the use of Refinement of Generalized Jacobi (RGJ) and Refinement of 

Generalized Gauss-Seidel (RGGS) iterative methods. In this study, we apply the newly 

developed numerical iterative methods to solve a pair of fuzzy linear equations. 

Many scientists and engineers are usually interested in solving practical life problems or 

realistic problems, where such problems are often discretized into linear systems and 

then solved using iterative methods. Mayooran and Elliot (2016) applied the SOR 

iterative method in solving heat transfer problem on a flat plate with a steady boundary 

temperature. This study examined the performance of the newly developed EAOR and 

REAOR iterative methods for a real life problem by solving the heat transfer problem. 

CHAPTER THREE 

3.0       MATERIALS AND METHOD 

3.1 Derivation of the Proposed Method 

Considering a numerical solution of the linear system in the form 

                                                                                                

Expressed in the matrix form; 

(
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Such that 
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where     is a non-singular     matrix having a unique solution expressed in the 

form;  

                                                                                       

If    has a non-vanishing diagonal elements, then a usual splitting of    is obtained thus: 

 

 

 

 

Figure 3.1: Usual Splitting of Matrix A 

 

                                                                          

Where the components of    are 
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With the splitting in equation (3.5), equation (3.1) can be written as            

 . A regular splitting of the square matrix     into 

                                                                                      

is required for the iterative solution of equation (3.1), such that substituting        

into      ,  leads to the following expressions: 

        
                             

                                 
                                                             

                                                     

                                   

where         is the iteration matrix and          is the corresponding column 

vector of the iterative method. This study seeks to derive a stationary linear iterative 

method in the same form as                     , where the choices for  

        are given as 

           

                                 
                                              

Next, we apply a general linear stationary iterative method whose matrix coefficients 

are linear functions of the components of matrix   and the new iterate is at most a lower 

triangular matrix. This proposed method is in the form; 
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where               are constants to be determined        and      an arbitrary 

initial estimation to the solution    in (3.4). Equation (3.12) is divided by    to obtain 

(  
  

  
  )        (

  

  
  

  

  
   

  

  
  )      

  

  
                                                

Let   
  

  
   

 ,          and  
  

  
  ,  then the above equation becomes 

     
              

     
      

           
                                   

Also, since         and       are the iteration counts, then equation (3.14) can be written 

as 

     
      

     
      

        
                                          

And sufficient conditions for the method (3.14) to be consistent with        are: 

      
       

    
       

         
                                      

Substituting the value of          into (3.16), results into 

      
       

    
       

           
                                     

 Multiply through by     to obtain  

     
       

    
       

      
              

                                  

Or equivalently 

  (
    

 

  
 )  (

  
    

 

  
 )   (

  
 

  
 )                                            

In view of equation (3.5), the first relationship of equation (3.18) gives 

  

    
 

  
   

  
    

 

  
     

   
 

  
    

          
      
→              

    
    

 

  
    

     
 

          
     

 
                            

At this point, we have three linear equations with five variables (unknowns). This is a 

consistent linear system that has infinitely many solutions since the number of variables 
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exceeds the number of equations. The degree of freedom of equation (3.20) is 2 and in 

this case, we observe that there are two free variables    
         

   shown below 

 
  

      
 

    
    

    
 

   
    

         

                                                    

Therefore, the solution to the linear system in (3.20) takes the form; 

   
    

    
     

    
      

      
    

    
    

    
                             

The choice we make for the two free variables are; 

   
             

  
                                   

                                                

(3.22b) is substituted into our solution (3.22a) to obtain  

   
    

    
     

    
                                    

Thus, it gives the following three-parameter solution of the method: 

  
         

        
           

           
             

where                are any 3 fixed parameters, consequently, substituting (3.23) 

into (3.11) results into 

             

                                                                
                              

And (3.23) into (3.14) gives the proposed iterative method 

                                                              

After multiplying the above equation by      and setting            

                        ̇      , it results into 

                                              ̇                  

Or 

                                                                        

               ̇                                                                                
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Method (3.25) or its equivalent (3.27) is now the proposed Extended Parameterized 

Accelerated Over Relaxation (EAOR) iterative method. The new parameter   will be 

called extended acceleration parameter,    the acceleration parameter and    the 

relaxation parameter. The proposed EAOR method can also be written in a general 

linear stationary method as 

              
                  ̇                                     

The notation          is utilized to represent the new Extended Parameterized 

Accelerated Over Relaxation (EAOR) iteration matrix which is represented as 

                                                                    

The spectral radius of the proposed Extended Accelerated Over-Relaxation iterative 

scheme (EAOR) is the largest eigenvalue of its iteration matrix denoted as   (      )  It 

is observed that for certain values of the parameters  ,   and  , the proposed EAOR 

method reduces to well-known iteration methods, which is shown in the following 

analysis. 

       - method is the Jacobi method:  

Considering the linear system      , where the coefficient    matrix is decomposed 

into         , then the Jacobi method in matrix form is given by 

          

                                                          

                        

                                      

The proposed EAOR method          is given by 

                                                                 

                                                                              

Substituting the values of           and      for          into  (3.31), the EAOR 

reduces to the Jacobi method as: 
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The          in (3.31) with the reduced method of         in equation (3.33) 

yields                            which is equivalent to the Jacobi method in 

equation (3.37). 

       -  method is the Gauss-Seidel method:  

The matrix form of the Gauss-Seidel method is as follows: 

    

                     

                                                                 
                                     

                                                                                      

             
             

Substituting the values of           and       for          in equation (3.31), the 

proposed EAOR reduces to the Gauss-Seidel method as follows: 

                                                       

                                                                              

                                                                                  

        in equation (3.31) with the reduced method         in (3.35) yields         

                       which is equivalent to the Gauss-Seidel method in  

(3.34). 

 

 

       method is the SOR method:  

The correction or displacement vector for the Gauss-Seidel iteration is represented by 

the second equation in equation (3.34) 
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          (         )

 ̇                           
                                  

But the actual components of         of SOR method is expressed as: 

              ( ̇          )             ( ̇   )                           

Combining the last equation in (3.37) with (3.38) to a single equation gives 

                     (                )                            

The above equation is multiplied by   to obtain  

                    (               )                        

Hence the SOR iterative method is given as: 

                                                                   

Substituting the values of          and     for         into (3.31), the 

proposed EAOR reduces to the SOR iterative method as: 

                                                              

                                                                                        

                                                               

Method (3.31) with the reduced method (3.50), yields                     

                        which is equivalent to the SOR method in (3.43).  

         method is the AOR method: The Accelerated Over-relaxation iteration method 

is given as: 

                                                                 

Substituting the values of           and      for          into (3.31) of the 

proposed EAOR iterative method, reduces to the AOR method as: 
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The substitution of the specified values for        results into           

                                      , which is equivalent to the 

AOR method in equation (3.44). 

Obviously, the iteration matrix of the proposed EAOR method is similar to that of the 

AOR method; based on this fact, the EAOR method may conserve all advantages of the 

AOR method. Also, the criteria for obtaining the approximate solutions of the desired 

linear system is              which will be called a convergent solution. More so, 

computation of the error will be obtained through application of the formula      

    , where  z  is the true solution. 

3.2 Convergence Theorems of the Proposed EAOR Method 

Given that an iterative method converges whenever the spectral radius is less than one, 

hence convergence of the new EAOR method is established by showing that the spectral 

radius of the proposed EAOR method is less than one, that is                The study 

shall employ the use of the following lemmas to establish the convergence of the EAOR 

method for certain class of matrices: 

Lemma 3.1 (Yun, 2011): 

Let      be an irreducible matrix. Then 

i.    has a positive real eigenvalue equal to its spectral radius. 

ii. To the spectral radius of  ,     , there corresponds an eigenvector    . 

iii.      increases when any entry of   increases.  

iv.       is considered a simple eigenvalue of  . 

 Lemma 3.2 (Aijuan, 2011): 
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  Let    [   ] and    [   ], be two matrices such that    , where       for all 

     then if   is an   matrix so also is matrix  . 

Lemma 3.3 (Wang and Song, 2009):  

Suppose matrix     is an   matrix and the splitting        is a weak regular or 

regular splitting of  , then           . 

3.2.1  Convergence of    matrix 

Suppose matrix   is an    matrix, which implies a matrix whose element (   )  

satisfies the relationships below 

                    

                                  
                                    

Then the below theorem with regards to the proposed EAOR iterative method is 

proposed. 

Theorem 3.1:  If matrix    is an   matrix, then for all      and   such that      

               , the new EAOR method           converges if and only if the 

Jacobi method (         converges.   

 Let; 

The given matrix    be an    matrix,             such that              

 . 

The spectral radius of the Jacobi method        be  (      ). 

The EAOR iteration matrix                                       

     and the spectral radius of the EAOR iteration matrix be          . 

 ̇  be an eigenvalue of           

 

Proof: 

Assume that   ̇             . Due to our assumption, we can easily obtain 
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The proposed EAOR matrices are examined to check if they are nonnegative. The  

       becomes an identity matrix     when      ,     and positive with 

     ,    . But when           and          , negative values 

appears in the matrix. Hence, the range of values which ensures that the EAOR matrix 

is non-negative is within           .  In the          matrix, for       

   ,                        since              . However, 

      is considered so that   does not vanish in the matrix, therefore, range of values 

to ensure non-negativity of          matrix   are                    .  

Likewise, binomial expansion of                gives: 

                                                        

 Given that   is nonnegative and         hence, matrix              is 

nonnegative. Next is to check if matrix                         

              is nonnegative, we obtain 

                                                                                          

                                                                                    

                                                                                

                                                   

                                  

                                                              

                                                                                            

where    represents non-negative terms. And finally,  
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Since         is a non-negative matrix as shown above, it implies that   ̇ is an eigenvalue 

of         . If      is the corresponding eigenvector to  ̇, then we have            ̇   

which yields the following equations below; 

         ̇ 

                                      ̇ 

                          ̇           

[         ̇    ̇      ]  [    ̇   ] 

[  ̇   ̇             ]  ( ̇     )  

*
   ( ̇   )   ( ̇   )

 
    +   (

 ̇     

 
)   

                       

The last equation in (3.50) indicates that   
 ̇    

 ̇
   is an eigenvalue of   

   ( ̇  )  ( ̇  )

 
     by definition of an eigenvalue  (    ̇ ).  If   ̇     is an 

eigenvalue, then by definition  

         ̇                  ̇         ̇                                   

  Which gives   ̇   (      ) and consequently 

 ̇     

 
      (

   ( ̇   )   ( ̇   )

 
   )                              

It is easily seen that   
   ( ̇  )  ( ̇  )

 
    so that 

  
   ( ̇   )   ( ̇   )

 
                                                    

   
   ( ̇   )   ( ̇   )

 
  

   ( ̇   )   ( ̇   )

 
 

 
   ( ̇   )   ( ̇   )

 
                                                  

 
   ( ̇   )   ( ̇   )

 
                                                          

                   

where          is the Jacobi matrix and combining equations (3.52) with (3.53), yields 



50 
 

                                        ̇          ( ̇   )   ( ̇   ) (      )

 
 ̇     

   ( ̇   )   ( ̇   )
    (      )                                       

                            (      )   
 ̇     

   ( ̇   )   ( ̇   )

                              

bbut  

 ̇     

   ( ̇   )   ( ̇   )
   

     (   ̇)  ( ̇   )

   ( ̇   )   ( ̇   )
 

such that 

 ̇     

   ( ̇   )   ( ̇   )
   

     (   ̇)  ( ̇   )

   ( ̇   )   ( ̇   )
 

and this implies  

  
     (   ̇)  ( ̇   )

   ( ̇   )   ( ̇   )
   

Then we can deduce that 

 (      )  
 ̇     

   ( ̇   )   ( ̇   )
   

     (   ̇)  ( ̇   )

   ( ̇   )   ( ̇   )
   

 (      )  
 ̇     

   ( ̇   )   ( ̇   )
                                           

and thus 

 (      )                                                                           

The above analysis shows that if   ̇   , then the spectral radius of the Jacobi scheme  is 

equally greater than or equal to 1. Similarly, suppose   (      )   , then  

 (      )  
 ̇     

   ( ̇   )   ( ̇   )
                                              

but 

  
 ̇     

   ( ̇   )   ( ̇   )
 

 ( ̇   )   ( ̇   )  (   ̇)

   ( ̇   )   ( ̇   )
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such that 

 ̇     

   ( ̇   )   ( ̇   )
   

 ( ̇   )   ( ̇   )  (   ̇)

   ( ̇   )   ( ̇   )
 

and this implies  

  
 ( ̇   )   ( ̇   )  (   ̇)

   ( ̇   )   ( ̇   )
   

Then we can deduce that 

 (      )  
 ̇     

   ( ̇   )   ( ̇   )
   

 ( ̇   )   ( ̇   )  (   ̇)

   ( ̇   )   ( ̇   )
   

 (      )  
 ̇     

   ( ̇   )   ( ̇   )
                                           

Hence 

 (      )                                                                 

which implies  ̇   , so that if  (      )    then the proposed EAOR scheme equally 

converges { (      )   } since the spectral radius of the Jacobi matrix {  (      )} is 

incorporated inside the proposed EAOR iterative method and this completes the proof.  

3.2.2  Convergence of irreducible matrix with weak diagonal dominance 

If a matrix   (   ) is irreducible and weakly diagonally dominant, then the matrix 

will be non-singular with non-vanishing diagonal elements and thus the following 

theorem is proposed;  

Theorem 3.2:  If   is an irreducible matrix with weak diagonal dominance and     

    and       , then the proposed EAOR iterative method converges to the true 

solution for any initial estimation      . 

 Proof:  

The theorem can be proved by contradiction. Let   be an irreducible matrix with  
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|   |  ∑ |   |
 
       .  From lemma 3.1, it is assumed that there exists an eigenvalue  ̇ of 

the EAOR iteration matrix        such that 

   (        ̇ )   

                                             

                                                

               [         (               )    ]   

                                   

             
  

         

But                  is a determinant of a unit lower triangular matrix which is 

equals to one, hence the eigenvalue of the proposed EAOR iterative method are the  ̇  

roots of 

                                                                 

and it is transformed into the expression; 

( ̇     )    (  
     ̇        ̇    

     
  

 

 ̇     
 )                    

From the assumption that   | ̇|     implying that   ̇       , hence   

                                                                                       

where     is given as 

    
   ( ̇   )   ( ̇   )

 ̇     
  

 

 ̇     
                                    

The modulus of the coefficients of     and    in (3.63) are less than one. To prove this, 

it is sufficient and necessary to prove that 

| ̇     |  |   ( ̇   )   ( ̇   )|                    | ̇     |  | |               

 Let   ̇           ̇   
 

    
                                 

̇
  then   ̇  

                   where   and     are real with       , then the first inequality 

in (3.64) is analyzed as follows; 
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| ̇     |  |   ( ̇   )   ( ̇   )|

|             |  |                              |

|             |  |                              |

|
    

 
      [

    

 
]|  |    
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    ]    

 

 
      [

 

 
    ]   |

*(
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 (
    

 
)
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 *(
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| ̇     |
 

 |   ( ̇   )   ( ̇   )|
 

 (
    

 
    )

 

 (
    

 
)
 

 *(
     

 
          )

 

 (
     

 
    )

 

+   
}
 
 
 
 
 
 

 
 
 
 
 
 

       

which is simplified to give 

                     ̇                                           

                                                                   

                                                                

Rearrange to get 

                                                              

                                                                     

                                                                         

                                                                      

which holds for      ;  factorizing           in the above  equation {note: 

                             } gives 

        [                                                                        

                                                 

              ]                                                                              

                                                                

                                                                                                                                       

If           , then it is equivalent to 
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Since the expression in the brackets above is nonnegative, (3.71) holds for all    if and 

only if it holds for        , where for                 also due to the fact that  

                              , hence (3.71) is equivalent to  

                            

                                  

                                          

                                           

                            

which is true. Similarly, the second inequality   | ̇     |  | | is analyzed as 

follows; 

             |             |   | |

 |
    

       *
    
 +|  | | 

 | ̇     |  | |   *(
    

     )
 

 (
    
 )

 

+

 
 

      
 
  

                      

If  | ̇     |  | |,  then it implies that  | ̇     |
 

 | | , then 

            | ̇     |
 

 | |  *(
    

     )
 

 (
    
 )

 

+      

                                                                              

                                                                                   

                     

which for same reason, must be satisfied for        , for                 and 

due to the fact that                      , then one arrives at 

                                  

                                        

                                          

                                              

which holds for    , thus the above analysis shows that  

 |
     ̇        ̇    

 ̇     
|                       |

 

 ̇     
|                                    

Given that    is irreducible and it has a weak diagonal dominance, it therefore means 

that              equally contains the same properties too. Similarly, it is also 

true for the matrix     considering that 1 is greater than the modulus of the coefficients 
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of    and    and that they are different from zero. Hence it implies that             

and thereby     is nonsingular, which contradicts the equation  [            and 

consequently,    (        ̇ )   . This implies that | ̇|    does not hold which 

indicates that| ̇|    and thereby              which indicates that the EAOR method 

is convergent.   

3.2.3 Convergence of    matrix 

Theorem 3.3:  If matrix    is an   matrix with                    ,  then 

the  Extended Parameterized Accelerated Over-Relaxation method converges to the true 

solution        of the system      or simply   (      )   .  

Proof:  

Given that a square matrix    is an   matrix, let     be decomposed into        

      with the regular splitting of       .  In the EAOR iterative method, we 

have the splitting        with the following choices of 

   
 

 
                   

 

 
(                    )           

Such that  

                                                      

Obviously, it is observed that     and as such, by implication of lemma 3.2, it 

suffices to say that matrix     is an     matrix too. Consequently, one obtains       

 . 

 Similarly, letting            to be a splitting of the matrix  , it is easily seen that  

   is a matrix that is nonsingular (det    ), implying that   is an   matrix and thus 

satisfy the condition       . Also, since      , then it means that            

for       which signifies that the matrix              is considered an    

splitting. Now, it is observed that          is a strict lower triangular matrix, with the 
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fact that eigenvalues of a strict lower triangular matrices are the diagonal entries, then 

by implication, the eigenvalues of         are on the main diagonals in which they 

are all zeros.  

Therefore, its spectral radius (largest moduli of its eigenvalues),  (       )     and 

since zero is less than one, then it becomes  (       )   . Considering the fact that 

 (       )   ,             is an    splitting and as such  (   

       )   . Lemma 3.3 is then employed to establish the fact that   is an    

matrix and by definition of an    matrix, it follows that  

                                                                       

On the contrary, the matrix                              , with  

       and      and considering the following inequalities;          

                       ,  gives the range of values                

for the matrix    to be nonnegative,  so we have 

                                                                  

Then the matrix       is analyzed as follows; 

                                                                           

 (                  
          

              
   )         

                                                                             

Which gives 
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Multiply through equation (3.82) by      and after letting                   and  

       , it becomes 

                                                    

                                        

                                        

                                                                                                                         

Therefore the iteration matrix becomes 

     ∑            

 

   

[       (       )     ]                       

 The matrix       is nonnegative, therefore         is obviously a weak regular 

splitting of matrix    . And in view of lemma 3.3, then it means            or 

equivalently  

                                     , which completes the 

proof.  

3.3: Conditions on the Coefficient Matrix for the Proposed Method 
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From the convergence analysis in the previous chapter, the conditions placed on the 

coefficient matrices with regards to the proposed EAOR method before convergence 

can be achieved are as follows; 

I. For      matrix, the condition is                        . 

II. For     matrix, the conditions placed on it are given as           and 

     ,                . 

III. For Irreducible weak diagonally dominant matrix, the condition placed on it is 

given as           and             . 

 

 

3.4 Derivation of Refinement of EAOR Method 

Having in mind that significant improvements of any iteration matrix will decrease the 

spectral radius and enhances the rate of convergence of a stationary iterative method, 

therefore, this section seeks to derive the Refinement of the proposed EAOR method so 

as to accelerate the convergence rate of the EAOR iterative method. Derivation of the 

Refinement method in matrix form will be described below: 

Considering the linear system        in   linear equations and    unknowns, where 

matrix   is nonsingular.  Its solution is         and for a vector   , the residual 

represented by         of        is given as; 

                                                                     

By the usual splitting            in (3.5) with the EAOR regular splitting;  

  
 

 
             

      
→                                                      

Where the choices for    and N of the proposed EAOR method are represented as 
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And multiplying the linear system        by the parameter     to obtain 

                                                                        

Then the proposed Refinement method is derived as follows; 

    
      

         

[                                    ]    

                                         
                                 

                                                

                        

             

The proposed EAOR Refinement formula takes the form 

 ̅                           (         )                                             

where          appearing in the right hand side, is         estimation of the proposed 

EAOR iterative method. The EAOR method in (3.27) is inserted into (3.89) to obtain 

 ̅                                               

                                 

                

 [                                         

                  ]                                                                          

The value of        is substituted into (3.90) to get 

 ̅                                               

                                  

              

 (                                     

 [                                         

                                 ])                               

 ̅                                                              
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where  

                                                              

 (                                          

                 )                                                                       

Simplifying    gives 

                                                                                                              

 (                                         

                )                          

                                          

                                                                                               

                                                      

                            

                         

                                          

                                      

                                                                                                

                                                                     

                                             

                                                

Substituting (3.96) into (3.92) gives 
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 ̅                                               

                               

                                

                                             

                                                

                                                

                                                           

                             (                     

                     )                                  

                                                                       

Rearrange (3.98) to get 

 ̅      (             (                      ))
 

                 

(               (                      ))   

                                                                                                       

Hence the method (3.99) shall be called Refinement of Extended Accelerated Over-

Relaxation (REAOR) method. Alternatively, the Refinement of proposed EAOR 

iterative method can be derived as follows; 

 ̅                           (         )

             (         )               

                                
                               

                                                      

                                      

                                             

                

 ̅                                                                             

But                         , so substituting it in (3.100) gives 



62 
 

 ̅                (              )

                                       

                                   

                                     

Substituting the values of    and    into (3.101) to obtain 

 ̅      (             (                      ))
 

                 

 (               (                      ))   

                                                                                      

Or equivalently, 

 ̅      (            (                    ))
 

                 

(              (                    ))                  

            ̇                                                                              

By setting                                 ̇      , or in a more compact 

form; 

 ̅                                                            

where         (            (                    ))
 

       
   is 

called the REAOR iteration matrix and     (        )             ̇   is the 

corresponding vector of the refined EAOR method.  Comparing methods of REAOR 

and EAOR, there is a relationship between REAOR iteration matrix and EAOR iteration 

matrix (3.29). If           represents the iteration matrix of EAOR method and           

denotes the iteration matrix of REAOR method, then the iteration matrix of REAOR 

method is the square of the iteration matrix of EAOR method, that is to say           

(      )
 
. The spectral radius of the refinement of proposed Extended Accelerated 

Over-relaxation (REAOR) iterative method is the largest eigenvalue of its iteration 

matrix denoted as   (       ) with the relationship 
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 (       )  [ (      )]
 
                                              

It is observed that for some specific values of the parameters   ,   and  , the proposed 

REAOR method produces some refined iterative methods and they are shown in the 

following analysis;  

         method is the Refinement of Jacobi (RJ) method: Suppose the matrix   of the 

linear system       is splitted into         , then the Refinement of Jacobi 

(RJ) method is denoted as 

 ̅      (        )
 
     (          )                           

With the proposed Refinement of EAOR method          expressed as 

 ̅      (            (                    ))
 

                     

(              (                    ))           

                                                                                                        

Inserting values of           and      for           into the above equation gives 

 ̅      (            (                     ))
 

                      

(              (                     ))                

                                                                                                        

 ̅      (          )
 
     (            )        is obtained from the 

above substitution. This indicates that REAOR method reduces to RJ iterative method. 

         method is the Refinement of Gauss-Seidel (RGS) method: The Refinement of 

the Gauss-Seidel is represented as 

 ̅                                                                          

Values of           and       for           are inserted in (3.107) to obtain 

 ̅      (            (                     ))
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(              (                     ))           

                                                                                                         

which results into  ̅      (          )
 
     (            )         , 

indicating that the new REAOR iterative method reduces to the RSOR method.  

         method is the Refinement of Successive Over-Relaxation (RSOR) method:  

Method of the RSOR is expressed as 

 ̅      (        (         ))
 

     

 (          (         ))                               

With values of            and       for           substituted into (3.107), it 

gives 

 ̅      (            (                    ))
 

                 

(              (                    ))       

                                                                                                     

Resulting into the RSOR  ̅      (          (         ))
 

     

(            (         ))              , which signifies that the 

proposed REAOR iterative method can be reduce to RSOR method.  

        method is the Refinement of Accelerated Over-Relaxation (RAOR) method:  

And the RAOR iterative method is given as 

 ̅      (        (                ))
 

     

 (          (                ))                     

Substituting           and       for           in (3.107) to obtain  

 ̅      (            (                    ))
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(              (                    ))           

                                                                                                        

 After the substitution, one arrives at  ̅      (          (       

           ))
 

     (            (                  ))    

           which shows that the proposed REAOR method can reduce to RAOR 

iterative method.  

3.5 Convergence of Refinement of EAOR method 

Lemma 3.4 (Varga, 2000): Let     be a vector in a set of     dimensional column 

vectors    , with real number components, then the sequence [    ]
   

 
  converges to    

with respect to the infinity norm   ‖ ‖  if and only if            
     for each  

         or for any norm  ‖ ‖ , then        ‖    ‖    

Lemma 3.5 (Edalatpanam and Najafa, 2013): Let     and    be vectors of     in a set 

of real numbers   , then 

I. ‖ ‖     for all          

II. ‖ ‖     if and only if      

III. If   is a scalar, then  ‖  ‖  | |‖ ‖ 

IV. ‖   ‖  ‖ ‖  ‖ ‖  

Lemma 3.6 (Martins et al., 2012): Let     be an iteration matrix of any iterative 

method, if the norm of matrix    is less than one, that is  ‖ ‖   , then the sequence     

converges to  z  for any initial estimation       and  ‖    ‖  ‖ ‖ ‖    ‖. 

Theorem 3.4:  If matrix    is an   matrix, then the Refinement of the proposed 

Extended Accelerated Over-relaxation (REAOR) method converges to the exact 

solution for any initial guess        
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Proof: Assuming     is the true solution of      , since the coefficient matrix     is 

an    matrix, it follows from theorem 3.1 that the EAOR method is convergent, 

thereby one can close          to   . Let           and suppose   ̅      is the    

     estimation to solution of       by REAOR method   ̅             

              (         )   then applying lemma 3.5 to the REAOR 

approximations gives; 

‖ ̅       ‖
 

 ‖                     (         )   ‖
 
         

          ‖                       (         )‖
 

                         ‖        ‖
 

 ‖              ‖  ‖(         )‖
 

                        ‖        ‖
 

 ‖              ‖  ‖(         )‖
 }

 
 

 
 

        

Next is to analyze each terms of the right hand side. From theorem 3.1, it is observed 

that            describes the convergence condition of the EAOR method to the real 

solution and taking the infinity norm of it as   tends to zero guarantees convergence. 

Therefore, this implies that the following expression holds 

‖        ‖
 

 ‖   ‖                                                         

That is to say for every improvement in         , there is probable value of it to become  

   Likewise for the case of   ‖(         )‖, there will be an equivalent corresponding 

improvement in           to become      as   tends to zero and since        then  

‖(         )‖
 

 ‖      ‖  ‖     ‖                                  

Evidently, this implies that ‖(         )‖
 

    . It is clearly seen that   | |‖   

          ‖   vanishes since  ‖(         )‖  tends to zero as   tends to infinity. 

Also, since ‖        ‖
 

 and  ‖(         )‖
 

 tends to zero, such that 

‖ ̅       ‖
 

    | |‖             ‖                               
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Hence by lemma 3.4, it is sufficient to deduce that    ̅         tends to zero as   

 , which can be written as 

‖ ̅       ‖
 

                                                   

From  (3.116) and (3.117), it is obvious that (3.119) holds and this implies that  ̅      

   and thus   (       )  [ (      )]
 

   or equivalently 

 (            (                    ))
 

                                 

 * (            (                    ))+
  

            

 The REAOR iterative method converges to the solution of the linear system         

As a result, the new REAOR method is convergent for    matrix, which completes the 

proof. 

Theorem 3.5: If the coefficient matrix   is an irreducible diagonally dominant, then for 

any choice of initial guess      , the proposed REAOR converges to the true solution    

Proof:  

Let    be the real exact solution of      . Given that    (   )  is irreducible 

diagonally dominant.  Then the proposed EAOR method is convergent by theorem 3.2 

and so let           converges to     when  

                                                  

               . Then,    ̅                           (         ) or 

 ̅                             (         )                  

Hence taking norm of both sides gives 

‖ ̅       ‖
 

 ‖                       (         )‖
 

         

                             ‖        ‖
 

 ‖              ‖  ‖(         )‖
 

                         ‖        ‖
 

 ‖              ‖  ‖(         )‖
 

                         ‖              ‖  ‖     ‖       }
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‖ ̅       ‖     Hence,  ̅       converges to   and this implies that 

                                                           

Therefore, the proposed REAOR iterative method is convergent for matrices that are 

irreducible diagonally dominant and this completes the proof. 

Theorem 3.6: Let a square matrix    (   )  be an     matrix, a matrix  A whose off 

diagonal entries are non-positive having positive diagonal entries such that A  is a non-

singular matrix with       . Then for any arbitrary initial approximation      ,  the 

proposed REAOR method is convergent.  

  

Proof:  

If    is the real solution of      and since    is an     matrix, the EAOR iterative 

method is convergent as obtained in theorem 3.3. Similar procedure of theorem 3.4 is 

employed to prove that the proposed REAOR iterative method is convergent for    

matrices. Next is to use the spectral radius of REAOR iterative method to show 

convergence of the method. Suppose    is an   matrix, then the spectral radius of the 

proposed EAOR method is less than 1. It is observed from theorem 3.3, that the spectral 

radius of the EAOR method is  (            (                  

  ))   .  Now, since the spectral radius of the proposed REAOR method is the 

square of the EAOR spectral radius, this implies that the spectral radius of the REAOR 

will also be less than one by the relation 

 (            (                    ))
 

             

 * (            (                    ))+
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The spectral radius of the proposed Refinement of EAOR is less than 1 and this shows 

that the proposed REAOR method is convergent. 

Theorem 3.7:  For any initial guess      , the refinement of Extended Accelerated Over-

relaxation (REAOR) method converges faster than the EAOR method to the real 

solution, whenever both methods converges. 

Proof:  

Let the EAOR method be represented as                and the REAOR method be 

denoted as                 where  

                                 

                ̇                                                       

                     ̇                                           

}              

Given that the norm of   is less than one  ‖ ‖     for convergence, suppose   is the 

real solution of       which satisfies                , then it implies that  

       with respect to EAOR method and similarly         also satisfies the 

equation                    with respect to REAOR method. And let             

be nonnegative integer.  

If we consider the Proposed EAOR method, then 

                                    , which is analyzed as follows 

 

                         

                (      )     

                                          
                                     

Taking the norm of the expression           (      ) and applying lemma 3.5 to 

the expression results into  
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‖        ‖   ‖ (      )‖           

                        ‖ ‖‖        ‖

                            ‖  ‖‖          ‖

                              ‖  ‖‖          ‖
 

                            ‖  ‖‖        ‖

‖        ‖   ‖ ‖ ‖        ‖

                                 

From the inequality  ‖        ‖   ‖ ‖ ‖(      )‖,  if  ‖ ‖   , then it results 

into            as     by lemma 3.6. Next, let us consider the proposed 

Refinement of EAOR method: 

                                   , analyze as 

                           

             (      )     

                                               
                                               

Again, taking the norm of             (      )  and applying lemma 3.5 to the 

expression gives; 

‖        ‖   ‖  (      )‖           

                               ‖  ‖‖        ‖      

                                ‖  ‖‖          ‖  

                                ‖  ‖‖          ‖  
 

                            ‖   ‖‖        ‖

‖        ‖   ‖ ‖  ‖        ‖

                                 

If  ‖ ‖    , then          as    . According to the coefficients of the above 

inequalities, we have 

  ‖ ‖   ‖  ‖           ‖ ‖                                         

This indicates that  ‖ ‖      which also implies convergence of the proposed 

REAOR. Therefore, the above analysis indicates that the REAOR method converges 

faster than EAOR method and the proof is completed. 

3.6 Algorithms for Numerical Computations 
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3.6.1  Algorithm for EAOR method 

To solve  

                            

Step 0:  Input the entries                       of the matrix   and   

respectively  

Input                  

Step 1:  Choose an initial guess   
   

   for                and for 

                                      

  Where              refers to number of unknowns,  

               refers to the number of iterations 

Step 2:  Set               (                  ) 

   Set                      

Step 3:  for               then,  

compute    
     

    
   

   

If  ‖    
   

‖       output               

Step 4:  Update        

Step 5:  for               then,  

  output (“maximum number of iterations exceeded”)  

  STOP 

3.6.2 Algorithm for REAOR method 

To solve  

                                         

Step 0:  Input the entries                       of the matrix   and          

respectively  
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Input                  

Step 1:   Choose an initial guess   
   

   for                and for   

                                  

          Where               refers to number of unknowns,  

                                        ref ers to the number of iterations 

Step 2:  Set                (       (       )    )    

                                   

  Set                             

Step 3:  for               then,  

compute    
     

    
   

   

If  ‖    
   

‖       output             

Step 4:  Update        

Step 5:  for              then,  

  output (“maximum number of iterations exceeded”)  

  STOP 

3.7      Numerical Experiments 

3.7.1   Problem 1                 

Consider the second-order partial differential equation (Laplace equation) in the form 

   

   
 

   

   
                                                                             

From Vatti (2016) for the square mesh with the boundary values shown in figure (3.1)
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Figure 3.2: Discretization of square mesh with boundary values 

From figure 3.2, it is observed that there are nine internal points,                

                                and all the boundary points are known. Application of 

method of finite differences is used to solve the second order partial differential 

equation in (3.131), At each interior point of the region, the partial derivatives  
   

     and  

   

     appearing in equation (3.131) are substituted by the standard second order three-

point central difference  quotients represented as 

   
    

                   

  

   
    

                   

  

                                              

Thus the central finite difference approximation to equation (3.131) at each interior grid 

point is denoted as  

                   

  
 

                   

  
                          

For     and simplification of (3.133) results into  

                                                                      

Application of (3.134) to every interior point produces the following linear algebraic 

equations 
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                           }
 
 
 
 

 
 
 
 

                                

And the above algebraic linear equations is rearranged to obtain the following  

                    

                               

                    

                         

                           

                         

                    

                         

                    }
 
 
 
 

 
 
 
 

                               

Representing the linear algebraic equations of (3.131) in a matrix form results into the 

linear system below. 

(

 
 
 
 
 
 

           
            
           

            
             
            
           
            
           )

 
 
 
 
 
 

(

 
 
 
 
 
 

    

    

    

    

    

    

    

    

    )

 
 
 
 
 
 

 

(

 
 
 
 
 
 

    
    
    
    

 
    
    
    
    )

 
 
 
 
 
 

           

The coefficient matrix is an   matrix and system (3.137) is represented in the form 

      where, 
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(

 
 
 
 
 
 

           
            
           

            
             
            
           
            
           )

 
 
 
 
 
 

     

(

 
 
 
 
 
 

    

    

    

    

    

    

    

    

    )

 
 
 
 
 
 

                    

(

 
 
 
 
 
 

    
    
    
    

 
    
    
    
    )

 
 
 
 
 
 

                                                             

and from (3.138), the diagonal component of matrix   is obtained as 

  

(

 
 
 
 
 
 

         
         
         
         
         
         
         
         
         )

 
 
 
 
 
 

      

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
        

 
 

 
       

  
 

 
      

   
 

 
     

    
 

 
    

     
 

 
   

      
 

 
  

       
 

 
 

        
 

 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

Now, the linear system in (3.138) is multiplied by       to obtain 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
  

 

 
     

 
 

 
  

 

 
  

 

 
    

  
 

 
    

 

 
   

 
 

 
    

 

 
  

 

 
  

  
 

 
  

 

 
  

 

 
  

 

 
 

   
 

 
  

 

 
    

 

 

    
 

 
    

 

 
 

     
 

 
  

 

 
  

 

 

      
 

 
  

 

 
 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

    

    
    
    
    

    
    
    

    )

 
 
 
 
 
 

 

(

 
 
 
 
 
 

   
   
    
   
 

   
   
   
    )

 
 
 
 
 
 

           

The transformed linear system in (3.140) can be expressed in the form      where  

  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
  

 

 
     

 
 

 
  

 

 
  

 

 
    

  
 

 
    

 

 
   

 
 

 
    

 

 
  

 

 
  

  
 

 
  

 

 
  

 

 
  

 

 
 

   
 

 
  

 

 
    

 

 

    
 

 
    

 

 
 

     
 

 
  

 

 
  

 

 

      
 

 
  

 

 
 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

  

(

 
 
 
 
 
 

    

    

    

    

    

    

    

    

    )

 
 
 
 
 
 

             

(

 
 
 
 
 

   

   
    

   
 

   
   

   

    )
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The coefficient matrix   of the above equation is decomposed into          

where  

  

(

 
 
 
 
 
 

         
         
         
         
         
         
         
         
         )

 
 
 
 
 
 

                                              

 

   

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
  

 

 
     

   
 

 
  

 

 
    

      
 

 
   

     
 

 
  

 

 
  

      
 

 
  

 

 
 

         
 

 

        
 

 
 

         
 

 
         )
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         

 
 

 
        

  
 

 
       

 
 

 
        

  
 

 
  

 

 
     

   
 

 
  

 

 
    

    
 

 
     

     
 

 
  

 

 
  

      
 

 
  

 

 
 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 

The proposed EAOR method                                    

                            ̇   is applied to the linear system (3. 137) as 

follows. 

By letting                and        , then 
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(

 
 
 
 
 
 

         
         
         
         
         
         
         
         
         )
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(

 
 
 
 
 
 
 
 
 
 
 

         

 
 

 
        

  
 

 
       

 
 

 
        

  
 

 
  

 

 
     

   
 

 
  

 

 
    

    
 

 
     

     
 

 
  

 

 
  

      
 

 
  

 

 
 )

 
 
 
 
 
 
 
 
 
 
 

       

 

 

     

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
  

 

 
     

   
 

 
  

 

 
    

      
 

 
   

     
 

 
  

 

 
  

      
 

 
  

 

 
 

         
 

 

        
 

 
 

         
 

 
         )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              

 

    (3.150) 
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  (3.151) 

 

 

Using Maple 2017 software the eigenvalues computed from the iteration matrix in 

(3.151) are given by 

      (3.152) 

And the spectral radius of the EAOR iteration matrix, which is the absolute largest 

value of the eigenvalues obtained in (3.152) is 0.9697412031 

  ̇        

(

 
 
 
 
 

   

   
    

   
 

   
   

   

    )

 
 
 
 
 

 

(

 
 
 
 
 
 

    
    
     
    
 

    
    
    
     )

 
 
 
 
 
 

               ̇          



82 
 

Applying the initial estimation       

(

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 )

 
 
 
 
 
 

, the first 3 iterations of the proposed EAOR 

method are as follows. 

                                                                                               

 

                                                                                       

 

                                                                                               

Next, we apply algorithm 3.2 for the proposed Refinement of Extended Accelerated 

Over Relaxation method in similar manner. 



83 
 

The proposed REAOR represented as   ̅      (            (       

             ))
 

     (              (                  

  ))               ̇   is applied to the linear system (3. 136). By letting        

         and        , we have (            (                  

  ))
 

   

            (3.157) 

 

Using Maple 2017 software, the eigenvalues computed from the iteration matrix in 

(3.157) are given by 

           (3.158) 

And the spectral radius of the new REAOR iteration matrix, which is the largest value 

of the eigenvalues obtained in (3.158) is 0.940398001048955. The spectral radius of the 

REAOR iteration matrix indicates that the method is convergent. Therefore, we 

compute the approximate solutions by carrying out several iterations until convergence 

is attained. 
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(              (                    ))   

                 (3.159) 

 

  ̇        

(

 
 
 
 
 
 

   
   
    
   
 

   
   
   
    )

 
 
 
 
 
 

 

(

 
 
 
 
 
 

    
    
     
    
 

    
    
    
     )

 
 
 
 
 
 

               ̇          

 

Then,  

                                                   ̇   

                                      (3.161) 
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Applying the initial estimation       

(

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 )

 
 
 
 
 
 

, the first 3 iterations of the proposed 

REAOR method  are as follows; 
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3.7.2   Problem 2                 

In this experiment, we consider the system of linear equations from Mohammed and 

Rivaie (2017), whose coefficient matrix is an   matrix in the form     . 

(

 
 
 
 
 
 
 

              
               
               

               
               

               
               

               
               
              )

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

   )

 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 )

 
 
 
 
 
 
 

                 

And from (3.165), the diagonal component of matrix   is obtained as 

  

(

 
 
 
 
 
 
 

          
          
          
          
          
          
          
          
          
          )

 
 
 
 
 
 
 

                                      

Then we obtain 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
         

 
 

 
        

  
 

 
       

   
 

 
      

    
 

 
     

     
 

 
    

      
 

 
   

       
 

 
  

        
 

 
 

         
 

 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      

Now, the linear system in (3.165) is multiplied by       to obtain 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
  

 

 
  

 

 
  

 

 
  

 
 

 
  

 

 
  

 

 
  

 

 
  

 

 
 

  
 

 
  

 

 
  

 

 
  

 

 
  

 

 

 
 

 
  

 

 
  

 

 
  

 

 
  

 

 
 

  
 

 
  

 

 
  

 

 
  

 

 
  

 

 

 
 

 
  

 

 
  

 

 
  

 

 
  

 

 
 

  
 

 
  

 

 
  

 

 
  

 

 
  

 

 

 
 

 
  

 

 
  

 

 
  

 

 
  

 

 
 

  
 

 
  

 

 
  

 

 
  

 

 
  

 

 

   
 

 
  

 

 
  

 

 
  

 

 
 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

   )

 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 

     
    
    
    
    
    
    
    
    
    )

 
 
 
 
 
 
 

                                                                                                       

The coefficient matrix   of the above equation is decomposed into         and 

then solved with the proposed Extended Accelerated Over Relaxation method, 

Refinement of Extended Accelerated Over Relaxation method, the classical AOR 

method, QAOR method by Wu and Liu (2014), KAOR method by Youssef and Farid 

(2015) and RAOR by Vatti et al., (2018). The results are tabulated and discussed in 

chapter four. 
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3.7.3   Problem 3    

We consider a linear system of (3.1) whose coefficient matrix is an irreducible weak 

diagonally dominant matrix, expressed in      

  

(

 
 
 

                 
                 
                 
                 
                
                 )

 
 
 

(

  
 

  

  

  

  

  

  )

  
 

 

(

  
 

 
   
   
   
   
   )

  
 

                

The coefficient matrix   of         is  in the form        ,  where 

  

(

  
 

      
      
      
      
      
      )

  
 

    

(

  
 

      
        
          
             
              
                 )

  
 

   

   

(

 
 
 

                 
               
             
          
        
      )

 
 
 

                         

  The spectral radii and convergence rate of the two proposed methods (EAOR and 

REAOR methods) are computed along with some existing methods such as the AOR 

method and some variants of AOR method with the aid of maple 2017 software.  

3.5.4   Problem 4                 

We consider the second-order partial differential equation from Ndanusa (2012)  

     
   

   
       

   

   
                                                

to be solved in the region  
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For    
 

 
  and boundary conditions; 

          

          
  
         

         
                                   

To evaluate the partial differential equation in (3.171), the method of finite difference is 

used, where a square mesh of horizontal and vertical lines with mesh spacing of    
 

 
  

in both     and     directions is applied to the region             . This 

generates twenty-five internal points as follows;                          , 

                        ,                          ,                          ,             

               and 24 boundary points, 

                                                                 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Discretization of square mesh with 25 inner grids 

 At each interior point of the region, the partial derivatives  
   

   
  and  

   

   
  appearing in 

(3.171) are substituted by its quotients (3.132) and thus the central finite difference 

approximation to (3.171) at each interior grid point is given by  

𝑢    

 

𝑢    𝑢    𝑢    𝑢    𝑢    

 

𝑢    

𝑢    

 

𝑢    𝑢    𝑢    𝑢    𝑢    

 

𝑢    

𝑢    𝑢    𝑢    𝑢    𝑢    𝑢    𝑢    

𝑢    

 

𝑢    𝑢    𝑢    𝑢    
𝑢    𝑢    

𝑢    

 

𝑢    𝑢    𝑢    𝑢    
𝑢    𝑢    

𝑢    

 

𝑢    𝑢    𝑢    𝑢     𝑢    𝑢    

𝑢    

 

𝑢    𝑢    𝑢    𝑢    𝑢    𝑢    
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  (      )                                                                 

which is simplified to obtain  

                                                                    

                                                   

                                                               

                                                                    

At    
 

 
, the above equation becomes 

(       
   

  
)                                                   

              
 

  
                                                            

Equation (3.177) is applied to each of the interior points to get          ⁄    ⁄  , 

        ⁄    ⁄  ,         ⁄    ⁄  ,         ⁄    ⁄  ,         ⁄    ⁄  ,      

   ⁄    ⁄  ,              ⁄    ⁄  ,             ⁄    ⁄  ,             ⁄    ⁄  ,       

   ⁄    ⁄            ⁄    ⁄  ,         ⁄    ⁄  ,         ⁄    ⁄  ,      

   ⁄    ⁄  ,            ⁄    ⁄                  ⁄    ⁄  ,         ⁄    ⁄  , 

        ⁄    ⁄           ⁄    ⁄                ⁄    ⁄  ,         ⁄    ⁄  , 

        ⁄    ⁄  ,         ⁄    ⁄                  ⁄    ⁄   and           ⁄    ⁄  . 

Application of the transformed partial differential equation by finite differences in 

(3.177) to each of the twenty-five interior points generated the following system of 

linear equations: 
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  }
 
 
 
 
 

 
 
 
 
 

                

The known boundary values are;  

 

      

      

      

      

      

      

 

     
 

 

     
 

 

     
 

 

     
 

 

     
 

 
      

  

       

       

       

       

       

       

 

      

     
 

  

     
 

  

     
 

  

     
  

  

     
  

  }
 
 
 
 
 

 
 
 
 
 

                   

And they are substituted into (3.178) to generate the following linear system;  
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The above linear equations are represented in the matrix form     , where; 

157 7 37
0 0 0 0 0 0 0 0

36 6 36

4 169 4 37
0 0 0 0 0 0 0

3 36 3 36

3 181 3 37
0 0 0 0 0 0 0

2 36 2 36

5 193 5 37
0 0 0 0 0 0 0

3 36 3 36

11 205
0 0 0 0 0 0 0 0 0

6 36

10 163 7
0 0 0 0 0 0 0 0

9 36 6

10 4 175 4
0 0 0 0 0 0 0

9 3 36 3

10 3 187 3
0 0 0 0 0 0 0

9 2 36 2

0 0 0 0 0 0

A

 

  

  

  



 



  

  

3
0 0 0 0

2

241 5
0 0 0 0 0 0 0 0 0

36 3

11 253
0 0 0 0 0 0 0 0 0

6 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 

Matrix    is       dimension while   and   are      dimensions, the above linear 

system is then solved with the new EAOR iterative method, the proposed REAOR 

iterative method, the classical AOR method, QAOR method by Wu and Liu (2014), 
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KAOR method by Youssef and Farid (2015) and RAOR by Vatti et al., (2018). The 

results are tabulated and discussed in chapter four. 

3.5.5: Problem 5 (Application Problem 1) 

In this section, we shall apply the proposed iterative methods to a fuzzy linear 

equations. Specifically solving a square      fuzzy linear problem using the new 

EAOR and REAOR methods. Solve the square fuzzy linear equations from Lubna and 

Naji (2018) with the proposed EAOR and REAOR iterative methods 

                                          

                                        

                                          

                                        

                                           

                                         }
  
 

  
 

        

Fuzzy linear systems cannot be solved directly, so the standard approach is to reduce it 

to crisp linear system so as to make it easier for computation using the proposed 

iterative methods. The fuzzy linear equations in (3.181) is then transformed into matrix 

notations through the use of embedding method (EM). The EM helps in extending the 

fuzzy linear system into crisp linear system. 

To define a solution                 to the fuzzy system in (3.181), some arithmetic 

operations needs to be performed on the fuzzy numbers     (         ),   

(          )  and    . The arithmetic operators on the fuzzy numbers are defined as 

I.      if and only if              and             

II.     (              ̅     ̅   ) 

III.    ,
(     )            

(     )           
 

From the arithmetic operations on the fuzzy numbers in the system (3.181), we obtain  

the      system of  fuzzy linear equations 
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(        )  (        )  (         )  (      )  (      )  (          )            

                                                                               

(        )  (          )  (        )  (      )  (        )  (         )      

                                                                                 

(      )  (        )  (         )  (      )  (     )  (          )               

                                                                                 

(        )  (        )  (      )  (          )  (          )  (        )  

                                                                                 

(      )  (      )  (        )  (        )  (        )  (         )               

                                                                                

(        )  (        )  (      )  (      )  (        )  (          )               

                                                                                 

Picking out each of the first pairs for the linear equations in (3.182 to 3.187) and 

followed by the second pairs in each equations gives the following equations 

                               

                                     

                              

                                      

                          

                                  

                                   

                                 

                           

                                   

                                

                             }
 
 
 
 
 
 

 
 
 
 
 
 

                          

Where the size of the generated matrix is twice the size of the original fuzzy linear 

system in equation (3.181). The extended           matrix from (3.188) is  
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      )

 
 
 
 
 
 
 
 
 

                                                                                                                          

Which is expressed in     , where  

  

(
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(

 
 
 
 
 
 
 
 
 
 

   

   

   

   

   

   

  

  

  

  

  

  )
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(

 
 
 
 
 
 
 
 
 

      
     
      
      
     
      
       
      
      
      
      
      )

 
 
 
 
 
 
 
 
 

                                         

The above linear system is multiplied by     to obtain        . Furthermore, matrix 

   is decomposed into         and then solved with the proposed EAOR 

method, Proposed REAOR method, the classical AOR method, QAOR method by Wu 

and Liu (2014), KAOR method by Youssef and Farid (2015) and RAOR by Vatti et al., 

(2018). The results are tabulated and discussed in chapter four. 

3.5.6: Problem 6 (Application Problem 2) 

In this section, we shall apply the proposed iterative methods to a real life problem. 

Specifically solving a two dimensional heat transfer problem using the new EAOR and 

REAOR methods. We consider a plate (metal) of size            with its edges held 

at constant temperature shown in figure 3.4. What is the field’s temperature developed 

within the plate while attaining steady state conditions? (Mayooran and Elliot, 2016). 

 

 

 

 

 

Figure 3.4: Metal plate with constant Temperature 

298K 

273K 

3
7
3
K

 2
7
3
K

 



100 
 

Solution: Using a step-size      , we divide the metal plate as shown in the figure 3.5 

below to obtain 64 unknowns. Each cell in the figure represents the nodal temperature 

of each 0.1m x 0.1m element in the plate. It should be noted that the mesh points are not 

at the boundaries of the plate but only at the center of each element.  

298 298 298 298 298 298 298 298 298 298 

273                                         373 

273                                         373 

273                                         373 

273                                         373 

273                                         373 

273                                         373 

273                                         373 

273                                         373 

273 273 273 273 273 273 273 273 273 273 

Figure 3.5: Discretization of square mesh with boundary conditions for the metal 

plate 

The partial differential equation governing the two dimensional steady state heat 

transfer problem is Laplace’s equation of the form;  

  

   
       

  

   
                                                   

for 

       
       

                                                                

From the metal plate, we can deduce the boundary conditions as  
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In the discretization of the governing equation, we apply the central finite difference 

approximation and substitute the appropriate partial derivatives of  
   

     and  
   

     into 

the governing equation.  

   

   
 

                   

  

   

   
 

                   

  

                           

where the integer subscripts       is the position on     axis respectively with a 

discrete value range. Then, the governing equation gives 

                   

  
 

                   

  
                   

For     and simplifying further to obtain;  

                                                        

We then apply the discretized form of the model equation of the metal plate to each of 

the internal mesh points of the plate to obtain the following set of 64 system of linear 

equations below; 
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Representing the above system of linear equations in matrix form of       

dimension, a large sparse       linear system is obtained.  

4 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 4 1 0 0 0 0 0 0 1 0 0 0 0 0

0 1 4 1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 4 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 4 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 4 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 4 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 4 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 4 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 4 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 4 0 0

A

 

  

  

 

 

 

 




 

  

  0 0

0 0 0 0 0 0 0 0 0 0 0 4 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 4 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 4 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 4
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The spectral radii and convergence results using the newly developed iterative methods, 

QAOR method by Wu and Liu (2014), KAOR method by Youssef and Farid (2015) and 

RAOR method by Vatti et al. (2018) are computed. The numerical results are presented 

and discussed in chapter four.  

3.8  Convergence Rate of the New Methods 

It is essentially important to know that an iteration method converges as well as the 

quest to know how fast it converges. Young (2014), introduced the expression 

                                                                      

This is used to compute the rate of convergence of linear iteration methods of the form 

              ,  where       represents the spectral radius of a particular iteration 

method and   converges as long as       . The newly developed parameterized 

iterative methods, AOR methods and its variants tend to converge rapidly based on the 
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choice of the over relaxation parameter, acceleration parameter and extended 

acceleration parameter involved in them.  

With the aid of Maple 2017 software, the convergence rates of the proposed EAOR and 

REAOR iterative methods derived in this study are calculated using equation (3.198) 

with AOR methods for comparison purpose. The computational results of the 

comparisons are presented in the next chapter. 
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CHAPTER FOUR 

4.0     RESULTS AND DISCUSSION 

4.1 Results of Problem 1 (see page 71) 

The spectral radii for the iteration matrices of the proposed EAOR and REAOR 

methods were calculated using Maple 2017 software with methods of the classical 

AOR, Wu and Liu (2014), Youssef and Farid (2015) and Vatti et al., (2018). The 

following notations are used for the comparison and clarity of the results obtained for 

the numerical experiments in chapter three; 

      Iteration matrix of the AOR method 

       Iteration matrix of the proposed EAOR method 

        Iteration matrix of the proposed Refinement of EAOR method 

                Iteration matrix of the QAOR method of Wu and Liu (2014) 

                       Iteration matrix of the KAOR method of Youssef and Farid (2015) 

                       Iteration matrix of the Refinement of AOR method of Vatti et al. 

(2018) 

         Spectral radius of      . 

          Spectral radius of       . 

           Spectral radius of        . 

  (              )   Spectral radius of               .  

 (                     )   Spectral radius of                      .  

 (                  )   Spectral radius of                   . 

In addition to the above, their methods and iteration matrices are represented as: 

AOR 

                                                               ̇   
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Proposed EAOR:  

                                             

              ̇  

                                        

Proposed REAOR  

 ̅      (            (                    ))
 

                  

(              (                    ))               ̇     

       (            (                    ))
 

 

QAOR: 

                                                            ̇ 

                                            

 KAOR:  

                                                  

                  ̇   

                                                            

RAOR: 

 ̅      (          (                ))
 

                 

                                         ̇ 

                   (          (                ))
 

 

 

          Rate of convergence of the QAOR linear iteration matrix                 
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                       Rate of convergence of the RAOR linear iteration matrix 

                    

          Rate of convergence of the KAOR linear iteration matrix 

                         

           Rate of convergence of the REAOR linear iteration matrix         

          Rate of convergence of the EAOR linear iteration matrix        

Also, the conditions placed on the coefficient matrix for the various iterative methods 

considered for comparison are stated as follows; 

AOR 

   matrix:         , 

Irreducible weak diagonally dominant:        and       

QAOR 

   matrix:       , [     

Irreducible weak diagonally dominant:         and     

KAOR 

   matrix:             [     

Irreducible weak diagonally dominant:       and      

EAOR 

   matrix:                          

Irreducible weak diagonally dominant:         ,                  

RAOR 

   matrix:         , 

Irreducible weak diagonally dominant:        and       

 

REAOR 
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   matrix:                           

Irreducible weak diagonally dominant:         ,                    

A point to note is that the rate of convergence of the various iterative methods is best 

when the spectral radius is near zero and poorest when is near one.  
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4.1.1 Comparison of the Proposed Methods  

Table 4.1: Results of spectral radii of EAOR and REAOR iteration matrices  

for problem 1 

Table 4.1 shows the performance of the new Extended Accelerated Over Relaxation and 

Refinement of Extended Accelerated Over Relaxation methods for problem 1. For 

values of the relaxation parameter   , acceleration parameter     and extended 

acceleration parameter     the outcome clearly reveals that the spectral radius of the 

proposed Refined EAOR is lesser than that of EAOR method             

           . 

  

                         

0.1 0.04 0.05 0.9549337380 0.9118984439 

0.2 0.08 0.10 0.9068702250 0.8224136050 

0.3 0.12 0.15 0.8554124670 0.7317304887 

0.4 0.16 0.20 0.8000680959 0.6401089581 

0.5 0.20 0.25 0.7402111025 0.5479124763 

0.6 0.24 0.30 0.6750196533 0.4556515324 

0.7 0.28 0.35 0.6033676553 0.3640525275 

0.8 0.32 0.40 0.5236168516 0.2741746073 

0.9 0.36 0.45 0.4331605794 0.1876280875 
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4.1.2  Comparison of the EAOR Method with variants of AOR Methods 

Table 4.2: Results of spectral radii of AOR, its variants and EAOR iteration 

matrices for problem 1 

            (              )  (                     )           

0.1 0.04 0.9557161302 0.9597924888 0.9574419974 0.05 0.9549337380 

0.2 0.08 0.9101858613 0.9255050783 0.9170122503 0.10 0.9068702250 

0.3 0.12 0.8633429922 0.8959156995 0.8785470488 0.15 0.8554124670 

0.4 0.16 0.8151154107 0.8701178584 0.8418995087 0.20 0.8000680959 

0.5 0.20 0.7654242883 0.8474247347 0.8069374273 0.25 0.7402111025 

0.6 0.24 0.7141831211 0.8273063106 0.7735414626 0.30 0.6750196533 

0.7 0.28 0.6612965781 0.8093469574 0.7416035804 0.35 0.6033676553 

0.8 0.32 0.6066591050 0.7932161041 0.7110257234 0.40 0.5236168516 

0.9 0.36 0.5501532158 0.7786475031 0.6817186663 0.45 0.4331605794 

Table 4.2 shows the various spectral radii of AOR, some of its variants and proposed 

EAOR methods for problem 1 with values of the parameters           . Obviously, 

spectral radius of the proposed EAOR method is smaller than those of the KAOR, 

QAOR and AOR methods which inform us that the method of the EAOR has the 

tendency to converge faster than the other methods compared. 
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4.1.3  Comparison of Refinement of AOR and Refinement of EAOR Methods 

Table 4.3: Results of spectral radii of RAOR and REAOR iteration matrices for 

problem 1 

     (                     )             

0.1 0.04 0.9133933215 0.05 0.9118984439 

0.2 0.08 0.8284383021 0.10 0.8224136050 

0.3 0.12 0.7453611222 0.15 0.7317304887 

0.4 0.16 0.6644131328 0.20 0.6401089581 

0.5 0.20 0.5858743411 0.25 0.5479124763 

0.6 0.24 0.5100575304 0.30 0.4556515324 

0.7 0.28 0.4373131642 0.35 0.3640525275 

0.8 0.32 0.3680352697 0.40 0.2741746073 

0.9 0.36 0.3026685609 0.45 0.1876280875 

 

Table 4.3 displays the comparison of the spectral radii of refinement of AOR and 

proposed refinement of EAOR schemes for problem 1. The spectral radius of the 

proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)  

[           (                  )   ]  by checking how close their spectrums are to 1 

with different values of the parameters. 
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Figure 4.1: Spectral Radii of                                                      and  

                      Iteration Matrices for Problem 1 

The above figure depicts the performance of the spectral radii of problem 1 and 

comparison between the newly developed schemes and the methods from existing 

literature. It is observed that         has the least spectral radius, which shows that 

       will outperform all the compared methods.  
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4.1.4  Comparison of Rates of convergence of EAOR and Existing Methods 

Table 4.4: Results of convergence rate of EAOR and existing methods for problem 

1 

                                   

        
 

        

        
 

0.01782265312 0.01888752647 0.020026763 1.123669011 1.060316873 

0.03362119391 0.03762486258 0.042454857 1.262740910 1.128372413 

0.04773285302 0.05623497579 0.067824425 1.420917056 1.206089699 

0.06042191774 0.07473974392 0.096873047 1.603276603 1.296138331 

0.07189886393 0.09316014066 0.130644405 1.817057987 1.402363759 

0.08233366291 0.1115164027 0.170683582 2.073071645 1.530569296 

0.09186526160 0.1298281821 0.219417975 2.388476026 1.690064295 

0.1006084772 0.1481146871 0.280986385 2.792869874 1.897086579 

0.1086591047 0.1663948143 0.363351074 3.343954241 2.183668256 

The above table presents rates of convergence of the new EAOR method in relation to 

some variants of AOR iterative method concerning Problem 1. Apparently, with all 

values of the parameters       and   in table 4.4, the proposed EAOR iterative method 

will converge quicker by a factor of approximately 1.488296611 than the KAOR 

method and 1.980670372 faster than the QAOR method. 
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4.1.5 Comparison of Rates of convergence of RAOR and the REAOR Method 

Table 4.5: Results of convergence rate of RAOR and REAOR methods  

for problem 1 

                                         

                       

0.039342168 0.040053525 1.018081292 

0.08173983 0.084909714 1.038780161 

0.127633264 0.135648849 1.062801696 

0.177561792 0.193746095 1.091147442 

0.232195522 0.26128881 1.12529651 

0.292380836 0.341367165 1.167542885 

0.359207449 0.438835949 1.22167831 

0.43411056 0.56197277 1.294538355 

0.519032688 0.726702148 1.400108634 

The table above shows rates of convergence of refinement of the proposed Extended 

Accelerated Over relaxation method in relation to refinement of AOR method 

concerning Problem 1. Evidently, for all values of the parameters   ,             the 

proposed REAOR method is likely to converge quicker than the RAOR by a factor of 

approximately 1.2 times. 
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The True Solution of problem 1 by method of finite difference is:  

(
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

     
        

    
        

     
        

    
        

    
        

    
        

     
        

    
        

     )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    
→              

(

 
 
 
 
 
 

               
               
               
               
               
               
               
               
               )

 
 
 
 
 
 

     

An accuracy of 10 decimal places was utilize to verify the convergence result of 

problem 1 

4.1.6 Convergence Results Comparison for Problem 1 (see Appendix A) 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Summary of convergence result for problem 1 

ITERATIVE NUMBER OF CPU TIME 
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METHODS ITERATIONS (seconds) 

AOR 46  0.672 

QAOR 117 0.734 

KAOR 75 0.703 

EAOR 32 0.515 

   

RAOR 24 0.500 

REAOR 17 0.453 

 

The above table displays the summary of the convergence results of the various 

methods examined. Analysis of the results reveals that the EAOR method takes a 

shorter time (0.515 secs) to compute the 9 x 9 linear system to the desired accuracy 

compared to the other AOR-type methods. The REAOR method takes 0.453 secs as 

compared to 0.500 secs of RAOR method. This indicates that the new methods 

demonstrate efficiency as compared to their counterparts. 
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4.2: Results of Problem 2 (see page 84) 

4.2.1  Comparison of the Two Proposed Methods 

Table 4.7: Results of spectral radii of EAOR and REAOR iteration matrices 

        for Problem 2 

Table 4.7 shows the performance of the proposed Extended AOR and refinement of the 

Extended AOR methods for problem 2. The results shows that the spectral radius of the 

proposed refined EAOR scheme is smaller than the spectral radius of the new EAOR 

method.  

  

                         

0.1 0.04 0.05 0.9690220033 0.9390036428 

0.2 0.08 0.10 0.9359663473 0.8760330033 

0.3 0.12 0.15 0.9005738634 0.8110332834 

0.4 0.16 0.20 0.8625309526 0.7439596442 

0.5 0.20 0.25 0.8214516534 0.6747828189 

0.6 0.24 0.30 0.7768509636 0.6034974196 

0.7 0.28 0.35 0.7281033573 0.5301344989 

0.8 0.32 0.40 0.6743746009 0.4547811023 

0.9 0.36 0.45 0.6145013535 0.3776119135 
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4.2.2  Comparison of the new Method with variants of AOR Methods 

Table 4.8: Results of spectral radii of AOR, its variants and EAOR iteration 

matrices for problem 2 

            (              )  (                     )           

0.1 0.04 0.9695659299 0.9723678417 0.9707522261 0.05 0.9690220033 

0.2 0.08 0.9382651880 0.9487977104 0.9429586969 0.10 0.9359663473 

0.3 0.12 0.9060538059 0.9284531175 0.9165095988 0.15 0.9005738634 

0.4 0.16 0.8728842724 0.9107129453 0.8913061678 0.20 0.8625309526 

0.5 0.20 0.8387051160 0.8951062120 0.8672593113 0.25 0.8214516534 

0.6 0.24 0.8034604202 0.8823532346 0.8407111735 0.30 0.7768509636 

0.7 0.28 0.7670892570 0.8700519883                                               0.8183365049 0.35 0.7281033573 

0.8 0.32 0.7295250213 0.8578213961 0.8012888150 0.40 0.6743746009 

0.9 0.36 0.6906946434 0.8478005714 0.7811329984 0.45 0.6145013535 

Table 4.8 shows the various spectral radii of AOR, its variants and proposed EAOR 

methods for problem 2 with different values of all the parameters           . 

Obviously, spectral radius of the proposed EAOR method is smaller than those of the 

existing methods compared which indicates that the proposed EAOR performs better. 
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4.2.3  Comparison of Refined AOR with the Proposed Refined EAOR Methods 

Table 4.9: Results of spectral radii of RAOR and REAOR iteration matrices for   

problem 2 

      (                     )             

0.1 0.04 0.9400580924 0.05 0.9390036428 

0.2 0.08 0.8803415630 0.10 0.8760330033 

0.3 0.12 0.8209334992 0.15 0.8110332834 

0.4 0.16 0.7619269530 0.20 0.7439596442 

0.5 0.20 0.7034262716 0.25 0.6747828189 

0.6 0.24 0.6455486468 0.30 0.6034974196 

0.7 0.28 0.5884259282 0.35 0.5301344989 

0.8 0.32 0.5322067567 0.40 0.4547811023 

0.9 0.36 0.4770590904 0.45 0.3776119135 

 

Table 4.9 reveals the comparison of the spectral radii of refinement of AOR and 

Refinement of EAOR methods for problem 2. The spectral radius of the proposed 

REAOR method is lesser in comparison with Vatti et al. (2018) that is to say 

           (                     )     and this indicates that the proposed REAOR 

method performs better than the RAOR method. 
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Figure 4.2: Spectral Radii of                                                      

and                        Iteration Matrices for Problem 2 

Figure 4.2 illustrates the performance of the proposed methods and some variants of 

AOR methods with respect to their spectral radii for problem 2. Clearly, the spectral 

radius of the       is lesser than its counterpart. Likewise, the        outperformed the 

                   in terms of their spectral radii.  
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4.2.4  Comparison of Rates of convergence of EAOR and Existing Methods 

Table 4.10: Results of convergence rate of EAOR and existing methods for 

problem 2 

                                   

        
 

        

        
 

0.01216941265 0.01289160487 0.020026763 1.123009124 1.060097760 

0.02282637200 0.02550732964 0.042454857 1.259059742 1.126725787 

0.03224002119 0.03786298222 0.067824425 1.410689561 1.201190680 

0.04061849012 0.04997308817 0.096873047 1.581184106 1.285197960 

0.04812542888 0.06185102867 0.130644405 1.774903495 1.381027830 

0.05435751790 0.07535318054 0.170683582 2.017426391 1.455310717 

0.06045479617 0.08706807509 0.219417975 2.279504276 1.582749662 

0.06660312563 0.09621091943 0.280986385 2.568930412 1.778371895 

0.07170629506 0.1072750154 0.363351074 2.949213259 1.971355170 

The above table presents rates of convergence of the new EAOR method in relation to 

variants of AOR iterative method concerning Problem 2. Apparently, with different 

values of the parameters        and  ,  the proposed EAOR iterative method converges 

quicker by a factor of approximately 1.426891940 than the KAOR method and 

1.884880041 than the QAOR method. 
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4.2.5  Comparison of Rates of convergence of the RAOR and REAOR Methods 

Table 4.11: Results of convergence rate of RAOR and REAOR methods  

for problem 2 

                                
         

                     
 

0.02684530765 0.02733272292 1.018156442 

0.05534879359 0.05747953210 1.038496566 

0.08569202205 0.09096132273 1.061491147 

0.1180866631 0.1284506220 1.087765702 

0.1527814157 0.1708359838 1.118172541 

0.1900710249 0.2193245825 1.153908559 

0.2303081989 0.2756139328 1.196717851 

0.2739196161 0.3421975900 1.249262812 

0.3214278242 0.4229543123 1.315860920 

The table above shows rates of convergence of the proposed REAOR method, 

          with RAOR method,           concerning Problem 2. Evidently, for all 

values of the parameters   ,             used in table 4.11,  the proposed REAOR 

method  converges quicker than the RAOR method, by a factor of approximately 1.2 

times. 
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The True Solution of problem 2 by          is:  

(

 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

   )

 
 
 
 
 
 
 

  
                       
→                
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4.2.6 Convergence Results Comparison for Problem 2 (see Appendix B) 
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Table 4.12: Summary of convergence result for problem 2 

ITERATIVE 

METHODS 

NO OF 

ITERATIONS 

CPU TIME 

(seconds) 

AOR 60  0.109 

QAOR 144 0.375 

KAOR 94 0.141 

EAOR 43 0.031 

   

RAOR 31 0.062 

REAOR 22 0.016 

The table above reveals the number of iterations reached for convergence by the various 

methods for the linear system consisdered in problem 2. It was observed that the 

proposed REAOR has 22 iterations, RAOR method has 31 iterations and the proposed 

EAOR has 43 iterations. AOR methods obtained 60 iterations, KAOR obtained  94 

iterations while QAOR has 144 iterations.  
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4.3: Results of Problem 3 (see page 87) 

4.3.1  Comparison of the Proposed Methods 

Table 4.13: Results of spectral radii of EAOR and REAOR iteration matrices  

for problem 3 

The above table showing the comparison results of the spectral radii of the new methods 

for different values of the parameters (         ), reveals that the refinement method 

has a lower spectral radius compared to the Extended Accelerated Over Relaxation 

method. 

  

                         

0.1 0.04 0.05 0.9351778995 0.8745577038 

0.2 0.08 0.10 0.8687339784 0.7546987253 

0.3 0.12 0.15 0.8007555404 0.6412094354 

0.4 0.16 0.20 0.7314112725 0.5349624495 

0.5 0.20 0.25 0.6610142142 0.4369397913 

0.6 0.24 0.30 0.5901486651 0.3482754469 

0.7 0.28 0.35 0.5199440922 0.2703418590 

0.8 0.32 0.40 0.4527087726 0.2049452328 

0.9 0.36 0.45 0.3934697438 0.1548184393 
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4.3.2  Comparison of the EAOR Method with variants of AOR Methods 

Table 4.14: Results of spectral radii of AOR, its variants and EAOR iteration 

matrices for problem 3 

            (              )  (                     )           

0.1 0.04 0.9362345989 0.9420086521 0.9386768056 0.05 0.9351778995 

0.2 0.08 0.8731492477 0.8940791034 0.8824375732 0.10 0.8687339784 

0.3 0.12 0.8111584708 0.8539358667 0.8309339876 0.15 0.8007555404 

0.4 0.16 0.7508224216 0.8199279315 0.7838666115 0.20 0.7314112725 

0.5 0.20 0.6929017621 0.7908297727 0.7409771518 0.25 0.6610142142 

0.6 0.24 0.6384289029 0.7657137443 0.7020414568 0.30 0.5901486651 

0.7 0.28 0.5887905079 0.7438656759 0.6668630202 0.35 0.5199440922 

0.8 0.32 0.5457981563 0.7247275290 0.6352668421 0.40 0.4527087726 

0.9 0.36 0.5116886038 0.7078575123 0.6070935758 0.45 0.3934697438 

 

The comparison results of           (                 )  (                        )  and 

         displayed in table 4.14 for different values of the parameters (         ), 

shows that the EAOR method has a lower spectral radius compared to AOR, QAOR and 

KAOR methods.  

 

 

4.3.3  Comparison of Refinement of AOR and Refinement of EAOR Methods 

Table 4.15: Results of spectral radii of RAOR and REAOR iteration matrices for 

problem 3 
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      (                     )             

0.1 0.04 0.8765352241 0.05 0.8745577038 

0.2 0.08 0.7623896088 0.10 0.7546987253 

0.3 0.12 0.6579780647 0.15 0.6412094354 

0.4 0.16 0.5637343087 0.20 0.5349624495 

0.5 0.20 0.4801128520 0.25 0.4369397913 

0.6 0.24 0.4075914641 0.30 0.3482754469 

0.7 0.28 0.3466742622 0.35 0.2703418590 

0.8 0.32 0.2978956275 0.40 0.2049452328 

0.9 0.36 0.2618252273 0.45 0.1548184393 

 

Table 4.15 displays the spectral radii of the two refinement methods of AOR method 

and the proposed REAOR method. The spectral radius of the REAOR method is smaller 

compared to that of the RAOR method, that is to say                                    

 , for values of             . This means that convergence rate of the REAOR iterative 

method is faster than the RAOR iterative method. 
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Figure 4.3: Spectral Radii of                                                      

and                        Iteration Matrices for Problem 3 

The above figure 4.3 shows the rate of convergence of 

                                                    and                        in terms of 

their spectral radii for problem 3. Due to its minimized spectral radius, the         will 

converge faster than the compared methods.  

  



130 
 

4.3.4. Comparison of Rates of convergence of EAOR Method and Existing 

Methods 

Table 4.16: Results of convergence rate of EAOR Method and existing methods for 

problem 3 

                                   

        
 

        

        
 

0.02594510831 0.02748391328 0.0291057651 1.121820913 1.059010950 

0.4862405542 0.0543160084 0.0611131918 1.256850982 1.125141438 

0.06857474498 0.0804334768 0.0965000478 1.407224304 1.199749801 

0.08622431875 0.1057578338 0.1358383506 1.575406481 1.199749801 

0.1019169890 0.1301951834 0.1797892015 1.764074893 1.380920529 

0.1159335574 0.1536372412 0.2290385709 1.975602026 1.490775082 

0.1285054804 0.1759633650 0.2840433520 2.210359831 1.614218687 

0.1398252416 0.1970438122 0.3441810897 2.461508994 1.746723664 

0.1500541545 0.2167443628 0.4050886575 2.699616408 1.868969750 

 

The rate of convergence results with respect to variants of Accelerated Over Relaxation 

method and the Extended Accelerated Over Relaxation method for problem 3 is shown 

in the table above. Clearly, it is seen that the rate of convergence of the EAOR iterative 

method is quicker than QAOR method by 1.830273870 times and 1.418882018 times 

than KAOR method. 
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4.3.5. Comparison of Rates of convergence of RAOR and the REAOR Method 

Table 4.17: Results of convergence rate of RAOR and REAOR methods  

for problem 3 

                                            

                          

0.0572306268 0.0582115303 1.0171394841 

0.1178230317 0.1222263835 1.0373725902 

0.1817885844 0.1930000956 1.0616733512 

0.2489255333 0.2716767012 1.0913974858 

0.3186566684 0.3595784031 1.1284195147 

0.3897749197 0.4580771418 1.1752350361 

0.4600784000 0.5680867041 1.2347606496 

0.5259358713 0.6883621793 1.3088329145 

0.5819885108 0.8101773149 1.3920847232 

 

Results concerning the rate of convergence of the Refinement of Accelerated Over 

Relaxation (RAOR) method and the Refinement of Extended Accelerated Over 

Relaxation (REAOR) method for problem 3 is displayed in the table above. Clearly, the 

rate of convergence of the REAOR iterative method is quicker by approximately 1.2 

times quicker than the RAOR method.  

 

 

 

 

 

 

The True Solution of problem 3 by          is  



132 
 

(

  
 

  

  

  

  

  

  )

  
 

 
                       
→                
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4.3.6  Convergence Results Comparison for Problem 3 (see Appendix C) 
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Table 4.18: Summary of convergence result for problem 3 

ITERATIVE 

METHODS 

NO OF 

ITERATIONS 

CPU TIME 

(seconds) 

AOR 34 0.391 

QAOR 62 0.562 

KAOR 43 0.407 

EAOR 24 0.375 

   

RAOR 18 0.344 

REAOR 13 0.312 

The above table displays the summary of the convergence results of the new methods 

and some existing methods. The new EAOR method takes a shorter time (0.531 secs) to 

compute the        linear system of problem 3 to the desired accuracy compared to the 

other AOR-type methods. The REAOR method takes 0.312 secs as compared to 0.344 

secs of RAOR method.   
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4.4: Results of Problem 4 (see page 87) 

4.4.1  Comparison of the Two Proposed Methods 

Table 4.19: Results of spectral radii of EAOR & REAOR iteration matrices for 

problem 4 

 

 

 

 

 

 

                         

0.10 0.04 0.05 0.9863632718 0.9729125040 

0.20 0.08 0.10 0.9715574788 0.9439239346 

0.30 0.12 0.15 0.9554099845 0.9128082385 

0.40 0.16 0.20 0.9377087689 0.8792977353 
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Table 4.19 shows the performance of the proposed EAOR and Refinement of the 

Extended AOR methods for problem 4. The results reveals that the spectral radius of the 

proposed refined EAOR scheme is lesser than that of the new EAOR method.  

  

0.50 0.20 0.25 0.9181893627 0.8430717057 

0.60 0.24 0.30 0.8965157199 0.8037404360 

0.70 0.28 0.35 0.8722511973 0.7608221512 

0.80 0.32 0.40 0.8448125547 0.7137082526 

0.90 0.36 0.45 0.8133929469 0.6616080861 
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4.4.2  Comparison of the EAOR Method with Some Variants of AOR Method 

Table 4.20: Results of spectral radii of AOR, its variant and EAOR iteration 

matrices for problem 4 

            (              )  (                     )           

0.10 0.04 0.9866661234 0.9878978038 0.9871877039 0.05 0.9863632718 

0.20 0.08 0.9728500538 0.9775107211 0.9749284036 0.10 0.9715574788 

0.30 0.12 0.9585228978 0.9684975404 0.9631856562 0.15 0.9554099845 

0.40 0.16 0.9436532142 0.9606020877 0.9519262454 0.20 0.9377087689 

0.50 0.20 0.9282067049 0.9536282492 0.9411198245 0.25 0.9181893627 

0.60 0.24 0.9121458583 0.9474233207 0.9307386063 0.30 0.8965157199 

0.70 0.28 0.8954295331 0.9418666115 0.9207570932 0.35 0.8722511973 

0.80 0.32 0.8780124723 0.9368614631 0.9111518412 0.40 0.8448125547 

0.90 0.36 0.8598447300 0.9323295455 0.9019012527 0.45 0.8133929469 

Table 4.20 shows the various spectral radii of AOR, proposed EAOR and some variants 

of AOR methods for problem 4 with values of the parameters           . The table 

clearly shows that the spectral radius of the proposed EAOR method is smaller than 

those of other methods compared.  
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4.4.3  Comparison of Refinement of AOR and Refinement of EAOR Methods  

Table 4.21: Results of spectral radii of RAOR and REAOR iteration matrices for 

problem 4 

 

Table 4.21 reveals the comparison of the spectral radii of Refinement of AOR and 

Refinement of Extended AOR methods for problem 4. The spectral radius of the 

proposed REAOR method is smaller in comparison with Vatti et al. (2018), that is to 

say             (                  )     and this indicates that the proposed refinement 

of EAOR method will converge faster than the refinement of AOR method developed 

by Vatti et al. (2018). 

  

      (                     )             

0.10 0.04 0.9735100390 0.05 0.9729125040 

0.20 0.08 0.9464372271 0.10 0.9439239346 

0.30 0.12 0.9187661457 0.15 0.9128082385 

0.40 0.16 0.8904813886 0.20 0.8792977353 

0.50 0.20 0.8615676870 0.25 0.8430717057 

0.60 0.24 0.8320100668 0.30 0.8037404360 

0.70 0.28 0.8017940488 0.35 0.7608221512 

0.80 0.32 0.7709059014 0.40 0.7137082526 

0.90 0.36 0.7393329597 0.45 0.6616080861 



138 
 

 
Figure 4.4: Spectral Radii of                                                      

and                        Iteration Matrices for Problem 4 

Figure 4.4 shows the performance of the proposed methods        and       with other 

methods in the literature in terms of the spectral radii.        performs better than the 

refinement of AOR,                   .         also performs better than       

                and                        .  
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4.4.4  Comparison of Rates of Convergence of EAOR Method and Existing 

Methods  

Table 4.22: Results of convergence rate of EAOR method and existing methods for 

problem 4 

                                   

        
 

        

        
 

0.00528798005 0.00560026271 0.0059631075 1.127672087 1.064790672 

0.00987847067 0.01102727667 
0.0125315008 1.268566889 1.136409394 

0.01390147788 0.01628999357 
0.0198102244 1.425044486 1.216097742 

0.01745647383 0.02139669915 
0.0279320227 1.600095356 1.305436063 

0.02062089237 0.02635507816 
0.0370677429 1.797581900 1.406474406 

0.02345592938 0.03117227152 
0.0474420909 2.022605463 1.521932429 

0.02601059826 0.03585492680 
0.0593584257 2.282086137 1.655516577 

0.02832462497 0.04040924290 
0.0732396407 2.585723228 1.812447734 

0.03043055278 0.04484100986 
0.0896995978 2.947682168 2.000392009 

It is shown that the EAOR iterative method converges quicker by a factor of 

approximately 1.457721892 quicker than the KAOR method and 1.895228636 faster 

than the QAOR method. 
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4.4.5  Comparison of Rates of convergence of RAOR and the REAOR Method 

Table 4.23: Results of convergence rate of RAOR & REAOR methods for problem 

4 

 

 

                                
         

                     
 

0.0116595656 0.0119262150 1.0228695827 

0.0239081855 0.0250630016 1.0483021199 

0.0367950159 0.0396204489 1.0767884701 
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Table 4.23 shows the different rates of convergence of the new refinement of Extended 

AOR method in relation to the existing RAOR method for Problem 4. Obviously, with 

different values of the parameters       and  ,  it is easily seen that the new refinement 

of EAOR method appears to converge quicker by a ratio of 1.2328897476  times 

quicker than the RAOR method. 

  

0.0503751530 0.0558640454 1.1089603124 

0.0647105976 0.0741354858 1.1456467498 

0.0798714190 0.0948841818 1.1879616392 

0.0959371715 0.1187168515 1.2374437310 

0.1129986297 0.1464792815 1.2962925468 

0.1311599324 0.1793991956 1.3677896315 



142 
 

The True Solution by method of finite difference for Problem 4 is:  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
                       
→                 

 

An accuracy of 10 decimal places was utilize to verify the convergence result, 

refinement of EAOR reaches convergence at the 54
th

 iteration, EAOR at 107
th

 iteration 

and AOR at the 155
th

 iteration.  

4.4.6  Convergence Results Comparison for Problem 4 (see Appendix D)
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4.4.6 Convergence Results Comparison for Problem 4 (see Appendix D) 

Table 4.24: Summary of convergence result for problem 4 

ITERATIVE 

METHODS 

NO OF 

ITERATIONS 

CPU TIME 

(seconds) 

AOR 155  0.640 

QAOR 350 1.281 

KAOR 237 0.906 

EAOR 107 0.437 

   

RAOR 78 0.375 

REAOR 29 0.360 

 

Table 4.24 shows summary of the convergence results for all the methods compared for 

problem 4. Method of the proposed EAOR achieved the desired result after 0.437 secs 

with 107 iterations for the 25 x 25 linear system against 0.640 secs for AOR with 155 

iterations, 

0.906 secs for KAOR with 237 iterations and 1.281 secs for QAOR with 350 iterations. 

The proposed REAOR method takes a shorter time, 0.360 secs to attain the desired 

accuracy with 29 iterations in comparison of 0.375 secs with 78 iterations for the RAOR 

method. 
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4.5: Results of Problem 5 (Application Problem 1, see page 94) 

4.5.1  Comparison of the Proposed Methods 

Table 4.25: Results of spectral radii of EAOR and REAOR iteration matrices 

for problem 5 

Table 4.25 shows the performance of the proposed EAOR and REAOR methods for 

problem 5 with varied values of the relaxation parameter   , acceleration parameter     

and extended acceleration parameter   . Clearly, the spectral radius of the proposed 

REAOR is lesser than that of EAOR method                        .  

  

                         

0.1 0.04 0.05 
0.9275147621 0.8602836340 

0.2 0.08 0.10 0.8540611607 0.7294204663 

0.3 0.12 0.15 0.7791350729 0.6070514619 

0.4 0.16 0.20 0.7024538135 0.4934413600 

0.5 0.20 0.25 0.6237494155 0.3890633334 

0.6 0.24 0.30 0.5427088651 0.2945329123 

0.7 0.28 0.35 0.4589180368 0.2106057645 

0.8 0.32 0.40 0.3717692252 0.1382123568 

0.9 0.36 0.45 0.2802590419 0.0785451306 
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4.5.2  Comparison of the EAOR Method with variants of AOR Methods 

Table 4.26: Results of spectral radii of AOR, its variants and EAOR iteration 

matrices for problem 5 

            (              )  (                     )           

0.1 0.04 0.9276375964 0.9342167570 0.9304212907 0.05 0.9275147621 

0.2 0.08 0.8551033965 0.8793214233 0.8658726450 0.10 0.8540611607 

0.3 0.12 0.7821384274 0.8327052057 0.8056467754 0.15 0.7791350729 

0.4 0.16 0.7086250476 0.7925934316 0.7492571586 0.20 0.7024538135 

0.5 0.20 0.6344854568 0.7576992354 0.6963137307 0.25 0.6237494155 

0.6 0.24 0.5596582442 0.7270594422 0.6464884762 0.30 0.5427088651 

0.7 0.28 0.4840893261 0.6999365335 0.5994992209 0.35 0.4589180368 

0.8 0.32 0.4077273884 0.6757553224 0.5550999467 0.40 0.3717692252 

0.9 0.36 0.3492485491 0.6540602141 0.5130741955 0.45 0.2802590419 

 

The comparison results of           (              )  (                     )  and 

         displayed in table 4.26 for different values of the parameters (         ), 

shows that the          has a lower spectral radius compared to           

 (              )  and  (                     )  such that 

(              )    (                     )                     . 
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4.5.3  Comparison of Refinement of AOR and Refinement of EAOR Methods 

Table 4.27: Results of spectral radii of RAOR and REAOR iteration matrices for  

problem 5 

      (                     )             

0.1 0.04 
0.8605115102 

0.05 
0.8602836340 

0.2 0.08 0.7312018186 0.10 0.7294204663 

0.3 0.12 0.6117405196 0.15 0.6070514619 

0.4 0.16 0.5021494581 0.20 0.4934413600 

0.5 0.20 0.4025717949 0.25 0.3890633334 

0.6 0.24 0.3132173503 0.30 0.2945329123 

0.7 0.28 0.2343424757 0.35 0.2106057645 

0.8 0.32 0.1662416233 0.40 0.1382123568 

0.9 0.36 0.1219745491 0.45 0.0785451306 

 

Table 4.27 displays the comparison of the spectral radii of refinement of AOR and 

proposed refinement of EAOR schemes for problem 5. The spectral radius of the 

proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)  

[           (                  )   ]  by checking how close their spectrums are to 1 

with the different values of the parameters. 
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Figure 4.5: Spectral Radii of                                                      and  

                       Iteration Matrices for Problem 5 

Figure 4.5 illustrates the performance of the proposed methods and some variants of 

AOR methods with respect to their spectral radii for problem 5. Clearly, the spectral 

radii of the       is smaller than those of  its counterpart. Likewise, the          

outperformed the                     in terms of the spectral radii. 
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4.5.4  Comparison of Rates of Convergence of EAOR and Existing Methods 

Table 4.28: Results of convergence rate of EAOR and existing methods for 

problem 5 

                                   

        
 

        

        
 

0.02955234706 0.03132036027 0.9275147621 1.105806230 1.043384215 

0.05585234580 0.06254598055 0.8540611607 
1.226645483 1.095370591 

0.07950872032 0.09385532683 0.7791350729 
1.363212047 1.154833178 

0.1009495311 0.1253690990 0.7024538135 
1.519395125 1.223445224 

0.1205031510 0.1571950408 0.6237494155 
1.701116084 1.304047808 

0.1384300811 0.1894392121 0.5427088651 
1.917452349 1.401151753 

0.1549413377 0.2222113770 0.4589180368 
2.183180279 1.522266220 

0.1702105250 0.2556288144 0.3717692252 
2.524676801 1.681056827 

0.1843822678 0.2898198272 0.2802590419 
2.996168631 1.906151047 

The above table displays the convergence rates of the new REAOR method in 

comparison with the classical AOR method for Problem 5. It is observed that the ratio 

of convergence rate of the EAOR iterative method with respect to KAOR method is 

1.370189652 and 1.837517003 with respect to QAOR method. 
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4.5.5  Comparison of Rates of convergence of RAOR and REAOR Method 

Table 4.29: Results of convergence rate of RAOR and REAOR methods  

for problem 5 

                                         

                       

0.0652433162 0.0653583390 1.0017629828 

0.1359627371 0.1370220553 1.0077912389 

0.2134327524 0.2167744907 1.0156571017 

0.2991670016 0.3067644510 1.0253953454 

0.3951566560 0.4099796966 1.0375118079 

0.5041541887 0.5308661683 1.0529837502 

0.6301489863 0.6765297459 1.0736028473 

0.7792602290 0.8594531274 1.1029090096 

0.9137307787 1.1048807338 1.2091972380 

 

The above table displays the convergence rates of the new REAOR,            method 

in comparison with refinement of AOR method,          for Problem 5. Obviously, 

the convergence rate of the proposed refinement of EAOR method is faster than the 

refinement of AOR method by a factor of 1.0585345913. 

 

 

 

 

 

 

4.5.6 Convergence Results Comparison for Problem 5 

The True Solution of problem 5 (Application Problem 1) by          is   
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An accuracy of 10 decimal places was utilize to verify the convergence result and after 

some operations, the true solution for the fuzzy linear system becomes 
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4.5.6 Convergence Results Comparison for Problem 5 

Table 4.30: Summary of convergence result for problem 5 

ITERATIVE 

METHODS 

NO OF 

ITERATIONS 

CPU TIME 

(seconds) 

AOR 32 0.516 

QAOR 50 0.734 

KAOR 34 0.594 

EAOR 18 0.484 

   

RAOR 16 0.469 

REAOR 10 0.453 

The above table displays the number of iterations and computational time of the various 

methods to attain convergence. It is observed that the EAOR method takes a shorter 

time to compute the        linear system to the desired accuracy compared to the 

other methods examined. Similarly, the refinement of the Extended Accelerated Over-

Relaxation (REAOR) method takes 0.453 secs as compared to 0.469 secs of refinement 

of AOR (RAOR) method. This indicates that the new methods demonstrate efficiency 

as compared to their counterparts. 
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4. 6: Results of Problem 6 (Application Problem 2, see page 97) 

4.6.1  Comparison of the Proposed Methods 

Table 4.31: Results of spectral radii of EAOR and REAOR iteration matrices  

for roblem 6 

  

  

 

 

 

 

                         

0.1 0.04 0.05 0.9936764826 0.9873929521 

0.2 0.08 0.10 0.9867694121 0.9737138726 

0.3 0.12 0.15 0.9791905790 0.9588141901 

0.4 0.16 0.20 0.9708322197 0.9425151988 

0.5 0.20 0.25 0.9615610144 0.9245995844 

0.6 0.24 0.30 0.9512096225 0.9047997459 

0.7 0.28 0.35 0.9395644282 0.8827813147 

0.8 0.32 0.40 0.9263472516 0.8581192305 

0.9 0.36 0.45 0.9111870362 0.8302618150 
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The above table shows the comparison of the spectral radius of the proposed EAOR 

method and the Refinement of EAOR method for problem 6, with different values of 

the relaxation parameter   , acceleration parameter     and extended acceleration 

parameter      It is observed that  spectral radii of both         and         are lesser 

than 1, but the rate of convergence of the new REAOR method is faster than the new 

EAOR method since                      . 
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4.6.2  Comparison of the EAOR Method with variants of AOR Methods 

Table 4.32: Results of spectral radii of AOR, its variants and EAOR iteration 

matrices for problem 6 

            (              )  (                     )           

0.1 0.04 0.9938273704 0.9943982314 0.9940691300 0.05 0.9936764826 

0.2 0.08 0.9874145348 0.9895797250 0.9883803046 0.10 0.9867694121 

0.3 0.12 0.9807466872 0.9853907711 0.9829186891 0.15 0.9791905790 

0.4 0.16 0.9738077346 0.9817154450 0.9776706591 0.20 0.9708322197 

0.5 0.20 0.9665801497 0.9784646603 0.9726236769 0.25 0.9615610144 

0.6 0.24 0.9590448011 0.9755688214 0.9677661842 0.30 0.9512096225 

0.7 0.28 0.9511807589 0.9729727661 0.9630875067 0.35 0.9395644282 

0.8 0.32 0.9429650693 0.9706322063 0.9585777699 0.40 0.9263472516 

0.9 0.36 0.9343724943 0.9685111731 0.9542278247 0.45 0.9111870362 

Table 4.32 shows the various spectral radii of AOR, some of its variants and proposed 

EAOR methods for problem 6 with values of the parameters           . Obviously, 

spectral radius of the proposed EAOR method is smaller than those of the KAOR, 

QAOR and AOR methods which reveals that the rate of convergence of the proposed 

EAOR is method faster than the other methods compared. 
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4.6.3  Comparison of Refinement of AOR and Refinement of EAOR Methods 

Table 4.33: Results of spectral radii of RAOR and REAOR iteration matrices for 

problem 6 

      (                     )             

0.1 0.04 0.9876928421 0.05 0.9873929521 

0.2 0.08 0.9749874636 0.10 0.9737138726 

0.3 0.12 0.9618640645 0.15 0.9588141901 

0.4 0.16 0.9483015040 0.20 0.9425151988 

0.5 0.20 0.9342771858 0.25 0.9245995844 

0.6 0.24 0.9197669305 0.30 0.9047997459 

0.7 0.28 0.9047448361 0.35 0.8827813147 

0.8 0.32 0.8891831220 0.40 0.8581192305 

0.9 0.36 0.8730519581 0.45 0.8302618150 

Table 4.33 displays the comparison of the spectral radii of Refinement of AOR and 

proposed Refinement of EAOR schemes for problem 6. The spectral radius of the 

proposed REAOR iterative method is smaller in comparison with Vatti et al. (2018)  

[           (                  )   ]  by checking how close their spectrums are to 1 

with different values of the parameters. 
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Figure 4.6: Spectral Radii of                                                      

and                        Iteration Matrices for Problem 6 

The above figure depicts the performance of the spectral radii of problem 6 and 

comparison between the newly developed schemes and the methods from existing 

literature. It is observed that         has the least spectral radii, which shows that  

       will outperform all the compared methods.   
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4.6.4  Comparison of Rates of Convergence of EAOR and Existing Methods 

Table 4.34: Results of convergence rate of EAOR and existing methods for 

problem 6 

                                   

        
 

        

        
 

0.002439656786 0.002583412651 0.0027549885 1.129252490 1.066414419 

0.004549211328 0.005075917346 0.0057843213 1.271499801 1.139561759 

0.006391509525 0.007482407230 0.0091327736 0.0091327736 1.220566233 

0.008014376342 0.009807418243 0.0128558189 1.604094736 1.310826008 

0.009454855355 0.01205516246 0.0170231531 1.800466793 1.412104827 

0.01074208793 0.01422955713 0.0217237650 2.022303777 1.526664871 

0.01189931564 0.01633425083 0.0270734339 2.275209324 1.657464072 

0.01294530257 0.01837264683 0.0332261827 2.566659413 1.808459228 

0.01389536474 0.02034792383 0.0403924678 2.906902305 1.985090378 

 

The above table presents rates of convergence of the new EAOR method in relation to 

AOR iterative method concerning Problem 6. The proposed EAOR iterative method 

converges 1.889475571 quicker than the QAOR method and 1.458572422 quicker than 

the KAOR method. 
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4.6.5  Comparison of Rates of convergence of AOR and the EAOR Method 

Table 4.35: Results of convergence rate of RAOR & REAOR methods for problem 

6 

 (                  )           
         

                     
 

0.0053780936 0.0055099770 1.0245223441 

0.0110009684 0.0115686425 1.0516021923 

0.0168863003 0.0182655472 1.0816784510 

0.0230535607 0.0257116377 1.1153000663 

0.0295242561 0.0340463061 1.1531638926 

0.0363222092 0.0434475300 1.1961698094 

0.0434738870 0.0541468679 1.2455032574 

0.0510087894 0.0664523654 1.3027630357 

0.0589599093 0.0807849355 1.3701672292 

The table above shows rates of convergence of REAOR method in relation to RAOR 

method concerning Problem 6. Evidently, for all values of the parameters   ,               

the proposed REAOR method is likely to converge quick as the RAOR by a factor of 

approximately 1.2 times. 

  



159 
 

4.6.6 Convergence Results Comparison for Problem 6 

Table 4.36: Summary of convergence result for problem 6 

ITERATIVE 

METHODS 

NUMBER OF 

ITERATIONS 

CPU TIME 

(seconds) 



QAOR 985 1.156 

KAOR 724 1.094 

EAOR 300 0.531 

   

RAOR 226 0.500 

REAOR 159 0.468 

 

The above table displays the summary of the convergence results of the various 

methods examined. The proposed EAOR method takes a shorter time (0.531 secs) to 

compute the          linear system of problem 6 to the desired accuracy compared to 

the other AOR-type methods. Similarly, the REAOR method takes 0.468 secs as 

compared to 0.500 secs of RAOR method.  
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4.7 Discussion of Results 

In Table 4.1, using different values of acceleration parameter     starting from 0.04 to 

0.36, over-relaxation parameter     starting from 0.1 to 0.95 and the extended 

acceleration parameter     ranging from 0.05 to 0.45, spectral radius of the EAOR 

iteration matrix is compared with that of its Refinement version. This is mainly to 

ascertain their performance with regards to problem 1. From the results, the REAOR 

method has a lower spectral radius which depicts that the Refinement method will 

converge to the true solution faster than the new EAOR method. Similarly, the same 

deductions can be made for Tables 4.7, 4.13, 4.19, 4.25 and 4.31 for problems 2 to 6 

respectively. Since the results in the tables above shows that        has a greater 

spectral radius compared to        ,  implying that         will definitely converge to 

the true solution faster than       .  

In Table 4.2 the spectral radius of the new EAOR method       is compared with 

spectral radii of AOR method        and some variants of AOR method                     

and                         . This comparison is necessary so as to verify if the proposed 

method has been able to achieve the aim it was developed for, implying that apart from 

the method been convergent, it must also converge quicker than the AOR and AOR-

type methods. From observation, it is seen that the spectral radius of          is smaller 

than 1 for all values chosen for the parameters and this implies that the new EAOR 

method is convergent. Furthermore, comparing spectral radius of        and those of 

    ,                   and                           and checking how close their spectrum is 

to zero, reveals that the        converges faster than the others. This is due to the fact 

that it has a lower spectral radius compared to the other methods examined. The result 

affirms the superiority of the proposed EAOR method over the existing methods. Result 

in Table 4.2 is based on a discretized linear system in problem 1. Also in Tables 4.8, 
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4.14, 4.20, 4.26 and 4.32, spectral radius of        is compared with those of      , 

                and                       for problems 2 to 6. This is to further verify the 

efficiency of the method for linear systems with different coefficient matrices. The 

results shows that the rate of convergence of the       is faster when compared with the 

other methods.  

In Tables 4.3 and 4.21, the spectral radius of the REAOR iteration matrix         is 

compared with the spectral radius of the RAOR iteration matrix                     based 

on the discretized linear systems of problems 1 and 4. Also, in Tables 4.9 and 4.15 the 

spectral radius of         is compared with spectral radius of                     based on 

the linear systems in problems 2 and 3. Again, in Tables 4.27 and 4.32, comparison of 

the spectral radii between         and                     based on the fuzzy linear system 

in Problem 5 and application of a real world problem considered in problem 6 is 

presented. This is to ascertain the performance of the new refinement method with 

existing refinement method in terms of efficiency and accuracy. From the results, it is 

observed that the new refinement method exhibits faster convergence since its spectral 

radius is lower compared to that of Refinement of AOR by Vatti et al. (2018). 

Figures 4.1 to figure 4.6 illustrate the presented spectral radius results for problems 1 to 

6 for clarity of the tabulated results. From the figures, we observed that the refinement 

of the proposed method has the least spectral radii in all the figures. It is also noted that 

the EAOR method outperformed the other variants of AOR method compared in the 

existing literature.  

Apart from establishing the fact that the EAOR method converges quicker than existing 

methods, it is also important to compare its rate of convergence with those of existing 

methods. Tables 4.4, 4.10, 4.16, 4.22, 4.28 and 4.34 display the ratio of convergence 
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rate with respect to       ,        and         for problems 1 to 6 respectively. Despite 

the fact that the rate of convergence varies with different values of the parameters 

           ,  the rate of the       is quite faster in comparison with        and        

which confirms the superiority of the new EAOR method over the KAOR and QAOR 

method. In all, EAOR method converges at 1.4 times faster than the KAOR method and 

1.8 times quicker than QAOR method.  

The rate of convergence of         and                     for problems 1 to 6 are shown in 

Tables 4.5, 4.11, 4.17, 4.23, 4.29 and 4.35. The results from the tables indicate that the 

rate of convergence of proposed Refinement of EAOR method is higher than that of the 

Refinement of AOR method. Despite the fact that the rate of convergence varies with 

different values of the parameters            , the rate of the          is quite faster in 

comparison with                    which further proves the efficiency of the REAOR 

method against the RAOR method. The REAOR method converges at approximately 

120% faster than the RAOR method.  

Tables 4.6, 4.12, 4.18, 4.24, 4.30 and 4.36 presented the convergence results of the six 

numerical tests performed. From the tabulated results of problem 1 in Table 4.6, EAOR 

converges after 56 iterations, REAOR converges after 29 iterations, AOR converges 

after 81 iterations, RAOR converges after 41 iterations, QAOR converges after 196 

iterations and KAOR converges after 127 iterations. The respective time elapsed (in 

seconds) by each of the methods is 0.266, 0.094, 0.296, 0.125, 0.734, and 0.360. 

Similarly, the convergence results were also presented for problems 2, 3, 4, 5, and 6 in 

Tables 4.12, 4.18, 4.24, 4.30 and 4.36. The results indicates that the proposed (EAOR 

and REAOR) iterative methods requires less number of iterations to reach convergence 

than similar methods.  
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CHAPTER FIVE 

5.0    CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In this thesis, iterative solution of large and sparse     linear systems were studied to 

improve the rate of convergence of a family of Accelerated Over- Relaxation (AOR) 

iterative method. We have been able to develop an efficient iterative method, analyze 

for convergence of some special matrices and perform six numerical tests including 

fuzzy linear system problem and heat transfer problem. The new iterative method called 

Extended Accelerated Over Relaxation (EAOR) iterative method was developed by 

introducing a new acceleration parameter to the family of two-parameter Accelerated 

Over Relaxation iterative method. The developed EAOR iterative method was analyzed 

for convergence of  ,  , and irreducible diagonally weak dominant matrices. 

Furthermore, Refinement of the Extended Accelerated Over-Relaxation (REAOR) 

iterative method was developed to reduce the residual in the iteration process. The 

convergence of the  ,  , and irreducible diagonally weak dominant matrices was also 

studied and confirmed for the REAOR iterative method.  

Six numerical tests of partial differential equations, fuzzy linear system, and an 

application problem of heat transfer were used to validate the efficiency of the 

developed method and its refinement. In problem 1, second-order partial differential 

equation was discretized with finite difference procedure to a     linear system whose 

coefficient matrix is an    matrix, problem 2 considered a       linear system whose 

coefficient matrix is an    matrix, problem 3 also considered     linear system with 

an irreducible weak diagonally dominant coefficient matrix, and another second-order 

partial differential equation discretized to       linear systems whose coefficient 
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matrix is an   matrix. We further considered a     fuzzy linear system which was 

transformed to an extended       matrix, and a metal plate heat transfer problem 

modeled into a two-dimensional Laplace equation which was discretized to a       

linear system of equations.  

We computed the spectral radii of the coefficient matrices in each of the problems 

mentioned above with the proposed EAOR and the refined version called REAOR 

iterative methods at varying values of parameters      and  . In contrast, the results of 

the spectral radii of EAOR and REAOR were compared with the spectral radii of AOR 

and some of its variants to examine how soon the convergence will be for the compared 

methods. From all the numerical results, especially indications of small spectral radii of 

the developed methods, we proved that REAOR converges faster than EAOR, and in 

general, EAOR converges faster than AOR and its variants. As reported by Sebro 

(2018), numerical methods that register small numbers of iterations will require less 

computational storage. Then, we can infer that the developed EAOR and REAOR 

iterative methods with lower spectral radii will have less storage capacity, 

computational time and number of iterations, thereby converging faster than the 

methods considered in literature. 

5. 2 Recommendation 

Further research on investigation of convergence of the proposed Extended Accelerated 

Over-Relaxation iterative method for Hermitian and     matrices is recommended, so as 

to accommodate more classes of matrices.  
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5.3 Contributions to Knowledge 

This research work has contributed the following to the body of existing knowledge; 

I. An efficient iterative method that shows an indication of a small spectral radius, 

which enhances convergence rate was developed for finding solution to linear 

systems.  

II. Conditions placed on the coefficient matrix that would enable convergence of 

the Extended Accelerated Over-Relaxation method is established. In all, the 

proposed EAOR method converges faster than some existing methods reviewed 

in the work. As indicated in the obtained result, presented in Tables 4.4, 4.10, 

4.16, 4.22, 4.28 and 4.34, the method converges approximately 1.8 times or 

180% faster than the iterative method of Wu and Liu (2014) and 1.4 times or 

140% faster than the iterative method of Youssef and Farid (2015). 

III. A Refinement form of the proposed iterative method called REAOR, that 

drastically reduce the number of iterations has been developed for  ,    and 

irreducible diagonally dominant matrices. Analysis of the result proves this, in 

the following number of iterations reached to obtain a desired result;  

The method of Wu and Liu (2014)  - 985 iterations 

The method of Youssef and Farid (2015) - 724 iterations 

The proposed Refinement method   - 159 iterations 

IV. Establishment of convergence theorems for L-matrix, M-matrix and weak 

Irreducible diagonally dominant matrix with respect to the Extended Accelerated 

Over-Relaxation and its Refinement. 

V. Some numerical experiments for the purpose of evaluating and validating the 

new methods has been carried out. 
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APPENDIX A 

4.1.6 Convergence Results Comparison for Problem 1 

4.1.6.1 Convergence result of the refinement of AOR and EAOR iterations for 

problem 1 
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Mesh Points 
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4.1.6.2 Convergence result of AOR, its variant and proposed EAOR iterations for 

problem 1 
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APPENDIX B 

4.2.6 Convergence Results Comparison for Problem 2 

4.2.6.1 Convergence result of refinement methods of AOR and EAOR iterations 

for problem 2 
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Iterations 
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4.2.6.2 Convergence result of AOR, its variants and EAOR iterations for problem 

2 
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Mesh Points 

QAOR KAOR AOR EAOR 

1 

 

 

    

2      

   

 

 

 

 

 

 

 

  

43      



180 
 

No. of 

Iterations 
Mesh Points 

QAOR KAOR AOR EAOR 

   

 

 

 

 

 

 

 

 

60 

 

  

 

 

          

94 

 

  
  

         

144 

 

 

 

  



181 
 

 

  



182 
 

APPENDIX C 

4.3.6 Convergence Results Comparison for Problem 3 

4.3.6.1 Convergence result of refinement methods of AOR and EAOR iterations 

for problem 3 
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4.3.6.2 Convergence result of AOR, its variant and EAOR iterations for problem 3 
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APPENDIX D 

4.4.6 Convergence Results Comparison for Problem 4 

4.4.6.1 Convergence result of refinement methods of AOR and EAOR iterations 

for problem 4 
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4.4.6.2 Convergence result of AOR, its variant and EAOR iterations for problem 4 
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Maple Program for the EAOR Method 

 

  



195 
 

Maple Program for the REAOR Method 

 

 

 


