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ABSTRACT 
 

Crime has become a global challenge in recent times. The phenomenon has become a difficult task that 

military war-fare approach alone can address effectively without intelligence. Criminal intelligence 

involves gathering data on criminal activities and participants for preparing deplorable strategies and 

interventions. Social Network Analysis (SNA) offers supportive tools for analysing Organised 

Criminal Groups (OCGs) and identifying important nodes with conspicuous relationship as its priority. 

SNA-based techniques arrived at key players in criminal network with nodes that have high SNA 

metric values. Apart from datasets challenge, SNA is a weak scheme for key players in OCGs because 

conspicuous links raise susceptibility of vibrant participants while silent key actors are concealed. 

Also, status of key actors in OCGs are unrelated with SNA metrics. Scatter-graph of vulnerability and 

strategic positions was devised to mitigate unrelatedness of SNA metrics for detection of key players 

in Criminal Social Network (CSN). The scheme identifies actors that have both high vulnerability and 

high strategic position values at the same time. This is synonymous to Influence Maximization (IM) – 

set of nodes that have high influence. Silent key players or legitimate actors in adversary network still 

remain unresolved. Missing node concept works towards set of nodes not known initially as part of a 

social criminal group. It has high affinity for well-connected nodes than marginal nodes. Node 

discovery scheme unravels latent structure behind key players within CSN. The scheme pinched on 

multiple sources of data about a criminal group yet legitimate actor are not captured. Inference 

approach offers probability-based prediction for detecting covert nodes yet only well-connected nodes 

with conspicuous relationships are still identifiable. The development of Enhanced Bayesian Model 

aimed at predicting key players like financial aiders and ammunition suppliers with evasive attitudes. 

It was conceived towards inherent problem of erratic behaviour and structural equivalence abating 

key-players from theoretical graph-based. Bayesian model and Recursive Bayesian Filter (RBF) 

algorithm were combined to have Enhanced Bayesian Network Model (EnBNM) with RBF to lower 

error rate and improve prediction. EnBNM scheme re-ranks participant’s attribute by assigning 

inference to nodes base on conditional probability of Bayesian model. EnBNM’s algorithm was 

validated using ground truth and SNA-Q model adopted for classifying Criminal Profile Status (CPS). 

EnBNM was tested using dataset of participants in November 17 Greece revolutionary group - (N’17) 

and data of participants in September 11 Al-Qaeda terrorist group - (9/11). For N’17 dataset, EBNM 

detected all alleged and convicted leaders. Additional two actors were detected who had the same CPS 

with convicted leaders. EnBNM also detected marginal actors; participants with high tendency to 

evasion. Out of four (4) detected fugitives, two of them belong to the first-generation leadership (G) 

faction. For 9/11: nine (9) out of nineteen (19) central participants detected by EBNM have the same 

CPS with convicted leaders. It means that seven (7) more actors are detected as additional key players 

by EnBNM that previous models did not detect. Six of these actors detected are conspirators. A 

financial aider to the group was detected among fugitives. The results corroborate that terrorist 

organisations are self-organised with decentralised key players as a measure to minimize effect of 

security perturbation. The simulation results showed that the court judgement of the N’17 group was 

40% in error as additional two actors were detected by EBNM apart from the three convicted leaders 

by court. It shows that support of intelligence is highly needed for effective disruption of OCG and 

terrorism. The EnBNM algorithm also detected over 80% of legitimate actors - less vulnerable 

participants in the 9/11 terrorist group and has 59.09% accuracy score in detection of conspirators. 
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CHAPTER ONE 
 

1.0 INTRODUCTION 
 

1.1 Background to the Study 

 

Different parts of the globe have one security challenge or the other in the form of 

persistent conflicts. Organised crime has become a global phenomenon, represented in a 

confluence of conflicts from Africa, to the Middle East and the Americas, with distinct 

linkage response to international terrorism (Interpol, 2018). Consequences of these 

crimes are on the increase considering the rising number of victims and Internally 

Displaced People (IDP) (United Nations, 2014; Barnes, 2017). For instance, over 3000 

died in the USA September 11, 2001 attacks. Approximately 27,000 lives have been lost 

to the Boko-Haram insurgency in Nigeria, while money earmarked for containing 

insecurity are too exorbitant (Tayebi, 2015; Ashby, 2016). 

 

Perpetrators of various heinous crimes are described as dark networks or criminal 

organisations (Morselli, 2009; Manning, 2010; Brunetto et al., 2016). Dark networks are 

known to be the interconnection of individuals or Organised Crime Groups (OCGs) 

(Malm & Bichler, 2011). The interconnections among members of criminal groups had 

been identified as factors responsible for resilience of criminal organisations (Behzadan, 

2016; Salvatore et al., 2016). It has also been observed that conventional military 

warfare approaches are becoming ineffective for combating criminal organisations 

without incorporation and support of intelligence about criminal organisations (Malm & 

Bichler, 2011; Minor, 2012; Gunnell et al., 2016). 

 

Social Network Analysis (SNA) is found supportive to criminal intelligence 

investigations (Keller, 2015; Jones et al., 2018). It was initially designed as a model for 

describing various relationships, ties, and transactions among members of organisations 
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(Le, 2012; Molinero et al., 2018). It has become a method for rendering solutions for 

complex related systems (Basu, 2014). Some academia advocate for incorporation of 

SNA into criminal investigation(Sparrow, 1991; Kreb, 2002).This had been intensified 

in some recent works (Brunetto et al., 2016; Bright et al., 2017; Grassi et al., 2019). 

 

However, some works have identified the inadequacy of SNA. Karthika and Bose 

(2011) considered SNA as inappropriate data mining techniques for criminal networks. 

It was stated that SNA only discovers patterns from the known structures and not from 

the hidden structure like terrorist networks. Kitsak et al. (2010) observed that the best 

spreaders or influencers are not necessary being the most highly connected or central 

node. Husslage et al. (2012) opined that the Flat Organisational Structure (FOS) and 

leaderless principle imbibed by criminal organisations constituted factors that conceal 

high-profile criminals and affiliates. This suggests that functional covert networks do 

not have a high distinction between the centrality of the individuals, that is, they are 

leaderless. 

 

Borgatti (2006) provided definitions of the Key Player Problem (KPP). It is a crystal 

clear concept that dislodges SNA metrics capacities in identifying all key players within 

a social network (Ortiz-arroyo, 2010). 

 

Ozgul revealed different topologies on terrorist organisations based on their formations 

from literature (Ozgul, 2016). The work stresses that variation in terrorist topologies plays 

an essential role in the positions of most members who play key roles. Terrorist groups are 

resilience because critical players who are vital to the organisations' existence and 

recuperations are missed or evade detection. Eiselt and Bhadury (2015) identified dynamic 

positions of key players as one carried out through manipulating conversation. The 

manipulation pave way for important members to look like unimportant actors while 
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less important members look like prominent ones. In short, manipulation has potential 

of distracting attention of detectives from real vital players. 

 

Positions of participants in social networks are dynamic. This has also attracted the attention 

of academia and criminal investigators by devising techniques for mining high-profile 

criminals from decentralized and dynamic networks. Dynamic relationships exist among 

participants in OCGs. Study and adopting common topological analysis are becoming 

inadequate strategies for disrupting criminal network because relationships among 

syndicates are absurd. Yao explores dynamic network to identify hidden relationships (Yao 

et al., 2016). Basaras et al. (2017) developed a technique that supports a dynamic network. 

The development of dynamic centrality metrics provides alternative to address dynamicity 

in a complex network (Yao et al., 2016; Huang & Yu, 2017). 

 

Dynamism in social network is more connected to rumour spreading, computer virus 

attack and human infection disease than criminal network organisations (Basaras, 2013). 

It is about identifying influential spreader and spreading capacity of actors; that is actors 

capable of infent other actors or transmit infectious diseases. This is an attribute that 

high-profile and affiliate key players to terrorist groups might not be bound to (Liu et 

al., 2016; Zhang et al., 2016; Wang et al., 2017). 

 

Data is becoming prominent for developing preventive strategies against incessant 

crimes orchestrated by OCG (Ashby, 2016). Preventive strategies are meant to find 

either long term or short-term measures to forestall future reoccurrence (Maeno & 

Ohsawa, 2007a). Such mechanism lowers confrontations between security agencies and 

foot soldier terrorists. It offers law enforcement agencies ample time to study members 

in the data and to identify hidden members - especially those that are more pertinent to 

the existence of the organisation. 
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Analysing crime data is one of strategies for obtaining criminal intelligence to support 

conventional warfare approaches. Crime data contain various information about 

criminal activities including covert member those that overt members work for (Hulst, 

2009). There is more potential to identify high-profile criminals within an OCG through 

analysing their crime data than in the warfare confrontation which they hardly 

participated (Ismail et al., 2017). Crime data have fundamental challenges related to 

sources and reliability (Berlusconi, 2013). 

 

Data sources and reliability dominated the notion on data defectiveness. These have 

potential of influencing network structures of participants. The principal suspect is that 

defective data conceal influential participants and affiliates (Butt et al., 2014; 

Berlusconi et al., 2016). Objectively, defectiveness is generic and inevitable on any 

data. For crime data, it connotes omission of inconspicuous relationships or missing 

links (Kossinets, 2006;Parisi et al., 2018). It also denotes exclusion of some participants 

called missing nodes (Maeno, 2007, Eyal et al., 2011; Sina et al., 2013). The two 

insinuations - omission of relationships and high-profile participants undermine the 

efficiency of security intervention and intelligence (Duijn et al., 2014). 

 

This research aimed at using telecommunication metadata of a terrorist or militant group 

as a reliable, formidable and robust data for tackling data defectiveness. Gunnell (2016) 

presents different classes of grading police intelligence data. The ubiquitous use of 

mobile phones was identified as a reliable source for crime data (Varese, 2013; Basu, 

2014). Telecommunication metadata as underlying information, contain blueprint on 

activities of mobile phone users. It is regarded as the best for predicting behaviours of 

mobile phone users as well as to replicate individuals with respects to social relations be 

it in groups, online or offline transactions(Campana & Varese, 2012; Butt et al., 2014; 

Ferrara et al., 2014). 
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Besides, huge data are produced daily from the use of mobile phones which should be used 

by security operatives in fighting terrorism and other crimes. Unfortunately, majority of 

researches caried out on terrorism make use of open-source data. A number of research 

done on the 9/11 attacks also made use of open source data (Kreb, 2002; Levi, 2007; 

Eilstrup-Sangiovanni & Jones, 2008; Course & Hill, 2014). Data about phone users 

participating in various criminal activities can be extracted from telecommunication 

gadget(Memon et al., 2011; Ferrara et al., 2014; Onwuka; et al., 2016). 

 

Telecommunication metadata is a collection of recorded information about phone-user 

such as location, altitude, time of call and duration of calls. These contain useful tips to 

identify phone users participating in illegal activities and to prepare adequate 

interventions. Thus, detection of high-profile criminals not well known to security 

agencies could be tracked from telecommunication metadata, and it can aid security 

efforts towards combating criminal organisation resilience. 

 

Access to intelligence data alone is not sufficient to tackle the problem of critical 

players; as knowledge of theoretical graph and conception analysis are also inadequate 

to solve it. Hulst (2009) opined that SNA is a promising tool needed by law enforcement 

agencies. Specific methodological problems associated with criminal intelligence data 

and lack of experience with SNA applications hampered researcher’s ability to improve 

knowledge of organised crime and terrorism. Key players in terrorism have 

contravening attributes to that of influential actors in the open organisations – none 

criminal organisations (Ismail et al., 2017). 

 

Lampe (2009) proposed two features for identifying prominent members of adversary 

networks. The features are human capital and social capital attributes. The human capital 

attribute is to supplement social capital attribute of criminal actors. The social capital 
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attributes are obtainable through SNA metrics (Bright et al., 2015). Methods for 

identifying human capital attributes are rare in literature, but it had been cajoled through 

SNA illustrated in (Gunnell et al., 2016; Malm et al., 2016; Bichler et al., 2017). 

 

Data defectiveness is a hindrance to detection of covert nodes. Telecommunication 

metadata has no information directly related to human capital attribute that that is, 

personal attributes of mobile phone users. This is part of missing information in 

telecommunication metadata. Covert members as used in this research denote affiliates, 

high-profile collaborators or co-offenders inside a dataset of terrorist groups. It is highly 

challenging to identify these set of participants by SNA tool because they always lie 

low. These are set of participators who engage with OCGs through inconspicuous 

relationships. Hardly noticeable by criminal investigators as key players. This is also 

affecting significance covert members from detective techniques. Real-life social status 

of the affiliate criminals submerges their status making covert members becoming 

unnoticed as key players. 

 

1.2 Statement of the Research Problem 

 

The problem of insecurity confronting the world is emanating as persistent-conflict. Its 

intermittent nature and sporadic occurrence indict the current security operative approach as 

ineffective in bringing it under total control or complete eradication (Manning, 2010; 

Ferrara et al., 2014). This is because the conventional approach is after overt members of a 

criminal group who execute organisation’s agenda. But conventional approach is not after 

hidden members whose roles are not exposed to public and security agents (Bright, 2015). 

The activities of hidden members, otherwise known as covert members, are pertinent to the 

existence and recuperation of the criminal group whenever overt members are eliminated. 

Covert members enjoy secrecy on their identity because relationships with 
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overt members are not easy to establish due to covert ways of communications (Butt et 

al., 2014). Also, social networks of participants, hide hierarchies of the members due to 

flat organisational structure (Chatterjee, 2005; Clauset et al., 2008) and leaderless 

principle they imbibe (Husslage et al., 2012). The problem now is how the covert 

members (covert nodes in a network) of a criminal group can be identified by inference 

from social networks of overt members; this is a missing node problem. 

 

1.3 Aim and Objectives of the Study 

 

This research work aims to develop enhanced Bayesian network-based algorithm for 

detecting covert members of a criminal group using mobile telecommunication 

metadata. The objectives for achieving this aim are set as follows: 

 

(i) To develop a Bayesian model for covert node detection. 

 

(ii) To develop an algorithm for covert node detection based on the model developed 

in (i) above 

 
(iii) To evaluate the performance of the developed algorithm using network attributes 

of criminal’s mobile phone call metadata, 

 
(iv) To use SNA - Quadrant model for validation of nodes detected in (iii) above, and 

 

(v) To compare the algorithm with the existing covert node detection algorithms. 

 

1.4 Significance of the Study 

 

This work will be beneficiary to individuals, groups and nations. The work is to 

complement security agents’ intervention and provide adequate intelligence to fight 

crimes or persistent conflicts. The proposed approach is to identify covert members in a 

criminal organisation; those making criminal groups become resilient. Identifying those 

covert members can lead to successful disruption of OCGs. 
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This approach will facilitate and promote socio-economic stability of society, as it will 

expose key actors behind persistent conflicts. With this approach, less resources and 

security personnel will be effective for disrupting OCGs. This will definitely cut down 

the security votes. 

 

1.5 Scope and Limitation of Study 

 

Criminal organisations are regarded as complex systems. Relationships among 

participants in communication networks are also complex. With the concept of 

complexity, the following scopes, assumptions and limitations are put into consideration 

in this thesis. This work considered OCGs in general but streamline the target to 

terrorist groups. 

 

(i) Telecommunication data of terrorist groups are intended for evaluation. 

 

(ii) Participants are presumably bounded in telecommunication metadata; 
 
 

(iii) The selected attributes are those defined in literature, that also related to features 

of salient criminals especially key players in OCGs. 

 
(iv) Development of enhanced Bayesian model was made to infer the salient actors. 

 
 

(v) The implementation and testing of the models are limited to the advanced 

laboratory-scale testbed. 

 

1.6 Thesis Organisation 

 

This work is divided into five chapters; chapter one presents an overview of criminal 

organisations as organised crime groups orchestrating persistent conflict. Factors 

preventing security agency from annihilating OCGs were mentioned. Also, the contents 

of chapter one includes the problem statement, aim and objectives, significance as well 

as scope and limitation. 
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Chapter Two starts with overview. It opens discussion on organisational structure and 

typologies of social networks. Impacts of the dark organisations are briefly enumerated 

to substantiate the need for this research. A section of the chapter discusses various 

techniques, models and algorithms for detection of key players. Sources of data, 

dynamism concepts related to criminal organisation structure; strategic position, 

vulnerability, network disruption and resilience were reviewed. A detailed review of 

related works on key players attributes, as well as techniques for identification and 

prediction of covert members from covert social networks or dark networks were 

presented. Chapter Two was concluded with a summary of the research gaps this work 

addressed. 

 

Chapter three focuses on development of proposed methodology to address part of 

research gaps identified in the reviewed works. It shows steps towards actualising 

Enhanced Bayesian Network Model (EnBNM) for prediction of covert nodes. It also 

presents modality for identifying profiles of relevant participants in OCGs using SNA - 

Quadrant (SNA-Q). The SNA-Q serves a validation tool. Roles and contribution of 

participants in a criminal network are projected on four criminal profiles: Q1 to Q4. All 

metrics for evaluating the performance were obtained from social networks of criminal 

groups. 

 

Chapter Four presents results of EnBNM algorithm and its performance on two criinal 

datasets of N’17 revolutionary group and 9/11 dataset of a faction of Al-Qaeda terrorist 

group. Results of SNA-Q algorithm validate EnBNM detection. Comparative analysis 

of EnBNM was done with existing entropy variation algorithm 

 

Finally, chapter Five concludes this thesis, with review on aim and objectives achieved, 

the contribution of the study to knowledge and recommendation for future works. 
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 CHAPTER TWO 

2.0 LITERATURE REVIEW 

 

2.1 Chapter Overview 

 

This chapter discusses state of the art on the use of advanced technology emerging from 

the science of complex networks for the provision of security and fighting OCGs 

through intelligence gathering. It encompasses a review of complex networks, covert 

networks’ theory and algorithms for the detection of covert nodes. Covert networks 

refer to the blending of criminal groups within an extensive complex network (Maksim 

& Carley, 2003; Kramer, 2007; Memon et al., 2011; Husslage et al., 2012; Smith et al., 

2013; Basu, 2014; Butt et al., 2014; Smith et al., 2014). The chapter discusses covert 

network taxonomy and associated challenges for crime fighting and counter-terrorism. 

Related works on various techniques and algorithms for detecting covert nodes were 

discussed. A discussion on data sources for analyses of covert networks and the 

importance of Telecommunications metadata for uncovering hidden criminals is 

presented. This chapter is concluded with research gaps and the research proposition. 

 

2.2 The Global Face of Crime 

 

Methodology for fighting crime has become a multidisciplinary subject. The nature and 

extent of today’s global crime calls for more intelligence gathering and better 

intelligence-gathering tools. Various disciplines such as Physics, Mathematics, Biology, 

Chemistry, Chemical Engineering, Telecommunication Engineering, Computer 

Engineering and Computer Science are getting involved in study and design of different 

types of intelligence gathering tools to assist law enforcement agents in crime-fighting. 

This is because, locally and globally crime rate has been on the increase with reference 

to Tables 2.1 and 2.2. 
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Table 2.1: Snapshot of Nigeria's position in Global Crime Index 
 

Rank Country Crime index Safety Index 

1 Venezuela 84.25 15.75 

2 Papua New Guinea 80.24 19.76 

3 South Africa 77.07 22.93 

4 Afghanistan 76.37 23.63 

5 Honduras 74.78 25.22 

6 Trinidad and Tobago 70.95 29.05 

7 El Salvador 68.82 31.18 

8 Guyana 68.74 31.26 

9 Syria 68.09 31.91 

10 Brazil 67.85 32.15 

11 Jamaica 67.53 32.47 

12 Angola 66.63 33.37 

13 Peru 66.61 33.39 

14 Namibia 65.89 34.11 

15 Bangladesh 64.22 35.78 

16 Nigeria 63.86 36.14 

17 Puerto Rico 63.35 36.65 

18 Argentina 63.31 36.69 

19 Bahamas 62.25 37.75   

(Source: https://www. numbeo.com/crime/rankings_by_country.jsp; date 26/05/2021) 
 

 

Table 2.2: Snapshot of Nigeria's position in Africa Crime Index 
 

Rank Country Crime index Safety Index 

    

1 South Africa 77.07 22.93 

2 Angola 66.63 33.37 

3 Namibia 65.89 34.11 

4 Nigeria 63.86 36.14 

5 Libya 62.00 38.00 

6 Kenya 61.40 38.60 

7 Zimbabwe 58.88 41.12 

8 Tanzania 56.64 43.36 

9 Uganda 56.07 43.93 

10 Somalia 56.04 43.96 

11 Botswana 52.84 47.16 

12 Algeria 51.88 48.12 

13 Ethiopia 50.03 49.97 

14 Morocco 49.10 50.90 

15 Ghana 48.52 51.48 

16 Mauritius 47.89 52.11   
(Source: https:// www.numbeo. com/crime/rankings_by_country.jsp date 26/05/2021) 
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Table 2.1 shows that Nigeria occupies the sixteenth position on the globe and it 

occupies the fourth in Africa from Table 2.2 with crime index of 63.86 percent and 

safety index of 36.14 percent. The positions of Nigeria in the two tables are likely to be 

true when considering activities of different OCGs - from the Militants, Street-gang, 

Fulani-herdsmen, Cattle rustlers, Oil-bunkering, Boko-Haram and recently sporadic 

operation of Kidnappers. There is high tendency for further lowering of safety index for 

Nigerians. The summation of crime index and safety index is equal to hundred percent. 

 

Terrorism is the most difficult OCG to track due to diverse operational activities criminals 

involved in (Eilstrup-Sangiovanni & Jones, 2008). Terrorist groups are fond of concealing 

their criminal activities from security operatives and the public that is, spreading fear 

(Behzadan et al., 2017). Threats manifest from massive destructive attacks. These range 

from killings, maiming, raping and sometimes looting. Terrorist groups are not the only 

criminal group that spread threats. Other OCGs like Drug Trafficking Organisation (DTO) 

also do. Although their own attacks could be selective to their opponents in business. Petta 

opined that terrorism and OCGs are the same (Petta, 2018). 

 

Terrorist groups are driven by different ideologies (Barnes, 2017; Bichler et al., 2017). 

Some terrorist groups are known to be profit or money oriented when others are 

tribalistic-based or ideological-based. Terrorists like launch massive destructive attacks 

on society and openly admit such actions in order to get money, plan and execute other 

their criminal activities. Towards the end of cold war, some of OCGs sponsored to the 

war started experiencing more lesser support from the state that sponsored them. This 

forced majority of OCGs to devise new sources of funds to support activities. It was 

speculated that this turn in events had led to increase in criminal activities of various 

kinds to generate money by OCGs (Levi, 2007; United Nations, 2014). 
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Often, activities of OCGs are illicit and violent against the State and society where they 

thrive. Sometimes OCGs amass wealth and power, despite terrorists do not like being 

identified. Occasionally, some criminal groups launch open attacks (referred to as gang 

wars) against their opponents in retaliation or as a show of superiority. Vice-a-vice, 

OCGs act like a terrorist organisation. All these imply that organised crime groups and 

terrorist groups have areas of similarity in structure and activities. This craves for 

common type of intelligence gathering and methodology to be applied to both. Hence, 

both can be referred to interchangeably as terrorist groups or OCG (Petta, 2018). 

 

Criminal activities were initially restricted within local and geographical reaches. 

However, globalization and the advent of information infrastructure had enabled 

criminal organisations to grow into a national and transnational organisation (Brunetto 

et al., 2016; Abazia, 2017). The internet and advances in telecommunication 

infrastructure made it possible for OCGs to spread their tentacles beyond local 

boundaries, making it possible to receive supports and alliance across the globe making 

those behind national boundaries become less tractable and apprehended. 

 

Currently, a lot of multidisciplinary researches are trying to explore telecommunication 

infrastructures for disrupting OCGs, the same facilities that make criminals become 

invisible and to engage in net-war with security operative (Malm & Bichler, 2011; 

Welser et al., 2011; Madeira & Joshi, 2013). This is done by collecting their digital 

footprints called telecommunication metadata. This pieces of data contain information 

about participants and activities involved in online of the communication networks 

(Ferrara et al., 2014). Proper analysis of metadata produces facts related to people 

involved in criminal activities and roles individual played. These are intelligence data 

needed by law enforcement for effective destabilization of criminal groups. 
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2.3 Complex Networks 

 

Networks have recently become a paradigmatic way of representing complex systems. It 

works with interactions or relationship that exist between a system’s constituent parts. 

The pattern of relationship is itself an intricate and is evolving together with the 

system’s dynamics. A network is an underlying structure and it exists in natural and 

human-made systems. Resulting networks from natural and man-made system are 

characterized by randomness and structure. Dynamic systems also confine to a complex 

network (Holme, 2003). A network or sub-network always has a set of nodes that are 

connected. The complexity is not on the size but intricate connections and topological 

properties systems shared. 

 

A complex network is an aggregation of sub-networks or community of networks (Duch 

 

& Arenas, 2005; Costa et al., 2006; Fortunato, 2010; Gliwa et al., 2012; Klemm et al., 

2012). Many complex systems of interest, such as the internet, social and biological 

relations are depicted with network structure. The network structure sometimes illustrates a 

system’s function. This is also applied to abstract systems or models. Threat networks are 

illustrated with arbitrary connections of nodes (Smith et al., 2012; Carter et al., 2014). 

Human relations also have these described features illustrated in Figure 2.1. 

 

Figure 2.1 shows complex networks formation and evolvement of subnetworks from 

human relationships or interaction. A family is a complex network. It occurs from union 

of a man and a woman which are elements from different families, through marriage 

another family evolves that is another community of network - union or relationship. 

Such representation also exists in schoolmates, hobby, friends and scientific community 

networks. Each name given in Figure 2.1 represents a community of network or a 

subnetwork that evolved from one of the relationships in entire human races. 
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Figure 2.1: Complex Network Evolution 

(Source: Palla et al., 2005) 
 

Different community of networks have potential of evolving as a result of members’ 

interaction. The interactions of scientific community members lead to various 

Engineering professions, Biological Physics and others related professions. Criminal 

network also evolves from interaction of members from different communities of 

networks. It shows that OCGs are isolated communities (Maksim & Carley, 2003; Smith 

et al., 2013). OCGs have its elements from different networks. This is a reason OCGs 

are regarded as covert networks (Hussain, 2009; Butt et al., 2014). 

 

Complex systems are often described with models. Models reduce intricacy associated 

with links and offers simple description about a system. However, it is considered as 

insufficient concept due to few components used for description of an entire system. 

This was still adopted for criminal networks. The models make use of only conspicuous 

relationships and participants. From model description, significant parts of information 

are omitted or missing (Fortunato, 2010). There is tendency for larger missing 
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components unincorporated to influence decision drawn negatively over the model that 

 

have few parts description (Bliss & Schmidt, 2013). 
 

 

Today,  complex  networks  are  everywhere  -  from  national  power  grids  and  airline 

 

networks to social contact disease networks, neuronal networks and protein-protein 

 

interactions (Ghasemi et al., 2014; Zhao et al., 2015; Yao et al., 2016; Parisi et al., 2018). 

 

To understand behaviour of complex systems, it is imperative to first chart the structure 

 

of network. In neuroscience, the study had gradually seen a transition from reductionist 

 

studies of individual neurons and structures to a holistic approach that is, charting the 

 

overall interaction of the system. Figure 2.2 presents few examples of complex networks 

 

in diverse settings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Four examples of Complex networks: (a) represents a wiring diagram of the 

nematode worm brain, (b) a complex network constructed from a chaotic Rössler circuit, 
 

(c) a partial representation of a person’s Facebook friend network, coloured according to 

clustering and (d) a (fragmented) network of potential infection pathways for avian 

influenza ( Source: Fortunato, 2010) 
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2.3.1 Classification of complex networks 

 

Complex networks are governed by the rules and conditions of evolvement (Belinda, 

2010). Complex networks are classified using social network perspective. Its 

classifications are based on types of edge, nodes and different ways nodes are 

connected. A full, partial or egocentric are part classification based on number of nodes, 

while unimodal, bimodal and affiliation networks are classes based on involved entities 

(Hensen, 2011b). Multiplex network is a classification based on different ways people 

that is, nodes are connected. Multiplex gives a multiple relational networks (Zignani et 

al., 2015; Sharma & Singh, 2016). 

 

A full or complete network contains all entities of interest. Full networks are multiplex 

in structure – entities are connected in different ways. Multiplex structures are difficult 

to analysis without rendering them into simple structure like unimodal type. Entities in 

unimodal structure are of the same feature type that is, user-to-user or document-to-

document type. This is the simplest mode to represent a complex network. 

 

Partial network can be created from full network by taking few entities of multimodal 

networks. Both unimodal and partial network lower intricacy and aid comprehensive 

analysis than bimodal and multimodal networks (Guillaume et al., 2006; Kossinets, 

2006). Bimodal network can be transformed into two unimodal networks: a user-to-user 

and an affiliation-to-affiliation network. The transformation prevents omission and 

suppression of relations in unimodal. But a unimodal network ensures that all entities 

have the same rules and conditions. The unimodal structure permits to view components 

of complex networks as only nodes and links. The two components are another source 

of complex network’s classifications. 

 
 
 

 

17 



An edge connects two nodes or vertices. There are three types of edges: directional, bi-

directional or non-directional. A directional edge exists in communication networks 

illustrated in Figure 2.3 (a) and (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Directional Relationship between an initiator and a recipient 
 

Figure 2.3(a) depicts type of edge in communication conversation. An initiator of 

conversation that is, a caller is differentiated from a receiver using a directional edge - 

one arrow-head. Figure 2.3(b) illustrates an edge that depicts conversation between two 

phone users; between a caller and it’s called; a transaction or a relationship between two 

persons. Sometimes, bi-directional edges represent relationships that combine initiating 

link and response link. This also goes with ties, transactions, Short Message Services 

(SMS) and email transferred between two people. This is also applicable to non-

directional edges. Bi-directional edge can be replaced non-directional. 

 

Edges are in different sizes. Base on edge size, complex networks are also classified as a 

weighted digraph, unweighted digraph, weighted graph, and unweighted graph. Any 

network can be transformed from one of these formats to another (Ying et al., 2017; Zejun 

et al., 2017). Unweighted edges are used for relationships that are assigned the same weight. 

This edge is common in a unimodal network. Random networks are described with 

unweighted link between its dyad. When equal weight is assigned to edges in network, it 

makes links within to be uniform. Unweighted edges sometimes avoid preferential 

treatment on relationship; every edge is treated equal and assigned the same 
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weight. But the weighted network considers frequency of interactions in phone 

conversation or any other factors in weighing relationship between a dyad. 

 

2.3.2 Types of complex networks 

 

Complex networks are categorized into three types: random, small-world, and scale-free 

networks(Xu & Chen, 2008; Qiao et al., 2017). The trio belong to unimodal class of 

networks. Figure 2.4 shows an overview of complex networks taxonomy using three 

metrics: heterogeneity, randomness and modularity. Position of terrorist network is 

behind the frame which implies that properties are not compatible (Ilachinski, 2005). 

Terrorist and OCGs are hierarchical network while modularity randomness and 

heterogeneity are less concerned with hierarchies (Xu and Chen, 2008). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Overview of Complex Networks Taxonomy 

(Source: Ilachinski, 2005) 
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(i) Random Networks 

 

A random graph is a network whose connections are based on probability and number of 

nodes. The theory of Random Graph (RG) was developed by Erdos and Renyi (Ilachinski, 

 
2005). Erdos and Renyi considered a sample space that is feasible for actualizing ((2)) 

 

 
order N labeled graphs   (  ,   ) with equiprobable size . RGs follow the binomial model that 
is defined by equation (2.1). The addition of edges requires equation (2.2). A random graph 
roughly has N number of links with probability, (Piraveenan, 2010). 

  (  ) =   (1 −   )( 
  

2)−   (2.1) 

  (  ) ∝  −   
 (2.2) 

 

 

where P (G) is probability of graph G; P(N) is link probability scales and is a tunable 

parameter. The is an independent probability 0 ≤ ≥ 1. 

 

When analysing a network, one approach is to view a network as a single fixed entity. 

But sometimes, edges are viewed as random variables. Irrespective of perspective, a 

given network has more components than an individual object within the graph. A 

random network can be viewed as a sample from probability distribution and should be 

studied as a whole rather than in pieces when to gain an insight about the network 

(Clauset & Woodard, 2013). This perspective permits analysts to see probability 

distribution of random networks as a whole ensemble of many different networks, 

whereas probability distribution determines probability of any particular network. 

Rather than looking at the particular properties of a single network, it is better to study 

the properties of the whole ensemble of networks. 
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One advantage of looking at an ensemble of networks defined by a probability 

distribution is to minimize or lower the influence of different statistical properties. One 

can imagine taking many samples from the probability distribution and then look for 

properties that are common to most of the samples. Sometimes, it could be to take an 

ensemble average of a quantity, that is, taking an average of the probability distribution 

(Ghasemi et al., 2014). 

 

Besides the mathematical convenience, looking for properties over a whole network 

ensemble makes sense in a real-world application. Despite brains are wired differently, 

people perform the same activity through similar motor tasks. For analysts, there could 

be more need to study common properties facilitating motor task action than seeking 

variation on how each brain was wired. An ensemble network has random network 

framework. Different networks can be sampled with the same probability distribution. 

This probability distribution is the property over the entire network. 

 

Research conducted on complex networks by physicists, computer and social scientists 

revealed that complex networks are not completely random graph but they also exhibit 

small-world and scale-free properties (Ilachinski, 2005; Behzadan, 2016). 

 

(ii) Scale-Free Networks 

 

A scale-free network is a graph whose degree distribution asymptotically (Huang & Yu, 
2017). That is, the fraction of   (  ) of nodes in the network having connections to other 
nodes goes for large values of k given as equation (2.3) 

  (  ) =  −   
(2.3) 

 
where c is normalisation constant and γ is a parameter whose value in the range 2< γ >3. 
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A network is called scale-free if the characteristics of the network are independent of the 

size of the network, that is, the number of nodes. It means, when the network grows, the 

underlying structure remains the same. That is; the ratio of the number of very 

connected nodes to the number of nodes in the rest of the network remains constant as 

the network changes in size. Compared with the Erdos-Renyi (RG) where most nodes 

typically have several links near a small or average value. It is observed that the 

evolvement of RG leads to the relative number of very connected decreases. 

 

A scale-free network is extremely inhomogeneous. Majority of nodes in scale-free 

graphs have only one or two links when a few nodes have a large number of links. 

Another fact is that both random graph and scale-free exhibit small-world property but 

only the scale-free network has the short path length that passes through one of the 

highly-connected hubs (Xu & Chen, 2008). This gives information about the system 

behaviour and tolerance to outside intrusion or a targeted attack. Scale-free network is 

found in many application areas related to science and engineering. These include: 

 

• the topology of web pages - where the nodes are web pages, and the links are 

hyper-links, 

 
• the collaborative network of actors - where the nodes are actors, and the links are 

co-stars in the same movie, 

 
• the power grid system - where the nodes are generators, transformers, and 

substations and the links are power transmission lines, 

 
• the peer-reviewed scientific literature - where the nodes are publications, and the 

links are citations (Ilachinski, 2005). 

 

Figure 2.5 is an example of a random graph and a scale-free graph. A scale-free graph 

has few shaded nodes indicating highly connected nodes. But, nodes in the random 

graph had number of links in proportional to (2.3) 
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Figure 2.5: An example of Random network vs the Scale-free network 

(Source: Alvarez et al., 2015) 
 

 

(iii) Small-world Networks 

 

A small-world network is a type of mathematical graph in which most nodes are 

neighbours to one another - that is neighbours of any given node could be neighbours of 

each other. Majority of the nodes can be reached from every other node by a small 

number of hops or steps as shown in Figure 2.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6: An example of the small-world network system model 
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The small-world network is constructed by randomly rewiring the edges of a ring lattice 

with nodes. It represents a graph with a large proportion of nodes with a few links. Only 

small percentage of nodes having a large proportion of links. Examples of small-world 

networks include collaborative social-networks of film actors, the US electric power 

grid and the neural network of a nematode (Ilachinski, 2005). The small-world model 

has been actively applied to the communications networks research due to resulting 

network topology with features such as smaller average transmission delay and more 

robust network connectivity (Xu & Chen, 2008). 

 

2.3.3 Application of complex networks 

 

Huge data are emanating from various human activities including criminal data. 

Supercomputer and high processing speed devices have aided collection and processing 

of big data produces from complex relationships (Kasture, 2012). Over the last decade, 

numerous applications based on new understandings of complex networks have been 

reported. Human-made systems like communication networks exhibit complex network 

properties (Chatterjee, 2005; Eiselt & Bhadury, 2015; Zignani et al., 2015). 

Communication networks confirm existence of relationships among participants or 

organisation entities. A complex network graph is defined mathematically as = (  ,   ), 

where V is set of vertices (nodes) and E as set of edges (links). The following are just 

few complex systems. 

 

(i) Computer Networks 

 

Computer networks refer to a set of computer terminals interconnected together. The 

interconnection permits other terminal computers to have access to resources on other 

systems, as this prevents duplication of resources. Computer networking ensures that 

there is communication between one system and others via media that is either wireless 
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or cable (Maeno & Ohsawa, 2007b). It also shows that there is a structural path to the 

flow of information. Some rules or protocols can guide communication. The structure in 

the computer network is known as topology (Xu & Chen, 2008). There are different 

topologies. Each topology has its own merits and demerits. Topology of computer 

networks is a structure that provide information about important terminals. If the 

topology is unknown, it may be difficult to identify important computer that serves as a 

hub. Effect of disconnecting or removing a computer from a network can vary from one 

topology to another. 

 

(ii) Criminal Networks 

 

Criminal networks are organised groups of people perpetrating nefarious activities. 

Crimes cannot be single-handedly committed without alliance with some expert co-

offenders (Ouellet et al., 2013; Tayebi, 2015). The co-offenders use their experiences, 

personalities and positions to facilitate crimes (Behzadan et al., 2017; Grassi et al., 

2019). Co-offenders in OCGs are like terminals in computer networks and WSN. Unlike 

computer terminals, participants in OCGs are of different personalities. 

 

Some OCGs have individuals that have personal interest in crime. This includes 

members who are benefitting from crimes directly. OCGs thrive on collaborations and 

effective communication (Behzadan et al., 2017; Grassi et al., 2019). Criminal 

relationships are built on trust and the trust leads to collaboration. Relationships 

between criminals are multi-dimensional and hardly noticed (Lin & Chalupsky, 2003). 

 

Criminals conceals their relationship. This prevent public and security agents from 

having knowledge about people who are involved (Everton, 2009; Manning, 2010; 

Memon et al., 2011). Figure 2.7 is a network graph of Global Salafi Jihadists (GSJ). It 

shows different sub-networks with the GSJ. The sub-networks were coloured according 

to 25 



geographical locations of participants. The links between nodes represent 

communication media or ties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.7: Global Salafi Jihadi Criminal Network 

(Source: Xu & Chen, 2008) 
 

(iii) Social Networks 

 

Social networks concern relationships, interactions and communication exercised by 

human or devices. The relationship between two persons can be that of birth, family, 

relatives, school attended, religion gatherings and geographical location (Calderoni, 

2012; Saxena et al., 2018). Interactions do involve two persons who use a medium of 

communication to share ideas (Zignani et al., 2015). Interaction also encompasses using 

language, signals or signs by two persons or group of people. Social network is small 

unit of a complex network. This, sometimes established around people somebody is 

known with (Jones et al., 2018). 

 

Social network shows how people are related people. The relationship is 

not restricted to blood relations alone. Relationships across all parts of 

the globe have made world look like a global village. There are different 

types of social network media that are in use - 26 



such as twitter, IMO, Telegram, and WhatsApp (Madeira & Joshi, 2013;). These media 

also produce their own complex networks through the people using them. Social media 

cannot distinguish personal attributes of their subscribers. Different organisation groups 

use social network media to discuss concerned issues. 

 

(iv) Sensor Networks 

 

Sensor networks refer to a group of space dispersed dedicated devices for sensing and 

recording of environmental related activities. Sensor networks are organized for collecting 

data and disperse it to a central location (Sun et al., 2016). The communication between 

sensors is wireless. The name was coined from the medium of communication between the 

sensors - wireless communication sensors metamorphosed to wireless sensor network 

(WSN). A typical WSN is shown in Figure 2.8. The WSN measure could be for measuring 

environmental conditions like temperature, sound, humidity, and pollution level. It can be 

deployed as surveillance devices for monitoring and collecting crime data. Wireless sensor 

networks can be implemented using different topological structures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.8: Wireless Sensor network 

(Source: Wireless Sensor Network Archtecture and its Application, 2020) 
 

(v) Transportation Networks 

 

The globalization of transportation, communication and finance have benefitted both 

legal business and professional criminals. Roads also, have formed part of complex 

networks connecting cities. These cities are vertices. Transportation networks form 
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in human relationships as people move from one city to another. Identification of 

important vertices could be connected with a particular interest (Holme, 2003; Smith et 

al., 2014; Liu et al., 2016). Figure 2.9 is a vehicular traffic network. The data were 

constructed from the imaging sensor (Bliss & Schmidt, 2013) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.9: Vehicle Traffic Network 

(Source: Bliss & Schmidt, 2013) 
 

2.3.4 Relationship between criminal networks and communication networks 

 

OCGs are frequently described with the term network which shows that OCGs have 

some features in common with complex networks (Le, 2012; Basu, 2014; Behzadan, 

2016; Gunnell et al., 2016; Leuprecht et al., 2016; Burcher & Whelan, 2017; Robinson 

& Scogings, 2018). Criminal networks and communication networks have cordial 

structures apart from their participants having freedom of joining or quitting networks. 

Characterization of communications networks are adequate for describing criminal 

networks as well (Burcher & Whelan, 2017). Common elements in both networks are 

nodes, links and messages (Le, 2012). Nodes are participants in networks which could 

be persons, computers or mobile phones (Basu, 2014). Links are connections between 

persons through which messages flow (Le, 2012). 
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Analysis of mobile phone calls data has offered insight about human interactions and 

behaviour of mobile phone users. It had also been used for studying the spread of 

diseases and human mobility patterns(Ren et al., 2016; Wang et al., 2016; Huang & Yu, 

2017; Pei et al., 2017; Jalayer et al., 2018; Namtirtha et al., 2018). It was found useful 

in counter terrorism and study criminal networks(Ren et al., 2014; Blondel et al., 2015). 

Data of mobile phone users is needed to construct network that is, relationship among 

mobile phone users. From network structure, cordial relationships are studied through 

strong and weak links or relationships (Catanese et al., 2013; Ferrara et al., 2014; 

Agreste et al., 2016). 

 

Mobile Network Operator (MNO) provides data about mobile phone users. It can also 

be collected through handheld devices (Onwuka et al., 2016). Data about mobile phone 

users are used in phone calls network shown in Figure 2.10. Three possible layers are 

presented in Figure 2.10. The local connectivity presents mobile-phone users that are 

connected through wireless or Bluetooth. Social contacts illustrate phones users and 

people contacted through their phones as social contacts. The calling network illustrates 

a network when mobile phone users make calls. The Both communications networks 

and criminal networks belong to the family of complex networks that can be studied and 

analysed using any type of network tools. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.10: Structures within Mobile Phone Datasets 

(Source: Ferrara et al., 2014) 
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2.4 Tools for Complex Network Analysis 

 

Materials for Complex Network Analysis (CNA) are grouped into software tools, 

datasets and metrics. Software tools encompasses application packages deploying in 

data collection and construction of social networks graphs (Hensen, 2011b; Borgatti et 

al., 2012; Thangaraj & Amutha, 2018; Reserved et al., 2019). Datasets contain 

underlying information about mobile phone users or participants in social groups. 

Dataset are actual material used for construction of social networks (Yang et al., 2014; 

Blondel et al., 2015; Rostami & Mondani, 2015; Zignani et al., 2015; Agreste et al., 

2016; Robinson & Scogings, 2018). Software is used for extracting dataset and 

transforming of dataset into network graphs. Metrics are tools for measuring properties 

(Ilachinski, 2005; Xu & Chen, 2008; Smith et al., 2009; Rodrigues & Milic-Frayling, 

2011). Some of these tools are briefly discussed here. 

 

2.4.1 Software tools 

 

Software tools are application packages designed for collating raw data. Some of these 

tools collate data about events sequentially from the source. Some application packages 

used at pre-processing stage of data collection and computation of statistic measures are 

parts of software tools. Spreadsheets packages like Microsoft Excel - MS-xlx is one of 

such tools. MS excel can be used to view content of dataset, convert a dataset to 

network graph or for carrying out statistical estimation. Microsoft excel can do these 

tasks only when datasets are in comma separated value (csv.) format. It is important to 

note that not all spreadsheet applications can be used for constructing network graph or 

for visualizing relationships in datasets. 

 

NodeXL is an extendible toolkit for network overview. Its discovery and exploration were 

implemented as an add-in to the Microsoft Excel version 2007 spreadsheet software. The 
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tool adds ‘network graph’, as a chart type to nearly ubiquitous Excel spreadsheet. These 

provide needed supportive features for CNA. A number of them are online and offline 

for pre-processing of data, constructing network graph and extracting network attributes 

of nodes in the dataset (Hensen, 2011a; Rotman & Golbeck, 2011; Borgatti et al., 2012; 

Catanese et al., 2013; Park, 2018). These include UCINET, Python library and 

MATLAB. UCINET has a free subscription version when there is online subscription 

with payment. 

 

2.4.2 Datasets and sources of datasets 

 

Crime data are also part of dataset. This constitutes essential material for design of 

effective strategies against OCGs (Memon et al., 2011; Roberts & Everton, 2011; 

Berlusconi et al., 2016). Datasets contain pieces of information about organisations 

activities and participating members in it. Telecommunication metadata as a dataset 

usually offers pieces of information about participants and relationships. The 

relationship in telecommunication metadata mostly concerns calls. This is the most 

reliable source of datasets about OCGs because all calls are recorded when criminals 

suspicious individual are less concerned of it (Rostami & Mondani, 2015). 

Inaccessibility to reliable sources of data limit criminal intelligence about OCGs; 

adversely affect decision-making and indirectly aids resilience (Maksim & Carley, 

2003; Bright et al., 2015; Salvatore et al., 2016). 

 

Significances of datasets for fighting OCGs had been investigated on (Belinda, 2010; 

Berlusconi, 2013). Berlusconi (2013) reported multiple sources as reliable datasets for 

investigating and analysing OCGs than a single source. Multiple sources detected 

different key players that a single source was not identified. Another inadequacy of a 

single source is reporting of a particular relationship that can lead to missing other 
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relationships like ties, transactions and meeting. One observed challenge of multiple 

sources dataset of terrorist groups is that they are scarce and rare in deployment. 

Intermittent nature of terrorist operations prevent access to multiple relations and multi-

source terrorist datasets. Bright et al., (2015) and Butt et al. (2014) carried out different 

researches confirmed significance of using multiple sources of datasets over one source. 

 

There is high tendency of missing comprehensive organisational structure through missing 

ties or relationships due to non-availability of multiple sources (Clauset et al., 2008; Maeno, 

2009). Irrespective of information omitted in the dataset, it is called missing information 

(Maeno, 2009; Eyal et al., 2011; Sina et al., 2013; Berlusconi et al., 2016). 

 

Rostami and Mondani (2015) attempted to verify discrepancies in using multiple 

sources of datasets and its consequences on intelligence policing. Different individuals 

emerged as prominent members under different sources of data for the same Swedish 

street gang. It was concluded that complexity characterized multiple datasets deployed. 

This provided another evidence supporting latent structure phenomenon raised on key 

players’ evasiveness (Butt et al., 2014; Bright et al., 2015). 

 

Accuracy and reliability of law enforcement data sources had also been researched. It 

was aimed at verifying reliability of wiretapping with respect to other sources of 

datasets that law enforcement used as criminal intelligence. Reliability was confirmed 

on wiretapping of phone conversation of drug cartel members. It was opined that those 

activities of DTO are supportive. Participants with high profiles status were easily 

noticed from conversation (Malm & Bichler, 2011; Calderoni, 2012; Varese, 2013). 

This approach was rare in terrorist research. 

 

Surveillance, court verdict records, telecommunication metadata  are parts of police 

sources of criminal datasets (Catanese et al., 2013; Ferrara et al., 2014). But open 
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are commonly used in terrorist research (Xu & Chen, 2008; Le, 2012). Another set of 

sources are information from victims and witnesses; communities and members of 

publics; Close Circuit Television CCTV or automated number plate recognition; media 

and internet; commercial statutory and non-statutory agencies (Gunnell et al., 2016). 

The next paragraphs throw light on communication dataset. 

 

Communications metadata is succinctly captured as “data about data”(Ferrara et al., 

2014). It provides underlying information about online and offline activities of mobile 

phones users - such as geographical location, altitude, time of calling, duration of call, 

receiver, churn calls and rejected calls (Ferrara et al., 2014; Eiselt & Bhadury, 2015; 

Ismail et al., 2019). Technically, personality of phone users is inscribed in 

communication metadata that can aid security operatives locate positions and places 

frequently visited by users. It is regarded as data for information transportation 

(Eilstrup-Sangiovanni & Jones, 2008). Various forms of electronic communications 

generate metadata (Rodrigues & Milic-Frayling, 2011; Alvarez et al., 2015). 

Telecommunications metadata comprises two classes of data – Call Detail Record 

(CDR) and Call Management Records (CMR) (Catanese et al., 2013). 

 

CDR records information about each call processed in calling network. In contrast, 

CMR contains information about the Quality of Service (QoS) and diagnostic 

information about the call. Specifically, information like amount of data sent, received, 

jitter, latency and losses. Different networks have varying fields in respective CDR. 

CDR data are usually cleaned by removing personal information of phone users. This is 

called anonymous. Anonymous CDR data safeguards violation of user privacy. 

Personalities and identities of people in a dataset are shielded from researchers. 

Abridged version of CDR content is shown in Table 2.3, and a typical raw CDR from a 

network database is provided in Appendix C. 
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Table 2.3: Abridged CDR Contents 
 

Call 
Base Calling Called 

Start time   Duration Cost 
On net 

station number number call     

1 
nyc- 

8881112234 9992223345 
01/01/2014 

38 3.8 FALSE 
1234 14:35:23       

2 
paris- 

9992223345 8881112234 
01/03/2014 

100 10.00 FALSE 
2512 18:35:23       

3 
Chicago- 

8882345678 8883345722 
01/03/2014 

50 0.00 TRUE 
3412 18:40:30        

(Source: Ferrara et al., 2014) 

 

Metadata has formed the basis for postulating users’ social behaviour in social network 

outfits (Hulst, 2009). CDR was used in studying mobility patterns of mobile phone users 

(Ren et al., 2014; Blondel et al., 2015). Reasonable insights were gathered from the 

mobility pattern. Location, time and group of people involved in a particular event of 

interest were obtainable. When CDR holds relevant information on participants in OCGs, a 

suitable model is also needed to identify who are key stakeholders in the group. 

 

2.4.3 Metrics for complex network analysis 

 

Complex networks are subjects of evaluation. The assessments are done to verify 

empirically some of properties ascribed to types or classes of networks. Evaluation on 

complex network is classified into three: topological analysis, links analysis and nodes 

analysis. Each assessment requires specific metrics. Tools for each class of assessment 

are briefly discussed in this section to provide reliable relationships between some of 

these tools and this research work: detection of covert members in OCGs. 

 

(i) Topological Analysis Metrics 

 

Topological analysis metrics are tools for evaluating cliques, clusters, sub-networks or 

group of nodes. Table 2.4 presents descriptions about the metrics. Some of properties 

that classify a network into one group or others were taken from the topological metrics 

most especially random graph, small-world and scale-free networks. 

 

34 



Table 2.4: Topological Analysis Metrics 
 

Metrics Description 
  

Clustering Measures  the average  “cliquishness”  of  a  node  within the  graph or 
Coefficient subgraph; estimates the degree to which a graph is modular that is, is 

 organized hierarchically 

Component The most substantial connected subset of nodes and links; all nodes within 

 the component graph are connected, either directly or indirectly, and none 

 of  the nodes has any connections to parts of  the graph outside the 

 component. 

Connectivity Measures the extent to which agents are linked to one another either direct 

 or indirect routes; typically defined using the maximum or average path 

 distance 

Density The ratio of the actual number of links in a network to the total possible 

 number 

Inclusiveness Measures the total number of nodes in a network minus and sometimes 

 the ratio to the number of isolated or minimally connected nodes 

Path Length Measures the typical separation between nodes 

Size Number of agents and links in a graph 

Spanning Tree A subgraph of a network that is, a tree that contains all nodes; of particular 

 interest for weighted graphs is the minimum spanning tree. Note that the 

 spanning tree minimizes the weights along all links in the network 

Symmetry The ratio of the number of symmetric to asymmetric links or the total 

 number of links in a network 

Transitivity Measures the ratio of the number of transitive triples over the total 

 number of possible transitive triples number of parts of length two; x, y, 

 z is transitive if whenever x is linked to y and y is linked to z, z is also 

 linked to x 
  

 (Sources: Ilachinski, 2005; Xu & Chen, 2008) 
 

(ii) Link Analysis Metrics 

 

Link analysis metrics evaluate properties of edges connecting nodes. It can also be 

deployed for evaluating properties of links in dynamic networks like road network and 

telecommunication links (Holme, 2003). Likewise, it also provides reliability test for 

dynamic links such as transactions and relationships between criminals. Link analysis 

had been identified with criminal investigation and in provision of criminal intelligence 

to law enforcement agencies (Rostami and Mondani, 2015; Berlusconi et al., 2016). 

Table 2.5 presents summary of metrics for evaluating links. 
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Table 2.5: Links Analysis Metrics 
 

Metrics Description  

Capacity Measures the load capacity of a link to carry information 
 (or general “resource”) of a given type 

Duration Measures the duration of a link; (permanent or transient) 

 the decay of strength in time, general stability over time 

Frequency Measures how often a link is active  

Multiplexity The extent to which a link between two nodes represents 

 multiple kinds of relationships  

Strength Measures the intensity of the relationship between nodes; 

 communicative, emotional, degree of sharing, reciprocity 

Symmetry Measures the extent to which a link (or the information 

 that it is a conduit for) is bidirectional 

Type Direct/Indirect, directed/undirected, 

 weighted/unweighted  

Visibility/Vulnerability Measures the degree to which a link is vulnerable to 

 eavesdropping,   jamming,   physical   disruption   or 

 destruction  

 (Sources: Ilachinski, 2005)  

 

(iii) Node Analysis/Centrality Metrics 
 

 

Centrality metrics are tools for analysing nodes’ importance in networks. These tools are 

 

used to rank nodes and a node that has the highest scores in the assessment is usually 

 

picked as the most important of all nodes. Assessment of nodes analysis is based on 

 

centrality concept – that is, a node at central of a network structure. The concept ascribes 

 

importance to a node at the centre. The far way nodes to centre have low centrality scores. 

 

This phenomenon was formed on open organisations but adopted as well for criminal 

 

groups. 
 

 

The concept can identify few central nodes in networks most especially when all nodes 

 

have different number of links connected to them. A node that has highest number of 

 

links or positioned at central of a subnetwork is identifiable. Table 2.6 presents some of 

 

the centrality metrics. But basic ones that connected with this work are briefly discussed. 
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Table 2.6: Centrality Metrics 
 

Metrics Description 

Betweenness Measures the extent to which a node mediates, or plays the role of 
 “information broker” between two nodes or clusters of nodes 

Brokerage Measures a node’s “brokerage” strength; that is, the degree to which 

 a node manages the information flow between two or more groups 

 that otherwise would not be linked 

Centrality Measures  the  degree  at  which  a  node  plays  a  significant  (or 

 “central”) role in a network 

Closeness Measures the extent to which a given node is “close to” other nodes 

 in the network; typically defined by averaging over all possible paths 

 to other nodes 

Degree Number of links to other nodes 

Diversity Number of links to a different node (where “different” means either 

 that they are not linked to one another or otherwise represent agents 

 that have different internal states 

Eccentricity Measures maximal distance between a given node and any other 

 node in the graph 

Effective The measure is used in analysis of “structural holes” in-network; 

network size based on the supposition that links among a node’s neighbours 

 attenuate the sufficient size of that node’s local network 

In-degree Number of directional links that point towards a given node 

Isolation Measures the degree to which a node is isolated, relative to others in 

 the group to which it belongs 

Out-degree Number of directional links that point away from a given node 

Prestige Measures how influential a given node on the receiving end of 

 information flow is; it is defined only for directions graph 

 (Source: Ilachinski, 2005) 
 

 

(a)  Degree centrality 
 

 

This is the most straightforward approach for measuring nodes’ importance (Freeman, 

 

1978; Bright, 2015; Wang et al., 2017; Jalayer et al., 2018). It counts on the number of 

 

straight edges or links incident on the individual actors (Kitsak et al., 2010). Often, a node 

 

with a high degree centrality score is referred to as a hub (Minor, 2012). In rumour 

 

spreading and epidemic models, a high nodal degree individual is called either influential 

 

spreader, influencers or influential node (Ren et al., 2016; Sun et al., 2016; Pei et al., 

 

2017). But in a criminal network, high degree actors are assumed to be network leaders – 

 

indicating actors that give orders, instruction to subordinates (Calderoni, 2012; Bright et 

 

al., 2017). Degree centrality is defined as (2.4) (Keller, 2015) 
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 (   )=∑   (  ,  ) (2.4) 
     

 
where (   ) is degree centrality of node (   ), n is total number of neighbouring nodes and   (   , ) is connectivity rule between node (   ) and its neighbour node (   ). 

 

  (   , ) = 1 if and only if and are connected and 0 otherwise. Some leaders in drug cartels 
were not identified with highest nodal degree.(Calderoni, 2012; Bright et al., 2015) 

 

 

(b) Betweenness centrality 
 

 

Betweenness is another socio-metric tool for node’s evaluation. It tends towards position 

than direct number of links connected to nodes. This metric informs about number of times 

a node lies between adjacent nodes (Freeman, 1978; Belinda, 2010; Lee et al., 2012). It 

seeks the path for flow of information within a network structure (Grassi et al., 

 
2019). A high betweenness centrality node act like a bridge connecting isolated lands 

that is, clusters of nodes or two subnetworks. Figure 2.11 illustrates high betweenness 

nodes in a network structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.11: High Betweenness nodes in a Social Network 

(Sources: Ahsan et al., 2015) 
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Criminologists and network analysts are fond attacking high betweenness nodes in 

criminal networks. The nodes are target in order to disintegrate the network into smaller 

subnetworks when they are removed. This has become adopted strategy for disrupting 

criminal networks(Bright, 2015). Technically, removal of high betweenness nodes 

increase distance apart of disjointed nodes. It was opined that removal of high 

betweenness nodes does not cause total disruption of criminal network but it leads to 

disintegration of smaller groups with much difficult to curtail henceforth (Duijn et al., 

2014; Leuprecht et al., 2016; Salvatore et al., 2016; Bright et al., 2017). Betweenness 

centrality is defined as (2.5) (Keller, 2015). 

(   )= ∑ ∑ (   ) 
(2.5) 

  

 <   

 

 

   

where (   ) is the betweenness centrality of a node , is the number of geodesic 
or shortest paths between two nodes and ; and (    ) is the number of such paths 

 

containing and is the number of nodes in the network. It is also expressed as (2.6) 

(  .   ) = 

2  
∑  ≠  ,    (  ,  ) 

(    ) 

(2.6) 

   

 

(  −1)(  −2)   (    ) 

where   (    )(    ) denotes the probability that falls on a random selected geodesic connecting  
 

and . 
 

 

A high betweenness node is also recognised as a broker. Brokers connect structural holes 

 

– isolated clusters (Reingen & Zinkhan, 1994; Hu and Mei, 2017). Drug market niche 

flourishes on hinge of brokers (Malm & Bichler, 2011; Berlusconi et al., 2016). Brokers 

are hardly noticed when serving as connectors between two layers of a network 

(Everton, 2009; Bright et al., 2017). Nodes connecting between two layers are safe from 
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criminologist’s attention (Grassi et al., 2019). The shield waxed when all links of a 

broker are unknown or inconspicuous. This gives a broker an advantage to becomes a 

non-centric and uninfluential node at sight (Matous & Wang, 2019). Maksim and Carley 

(2003) opined that a falling criminal group revamps the group by using unnoticed ties 

referred to as a ‘sleeper’ link. 

 

Bright (2015) explored betweenness tool in a multi-relation network of a drug cartel on 

nodes connecting layers of a criminal network. Brokers that have potent to evade 

detection from one-mode social network analysis were detected. This tool works well 

with a network which multi-relational network and not a mode relational network that 

terrorist networks are characterised. The account in which elusory of key players in 

terrorist group is attributed (Du et al., 2014; Grassi et al., 2019). Multi-relation based 

network exposes other relations probably suppressed or omitted in a single-mode 

(Bright et al., 2015; Wang & Zhao, 2015). 

 

(c) Closeness centrality 
 

 

Closeness centrality measures the proximity of a node to all other nodes in the entire 

network. It is technically defined as inverse sum of distances an actor has to all other 

actors on the closest possible paths. This is expressed in equation (2.7). 

 (   )−1=∑   (   ,  ) (2.7) 
    =1   

where   (   , ) denotes number of shortest paths connecting and . Closeness 

 

centrality can also be expressed as equation (2.8) with   (  ,   ;   ) denoting the geodesic 
distance between and that pass-through g. Figure 2.12 illustrates a graph with some nodes 
that have high closeness values. 
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(  ,   ) = 
  −1 

(2.8)   

∑  ≠     (  ,  ;  )   

 

 

A vertex that is closer to centre of a cluster gets higher closeness centrality score. This 

phenomenon is very prominent with a unimodal network. Nodes are referred to as 

“shallow” when get low closeness centrality scores as indication of their shortest geodesic 

distances to other nodes. It has not been applied or implemented in a multi-layer network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.12: High Closeness nodes in a Social Network 

(Source: Ahsan et al., 2015) 
 

(d) Eigenvector centrality 

 

Eigenvector centrality was conceived on Hierarchical Organisational Structure (HOS) 

which is concerned profiling of members in open organisations to identify important 

personnel (Bonacich & Lloyd, 2001). This was deployed on unstructured datasets like 

internet, social networks, communication networks that form Flat Organisational 

Structure (FOS) (Carley et al., 1998; Gregory, 2007; Clauset et al., 2008). The concept 

replicates pyramid to justify hierarchies of members in traditional organisations. 

 

Bonacich  introduced  eigenvector  centrality,      which  is  generalisation  

of  degree centrality     to identify influential nodes(Ahsan et al., 2015). It 

is a phenomenon base on assumption that one’s “importance” is not 
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knows, but a function of how many people that one knows are themselves also 
relevant(Ilachinski, 2005). Each actor with importance raises significance of centrally 
connected actor. This corroborates profile of topmost node in pyramid or HOS. 
Eigenvector centrality of node is defined as (  ) in equation (2.9). 

(  ) ∝ ∑  ∈  (  )   (  ) (2.9) 
 

 
where (  ) denotes set of ’s neighbours. It is also formalised as th

 component of the principal eigenvector of ’s adjacency matrix, = [   ] 
defined in (2.10). 

 (   )=  −1 ∑ 

 
  (2.10) 

      

 

where (   ) denotes eigenvector centrality of node , is a constant and is the largest 
eigenvalue. Equation (2.11) shows that eigenvector is proportional to the row sums of a 
matrix, M, equal to the sum of powers of A, weighted by corresponding powers of the 
inverse of eigenvalue. 

=  + −1 2+ −2 3+⋯=∑  1−   
(2.11) 

 

 

It is defined Chronologically, the next in scores follows the highest one. In principle, a 

node that attains the highest eigenvector score when its neighbours are also high in 

eigenvector values. This concept worth determines a leader in open organisation but not 

in OCGs(Hulst, 2009; Bright et al., 2015). 

 

2.5 Review of Related Works 

 

Covert networks are social networks that often consists of harmful users. Memon et al 

(2011) defined covert networks as knowledge about the structure and organisation of 

terrorist groups. Due to the covertness of terrorist activities, the absence of individuals 
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and relationships often occurs in the construction of interpersonal relationship network 

of terrorists using social network theory, thus affecting the effectiveness of analysis. 

 

Covert nodes literarily refer to unknown or hidden nodes in social networks (Paul, 2012; 

Smith et al., 2013; Ren et al., 2016). It could refer to critical members of OCGs. Covert 

nodes are indispensable actors from their roles. They are also non-vulnerable even under 

sophisticated detective techniques(Minor, 2012). Despite covert networks share features 

with conventional networks, its nodes are difficult to map due to masking of their 

activities like transactions and relationships. Terrorist groups are loosely organised 

networks with decentralised command structure (Berzinj et al., 2012). 

 

Criminal organizations work in small groups. Despite OCGs imbibe decentralised 

structure, they communicate, coordinate and conduct their campaigns in a network-like 

manner (Belinda, 2010; Dawoud et al., 2010). There is a need to automate the collection 

of data and analysis of the terrorist network to find hidden relationships and participants. 

While overt nodes in a criminal network are known criminals - those responsible for 

physical operations and executing the group agenda. Majority of OCG’s foot soldiers 

are expendable participants in OCG because their importance is limited. They are less 

involved in critical activities like planning and providing logistics. Security agents often 

apprehend overt members. But covert members who provide logistics for training of 

foot soldiers are hardly apprehended (Minor, 2012). 

 

2.5.1 Related works on detection methods 

 

Network analysis is a knowledge discovery process for identification of entities and 

properties from social networks. Most discovery processes are classified into supervised 

and unsupervised learning techniques (Hasan et al., 2006). Both involved in 

classification of entities and properties. Unsupervised approach was described with low 
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compared to supervised approach (Lin & Chalupsky, 2003). Supervised learning 

approach requires trained dataset, sometime with attributes while unsupervised learning 

approach does not (Hasan et al., 2006). 

 

Parameters depict attributes used in discovery process (Lin & Chalupsky, 2003). 

Centrality constitutes parts of these attributes. Centrality attributes are graph-based 

parameters. These are not actual attribute but being deployed in lieu of genuine ones 

(Lampe, 2009). There is challenge in depicting nodes attributes accurately using graph 

(Maksim & Carley, 2003). An unsupervised framework employed directional semantic 

approach for description of nodes and links as it cater for any node has more than one 

relationship with others (Lin & Chalupsky, 2003). 

 

The behaviours of nodes are analysed based on the semantic profile generated (Kriegler, 

2014). The semantic profile deals with collection of condensed paths generated through 

variable relaxation approach(Hasan et al., 2006). Condensed paths are path types with 

unique format. Identification of key players are chosen by considering outlier. Often, 

preference is given to highly communicated node as the most influential node (Butt et 

al., 2014). This considered one side of outliers as a measure that minimize false 

detection. The remaining part of this section presents methods and algortihms for 

detecting covert nodes from literature. 

 

(i) Review of Works on SNA-based Detection 

 

Social Network Analysis (SNA) is a resourceful tool to security agents as it supports 

criminal intelligence (Sparrow, 1991; Klerks, 2001; Basu, 2014; Kriegler, 2014; 

Berlusconi et al., 2016; Burcher & Whelan, 2017). Most of techniques presented here 

depend on SNA metrics and they are classified into single centrality metric and mult-

centrality metrics approaches. Multi-centrality techniques involved plotting of two 
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centrality metrics on x and y axes. The combination aimed at using strategic positions 

and vulnerability to identify important nodes (Calderoni, 2010; Morselli, 2010; Bright, 

Greenhill and Ritter, 2015; Bright et al., 2017). SNA-based techniques are reviewed as 

following: 

 

Kreb (2002) deployed four centrality metrics to identify important terrorist cells that is, 

participants in September 11 2001 attacks. The four metrics identified different actors – 

assumed to be key players. Kreb used open-source data usually categorised as unreliable. 

 

Borgatti(2006) was an inventor of Key Player Problem (KPP). The concept was 

developed to identify set of key players from graph. It was realized that all key players 

are not bound to central of network. The KPP concept was observed on two domains: 

KPP – Positive (KPP-Pos) and KPP – Negative (KPP Neg.). KPP-Pos deals with 

connectivity such as social network of viral market, fast transmission, rumour spreading 

and epidermic disease, while KPP-Neg concerns network disruption. KPP shows that 

key player’s position differs – that is, positions of key players are not fixed nor tied to 

centrality concept. Network disruption is unachieved when only set of nodes that have 

highest centrality scores are removed. KPP emphasized on node’s positions and not on 

personality. 

 

Lampe (2009) proposed incorporation of human-capital attribute that is, personality to 

augment and complement detection of important nodes through social-capital attributes. 

This intended to offer concrete evidence to support social-capital detection rather than 

using speculation. Human-capital attributes are inaccessibility and difficulty to 

deploying. 

 

Morselli (2010) proposed and developed concept of vulnerability and strategic positions 

for identification of vulnerable and less-vulnerable actors. Degree centrality denotes 45 



vulnerable attribute while betweenness denotes strategic position. Four quadrants were 

obtained after plotting vulnerability and strategic positions(Morselli, 2010). Two upper 

quadrants are point of interest (poi) to Morselli. Nodes in those two quadrants were 

counted as vulnerable while nodes in the other two were regarded as less-vulnerable. 

The problem of hidden relationships was still unresolved. Legitimate actors also remain 

undetected (Hulst, 2009). 

 

Karthika and Bose (2011) deployed multi-centrality approach on heterogenous nodes in 

the 9/11 terrorist network. Nodes with highest centrality scores was identified as covert 

nodes. These include actors and a place frequently visited by terrorists(Karthika & Bose 

2011). Preference is given to nodes with conspicuous relationships that is, links. 

 

Berzinj et al., (2012) targeted financial manager in a terrorist network. Berzinj et al ‘s 

model revolved around terrorist operational activities; where finance manager takes 

central part of terrorist structure illustrated with Figure 2.13. Five different new 

centrality metrics were developed but unexperimented. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.13: Decentralized Structure of a Terrorist Organization 

(Source: Berzinj et al; 2012) 
 

Campana and Varese(2012) used single centrality metric for ranking phone conversation of 

mafia involving in drug peddling or DTO. It had a tremendous result. The highest 
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hierarchy was assigned to actor that has the longest period of conversation as well as 

call-rate while low vulnerability was ascribed to an actor with low phone conversation. 

The approach played down on low conversation of legitimate actors. 

 

Husslage et al.,(2012) exprimented flat organisational structure (FOS) with flat 

structural-like figures to show that key players in terrorist groups cannot be identified 

with ordinary metrics. The work craves for sophisticated appraoch to identify covert 

members. It was inferred from correlation results that terrorism groups are leaderless 

group and also imbibe FOS to salvage the group. 

 

Catanese et al., (2013) explored mobile phone traffic calls of actors in a criminal 

network. Many statistical analysis tools were incorpoated in LogAnalysis. The suite 

generated hierarchies of phone users in metadata. It also displays visual graphs of 

actors. LogAnalysis can handle large datasets effectively. Hierarchies and frequency of 

calls are determinant of key players. Conspicuous links and call time-frame are 

setbacks. LogAnalysis lack capacity to detect a key actor with low call-rate. 

 

Ferrara et al., (2014) offered a theoretic framework on key players problem. Phone call 

records is used in reconstructing network structure of participants in criminal activities. 

Basic centrality metrics were incorporated in expert system. The application can compute 

and costruct hierarchies like LogAnalysis. Both expert system and LogAnalysis cannot 

detect legitimate actors that is, a key player with relatively low phone calls cannot. 

 

Butt et al.,(2014) approach was directed towards key players that can evade detection. Only 

degree centrality metric was deployed in the approach. The metric identified at least one 

actor from each layer of multi-relations network. The method identified an actor that had 

highest bank transaction. But that actor was among nodes that had low degree in the calling 

network. No further analysis was given on personalities of detected nodes. 
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Bright et al., (2015) employed centrality metrics to rank resources of participants in 

DTO. The target was to find resources that make high-profile participants become 

vulnerable. Eight resources were ranked and classified as tangible and intangible. The 

weight scores of resources were plotted against degree and betweenness separately 

using concepts of graph in (Morselli, 2010). Although, some legitimate actors featured 

in detection of prominent. The ranking scheme was biased and prevalent actors in 

detection are actors that have high centrality scores in both measures. 

 

Bright et al.(2015) presents another scheme for detecting set of key players who use to 

lie between layers of a criminal network. Multiple links are indispensable in OCGs. This 

denotes multi-relational network. Each link or network layer facilitates transfer of 

resource like money, drug and information. Each was examined using (Morselli, 2010)’s 

scheme to identified actors occupying strategic positions by connecting layers of a 

criminal network. Some of targets actors are potential legitimate actors if single link 

network was analysed. 

 

Ozgul (2016) analysed terrorist network structure – topology. The analysis was taken 

from historical background of terrorist organisations. Positions of key players was 

analysed with centrality metrics. Analysis was less concerned about terrorist datasets, 

dynamic behaviours and probability of structural changes. This analysis was appropriate 

because few key players are still playing to the gallery of centrality that is, they 

submissive to centrality concept. Yet, there is high chance of failure if caution is not 

applied. 

 

Gunnell et al. (2016) also analysed street gang using Morselli’s scheme (Morselli, 2010). 

The scheme was deployed on datasets of gangsters and victims. Four quadrants in the 

scheme were designated as characteristic of people within each. The upper two quadrants 
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were tagged ‘Gateway’ and ‘Central participants’, while the lower two quadrants were 

designated as ‘Peripheral’ and ‘highly visible’. Gunnell et al., point of interest are 

gateway and central participants. The datasets of victims were not separated from 

gangsters and the personality of emerged gangs were not given. 

 

Grassi et al.,(2019) deployed eight different betweenness centrality algorithms for detection 

of network leaders. The scheme was deployed on participants’ attendance in the mafia 

meeting. The detection was validated by correlation between results of algorithms that is, 

nodes commonly detected. Some close-associates of leaders were ranked significantly high 

few schemes. Unfortunately, these actors fell out of Grassi’s scope. 

 

Ismail et al. (2019) deployed SNA-Quadrant (SNA-Q) for detection of smart criminals in 

OCGs. The scheme is illustrated with Figure 2.14 with its four quadrants and features. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.14: SNA-Quadrant model for Classification of Importance 
 

The four quadrants in Figure 2.14 denote derived attributes used for defining relevance 

of participants in OCGs. Q1 designates actors who are ‘high’ in indicting activities but 

‘low’ in covert roles. Q2 represents actors that are ‘high’ in both overt and covert roles. 

Q3 designates actors who are low in both overt and covert roles that is, low 
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in indicting activities and that of criminal group survival. An example of these actors is 

an insider to a crime victim group. 

 

Finally, Q4 represents actors who are low in overt roles but high in covert roles that is, 

having low participation in indicting activities but highly involved in activities relevant 

to group survival. This description illustrates an important participant that is less-

vulnerable. Such actor is therefore referred to a ‘smart actor’. The point of interest (poi) 

is fourth quadrant - that has high active attribute and low passive attribute on y and x 

axes respectively. The poi adequately describes characteristics of legitimate actors in 

OCGs (Hulst, 2009) as illustrated in Figure 2.14. The summary of the reviewed works is 

given in Appendix A – Meta-analysis of SNA-based Algorithms. 

 

(ii) Review of Works on Non-SNA-Based Detection 

 

This section list set of works detecting covert nodes that did not compute SNA – they 

are regarded as non-SNA-based detection. Missing nodes and Node Discovery are 

prevalent here. 

 

Zhao et al., (2006) proposed the use of Relational Markov Networks (RMN) to describe 

the entities and the relations among them in an affiliation network. The work used 

Profile in Terror (PIT) database to study the entity and relationship labelling. The 

technique had no means of detecting covert members but PIT is vital data for analysing 

members of defunct terrorist groups. 

 

Maeno and Ohsawa (2007a) proposed and developed heuristic method for analysing 

covert social network behind terrorism. The technique employed set theory concept to 

identify latent structure that is, key player’s position. Records of terrorist’s attendances 

were worked on. An actor that appeared in more than one record of attendance was 
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identified as occupier of latent structure. The scheme used a scarce dataset for terrorism 

and only actor with conspicuous links is detectable. 

 

Maeno(2007) developed Statistical Inference Method (SIM) for identification of latent 

structure. The algorithm tends towards identifying elusory actors due to using medium 

of communication not well-known to influence a criminal group. Inability to identify the 

medium used by affiliate criminal who stir and influence organisation’s affairs was 

referred to as a latent structure. The structure makes affiliate becomes less vulnerable to 

detection. 

 

SIM computes maximal likelihood of all actors and identify outlier as latent structure. 

The interactive process of the node discovery algorithm is shown in Figure 2.15. The 

approach was highly classic but mathematically unrealistic for OCGs. Ranking and 

clustering procedure along with expert investigator knowledge enhanced understanding 

in calculating suspicious inter-cluster relationships. But the SIM is found to be too 

sophisticated. It makes the system unrealistic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15: Interactive Process for Detection of Latent Structure 

(Source: Maeno, 2009) 
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Eyal et al., (2011) addressed the issue of covert nodes from missing information that is, 

identify nodes that were not known before. Clustering was deployed on nodes that have 

similar attributes. The problem was structured on a factor that can help in identifying 

similar nodes or set of nodes to be clustered. The method runs from nodes clustering to 

computation of affinity matrix that is, level of similarity between missing nodes. 

Marginal nodes are of less advantage. 

 

Figure 2.16 illustrates the overview of missing node problem. Nodes in the cloud denote 

participators in online service or apprehended criminals. Nodes outside the cloud 

represent target friends need to be identified by security operatives, unknown criminals 

or co-offenders who are yet to be apprehended. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.16: Formulation of the Full network and that of Missing nodes 

(Source: Sina et al., 2013) 
 

Sina et al., (2013) addressed the challenge from specific node attributes by 

implementing Structure and Attribute Missing Node Identification using Attribute’s 

similarity- SAMI-A and Structure and Attribute Missing Node Identification using 

Social-Attribute Network -SAMI-N. The missing information is a deplorable concept 

when attributes of concerned nodes are easily accessible. The algorithm is suitable and 

adequate for online marketing especially when identifying more friends of known 

customers to be lured into online services by online services agencies. 
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The missing nodes scheme does not address node’s importance. Insider nodes – that is, 

nodes in the cloud - were used to identify outsider nodes or additional unknown nodes. 

The method takes care of data defectiveness associated with criminal organisations. 

However, it is not a robust scheme for high-profile terrorist who hardly share attribute 

with overt terrorists. There is high tendency of false alarm for outsiders that accidentally 

share attributes with insiders. Table 2.7 presents summary of meta-analysis on reviewed 

work on None SNA-based techniques. 

 

Table 2.7: Meta-Analysis of Non- SNA-based Algorithms 
 

Authors Title Method Strength Weakness 
     

Zhao et al., Entity and Using Relational Profile In Terror (PIT) It did not identify 
(2006) Relationship Markov Networks was identified as a covert nodes 

 Labeling in (RMN) to dataset that has  

 Affiliation investigate relational structure to  

 Networks relational study affiliation. It is a  

  classification useful for statistical  

   relational networks  

Maeno and Analyzing the Searching for Detect latent structure Only few actors 

Ohsawa(2007a) covert social latent structure of for influential nodes; were detected; 

 network covert nodes; set Detect most influential Marginal nodes 

 foundation theory was nodes, multiple records were undefined; 

 behind terrorism deployed as of attendance are legitimate actors 

 disaster approach required are evasive; 

Maeno (2009) Node discovery Searching for identify influential Mathematical 

 in a networked influential nodes, actors; multiple data complexity 

 organization using heuristic records of crimes were demerit; concern 

  method with data explored; interactive highly recurring 

  crystallization and mode and expert nodes; marginal 

  Statistical knowledge were actors are 

  inference method involved undefined 

  (SIM)   

Eyal et Identifying Deployed missing Attribute’s similarity High prone to false 

al.,(2011) missing node link problem favoured high nodal alarm; marginal 

 information in approach to detect actors; Accessibility to nodes have low 

 social networks covert nodes; data: structural attribute similarities in a 

  clustering in lieu of personal cluster; evasiveness 

  algorithm; nodes attribute; high affinity of legitimate actors 

  similarity for for central node  

  missing node   

  identification   

Sina et Solving the SAMI-A and It is highly deplorable high-profile actors 

al.,(2013) missing node SAMI-N were to social marketing and in OCG hardly 

 problem using developed and advertisement; Only share attribute with 

 the structure and applied to identify popular actors are used overt criminals; 

 attribute covert nodes in to identify unknown Legitimate actors 

 information any structure actors but not unpopular are undefined in the 

   actors to detect scheme; difficulty 

   influential node in access personal 

    attributes of actors 
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(iii) Review of Works on Inference-Based Detection Techniques 
 
 

The techniques articulated here employed inferences. Inference techniques are probabilistic-

based methods. Probabilistic models aim at abstracting the underlying structure from the 

observed network. For predicting missing links, inference uses learning of patterns in a 

given network G = (V, E). After that, the learned patterns are used for building a target 

function through optimization of observed or given parameters that established the model 

composed of a group of parameters Θ (Lü & Zhou, 2011; Sharma 

 
& Singh, 2016). The inference has been applied to missing information - link prediction 

(Rhodes & Keefe, 2007), and it was also applied to node discovery (Maeno & Ohsawa, 

2007a; Maeno, 2009). 

 

Hasan et al., (2006) focused on link prediction from the supervised learning perspective. 

The work addressed link prediction problems using classification techniques. It used the 

information gain, gain ratio and average rank as performance metrics. The work offered 

list of features required for link prediction in co-authorships domain and terrorist 

domain. Unfortunately, there was no trained datasets for evaluating terrorist dataset due 

to the incompleteness and fuzzy boundaries. 

 

Rhode and Keefe's developed a Bayesian-based algorithm for prediction of links (Rhodes 

 

& Keefe, 2007). The prediction was carried out on two classes of problems: (i) predicting 

deliberately omitted links - those that were removed and (ii) predicting future links – links 

currently not existing. It was designed to pre-empt the growth of covert organisations. 

Equation (2.12) defines the likelihood of newly predicted or omitted links. As likelihood 

predict unknown links, it shows how the covert network will grow. The likelihood is 

calculated using probabilities of positive   (   |                ) and negative   (   |                ). 
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  (   … ) = ∏   (|) (2.12) 
 

1    =1   (  |)  
      

 

 
where   (  1 … )is the likelihood of a predicted link when positive probability   (   |                ) is larger than negative probability   (   |                ) 

 
 

 

It was claimed that prediction is uniformly distributed throughout the network. The 

prediction was contrary to rich get more precious phenomenon in the small-scale 

network. The Bayesian-based link prediction is not a useful tool for detecting omitted 

links between a network leader and high-profile nodes. 

 

Hussain and Ortiz-arroyo (2008) used Bayes theorem to infer actors’ importance. The 

posterior probability was used to calculate node’s entropy in the network. The algorithm 

followed Shannon’s entropy and that entropy variations. Entropy of the network was 

computed first, then entropy of individual nodes was computed by subtracting entropy 

computed when a node was removed from entropy of the entire network. A node identify 

with the highest degree of uncertainty or lowest entropy value is picked as important node. 

The algorithm measured uncertainty of a node that was not in the network. 

 

From Bayes’ theorem of (2.13) 

  (  |  ) =   (  |  )  (  ) 

(2.13) 
  (  )    

Denominator   (  ) of equation (2.13) was expanded to give (2.14) 

  (  |  ) = 
  (  |  )  (  ) 

(2.14)   (  |  )  (  )+  (  |  )  (  )  
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where   (  ) is prior probability or marginal probability of node regardless of any information which is computed by considering the 
total number of nodes present in the network,   (  ) is the probability that the node is not a key player given by (1 −   (  )). 

 

 
  (  |  )is the conditional probability of given , meaning that the node is a key player, which is 
computed based on the number of links incident on that particular node, so if there are nodes in the 
network then to be a central node of the network, it has to be linked with other (   − 1) nodes. 

 

 
  (  |  ) is the conditional probability given N meaning that node is not a key player, which is obtained by 
computing (1 −   (  |  )). This method provides a simple and straight forward way for computing nodes’ 
entropy - using Shannon’s entropy as uncertainty. 

 

 

Serin et al., (2009) developed sensitivity analysis technique for analysing social 

networks of cities. The technique depends on Shannon entropy definition of random 

variable X. Entropy of nodes in the network is computed using three centrality entropies 

defined degree entropy, betweenness entropy and closeness entropy (2.15) to (2.17). 

 

Degree entropy: 

  (   ) = 
  (   ) (2.15) 

  

 ∑
  =1 

  (   ) 
 

where   (   ) is probability mass function, E is the number of edges in a graph, probability mass function   (   ) of node is computed using   (   )- number 

of links connected to over sum of links in entire graph. 

 
 

Betweenness entropy: 

  (  ) = ∑  ≠  ≠   
(  ) 

(2.16)   
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where   (  ) is betweenness probability mass function, between nodes and 

 

Closeness entropy is defined as (2.17): 

  (  ) = 
  −1 

  

∑ (  ,  ) 

    ∈  \    

is  the  geodesic  distance 
 
 
 
 
 
 
 

 

(2.17) 
where   (  ) is closeness probability mass function denoting closeness entropy and is 

 

 

length of geodesic from/to a given node . 

 

Sensitivity of all nodes were computed using set of defined entropies. Nodes that are 

important in the network were inferred from sensitivity computation. Each entropy was 

presented in a visualization form. Combined approach was also used to present different 

effects each node under different entropy. For combine approach, all entropies were 

multiplied. Visualisation was used to show each entropy and significance of nodes. 

 

Entropy is average information a node has within a network. With entropy, a node that 

has the highest impact definitely will have low entropy computation. This indicates that 

entropy of entire network fall when the node was not in the network. Entropy algorithm 

requires that entropy of a network is first computed with all involved nodes. Then, 

subsequent entropy computation is for individual node in the network. The computed 

entropy of a node is then subtracted from the entropy of network. The metrics include 

degree entropy, betweenness entropy, and closeness entropy. 

 

Ortiz-arroyo Daniel simplified Borgatti's definitions of Key Player Problem (KPP) 

positive and negative (Ortiz-arroyo, 2010). Two new metrics were developed by Ortiz-

arroyo to replace the metric used in KPP definition(Borgatti, 2006). The metrics were 

used in Shannon’s entropy expressed as equation (2.18). 
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  (  ) = − ∑   (   ) × log 
2 

  (   ) (2.18) 
  =1    

 

 

where   (  )defines Shannon entropy of a discrete random variable has,   (   ) which is probability mass function of state for a system with different states. 

 

 

 

  (   ) and   (   ) are two probability distribution used in (2.18). Each replaces manual KPP metric.   (   ) is connectivity of a node defined by   (   ) = deg(  2   ) where;       
(   ) is the number of incident edges to node and N is the total number of edges in the graph; 

 

 

 

  (    )  is   centrality  entropy  of  node defined by   (    )  = where 
 

 

      ℎ  (   ) is the number of shortest path from node to all other nodes in the graph and       ℎ  (  1, 2, … ) is the total number of shortest paths M that exists across all the nodes in 

the graph. 

 

 

 

 

This led to two simplified tools for implementing KPP and get an 

optimal set of key players for disrupting criminal networks or to identify node that is 

high in transmitting information. Equation (2.19) defines and equation (2.20) 

defines 

  
(  ) = −∑ 

 
  (   ) × log 

2 

  (   ) 
(2.19) 

    =1     

 (  ) = − ∑   (   ) × log 
2 

  (   ) (2.20) 
     =1      

 

 

(2.19) and (2.20) are still under structural equivalence problem emphasized in. The set 

of nodes detected distinct from other nodes structurally. It is observed that disruption of 

networks cannot be achieved by removing only central actors. That is, some peripheral 

actors are also significant to network disruption. The summary of inference-based 

Algorithms and Techniques is presented in Table 2.8. 
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Table 2.8: Meta-Analysis of Inference-based Algorithms and Techniques 
 

Authors Title Method Strength Weakness 
     

Hasan et Link prediction predicting link identify it meant for links 
al.,(2006) using through a supervised possible links and not nodes 

 supervised learning approach; among actors; discovery; 

 learning classify attributes for nodes that  

  prediction of links have the same  

   proximity can  

   be identified  

Rhodes and Social network Using Bayesian to It accurately Link prediction 

Keefe(2007) topology: a compute likelihood predicted more lack capacity to 

 Bayesian of missing and deliberately identify important 

 approach future links in covert removed links; link; it fails in 

  social networks  identifying key 

    players 

Hussain and Locating key Entropy of nodes Node that has Key players with 

Ortiz-arroyo actors in social was computed using large number low links are 

(2008) networks using Bayes probability of links was undefined; 

 Bayes’ theory; Uncertainty identified. It  

 Posterior of nodes was used to was significant  

 Probability infer important with  

 Framework actors in the network conspicuous  

   links  

Serin et Entropy-based Shannon entropy Central nodes Visualization was 

al.,(2009) sensitivity model was used for and node with poor; the 

 analysis and computing high direct connection between 

 visualization of sensitivity analysis links are sensitivity and 

 social of nodes; deployed prevalent in colour visualization 

 networks three centrality different was unknown; 

  measure entropies entropies;  

Ortiz- Discovering Entropy centrality Effective on Unverified 

arroyo,(2010) sets of key and Entropy KPP Pos. and personality; 

 players in connectivity KPP Neg. marginal nodes are 

 social   undefined; 

 networks    

 

2.6 Research Gaps 

 

A number of techniques for detecting covert nodes had been reviewed. The state of art 

on covert nodes detection shows that there are still open areas.  Covert members in 

OCGs require techniques that can detect key players from marginal or peripheral. 

Another reason  for  new  technique  is  that  most  techniques  cannot  handle  

inconspicuous relationship that OCGs are fond of. Inconspicuous relationships pave 

way for key player’s evasiveness. Lastly, some key players evade detection as a result of 

forming ‘structural equivalent’ with overt members. Key players are difficult to 

distinguish from overt members when both have the same structural property. Figure 

2.17 summarizes the research gaps. Key players in OCGs are not central elements like 

other application area. 59 



Therefore, there is need for a technique or an algorithm that can differentiate key 

players from set of overt members – identify key player hiding with marginal nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.17: Application of Central nodes and Key Players 
 

2.7 Uniqueness of the Study 

 

It manifested from research gaps that OCG’s key players run away from central 

positions in order to evade detection. Key players to OCGs are not only regular 

members. It extends to outsiders who provide financial aid or supply ammunition or an 

informant to criminal group. Roles of outsiders demand no central position. Operating 

and collaborating from outside make them less-vulnerable to detection. 

 

Figure 2.18 illustrates relationship that make an outsider key player less vulnerable to 

detection. All nodes in the cloud represent regular members or foot soldiers of OCGs. 

Node 5 is an outsider hardly known to other regular members except node 4. All nodes 

in the cloud are vulnerable but node 5 is not. Detecting and removing node 5 can disrupt 

OCGs. Participant with this feature is regarded as legitimate actor. 
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Figure 2.18: An affiliate member’s relationship with a terrorist network 
 

This type of actor was not class of nodes detected in reviewed works. Conspicuous 

relationships fail on low key players. Bayesian model had better prediction even with 

any degree of uncertainty data. This capacity is yet to be explored on actors with low 

susceptibility. Due to inaccessibility to multi-relational data of terrorist organisations, 

different datasets with varying degrees of uncertainty need to be experimented. 

 

2.8 Chapter Summary 

 

This section presents different models for detecting covert nodes. All reviewed works 

and their techniques were grouped into SNA-based, non-SNA-based and inference 

based. All algorithms were able to detect a node or set of nodes as covert nodes or key 

players. It was observed that all identified nodes are central nodes and low degree 

centrality were not at advantage of being detected. It was only in Quadrant approach 

that low-degree actors emerged as key players. 
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CHAPTER THREE 
 

3.0 MATERIALS AND METHODS 
 

3.1 Preamble 

 

This chapter presents procedures for actualizing the research aim and objectives in this 

thesis. The chapter is divided into two sections: materials and methodology. The material 

discussed hardware and software used in actualizing the research aim. The methodology 

section contains all sub sections for actualizing the set of objectives. There are three major 

subsections. The preliminary sections include: acquisition of data, construction of network 

graphs, and extraction of network attributes. The two main sections are Bayesian network 

model (BNM) and SNA-Q model. The BNM has three sub-processes: development of 

Bayesian model for covert nodes detection, development of Enhanced Bayesian Network 

Model (EnBNM) algorithm and experimental evaluation of EnBNM algorithm, while SNA-

Q model also has three sub-processes: application of SNA-Q model, SNA-Q algorithm and 

experimental evaluation of SNA-Q algorithm. 

 

3.2 Materials 

 

All experiments are implemented using MATLAB R2015a and Python library 

conducted on 1.90GHz Intel® machine with 6 GB RAM. The operating system is 

Window 10 edition. Two real terrorist datasets: N’17 and 9/11 network groups are used 

for experimenting the developed model. The datasets are described as follow: 

 

1) N’17 dataset(UCINET Software -17 November Greece Bombing, 2017) is a 

relatively small dataset of a criminal group. The November 17 has twenty-two 

entities. And each entity represents a participant. The twenty-two participants 

involved were apprehended and they were also prosecuted. 
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2) 9/11 dataset (UCINET Software - 9/11 Hijackers, 2017) is also a relatively big 

dataset in terrorist domain. The dataset for September 11 terrorist has 60 entities and 

one hundred and ninety-nine (199) edges. Nineteen (19) out of sixty participants 

were attackers and the remaining forty-one (41) participants were conspirators in the 

 
dataset. 

 

3.3 Methodology 

 

Method for detection of covert nodes is presented here. The target covert nodes are 

those in OCGs. These covert nodes are special and different from those in other 

application areas. These are human being participating in illegal activities. They either 

benefiting directly or indirectly from crimes. It is important to participants in OCGs to 

provide measure to escape security operative traps. Regular members are easily 

becoming vulnerable but affiliate members are not. 

 
Dataset is only available mean to catch-up with affiliates participants. Unfortunately, 

profiles of participating nodes are not indicated, this still give way for high-profile 

members to evade detection. In order to lower evasion of key players, prediction was 

proposed. The prediction is to give all nodes the same opportunity to be predicted. In 

order to ensure high-profile member is the one predicted, status of picked nodes is 

checked to validate the detection. The comprehensive procedure of method for detecting 

covert members in OCGs is presented in the flow diagram Figure 3.1. 

 
The first three processing blocks: acquisition of dataset about OCGs, construction of 

network graph and extraction of network attributes of nodes are stages for obtaining 

data for experimenting algorithm of EnBNM and SNA-Quadrant (SNA-Q) model. The 

SNA-Q model was a validating tool deployed. 
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Figure 3.1: Flow Diagram of Methodology 
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3.3.1 Acquisition of OCG’s dataset 

 

Acquired datasets are forms information about participants in OCGs. It is very sensitive 

information and it is out of the scope of this work. The researcher makes use of datasets 

available on UCINET site (www.ucinet.com). The site has a number of datasets on defunct 

covert networks. Two of these datasets were downloaded and use them to test performance 

of EnBNM. The dataset is available in comma separated value(csv.) format. 

3.3.2 Construction of network graphs 

 

After acquiring criminal datasets, the datasets were plot into network graphs using Python 

library. Participating individual were depicted as a point. The relationships of participants 

are links connecting two points together. From the network graph, relationships among the 

participants are easy to navigate. This network graph is a unimodal network graph. Detail 

and type of links connecting two nodes are not specified. The relationship between the 

points is expressed as equation (3.1). This defined a terrorist graph where; is a network 

graph of phone communication. is a subset of large graph G. 

=(  ,  ) (3.1) 
 

where denotes set of suspected and apprehended terrorists and denotes set of links 

between terrorist nodes. Equation (3.2) gives categories of participants in terrorist 

activities. 

= {  1, 2 … }  

(3.2) 
 

 

Such that any 

∈ consists of : regular terrorist, :  

 

network leader, : critical 

 

conspirators and : sleeper partners. The network graphs shown in Figures 3.2 and 3.3 

represent visual relationships among participants in each terrorist dataset as described in 

(section 3.2). Figure 3.2 is a graph of relationship among participants in the N’17 criminal 
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network and Figure 3.3 is a graph of relationship among participants in the 9/11 

criminal network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.2: Network Graph of actors in the N'17 Greece Revolutionary Group  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Network Graph of actors in the Al Qaeda 9/11 attacks 
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3.3.3 Extraction of network attributes 

 

Attribute of participants is the actual data needed for evaluating model. Network 

attributes were adopted in lieu of real participant attribute. Centrality metrics of nodes 

were extracted using some of Python library commands. There are different tools in 

python library for extracting network attributes. Each attribute depends on name 

according to centrality concept metrics otherwise known as SNA. 

 

Values ascribed to nodes are probability mass function of participating members under 

the four-centrality metrics extracted. The values were used to quantify relational attitude 

of participants or actors in a social group – called network attributes. These were 

extracted from the network graphs - Figure 3.2 and Figure 3.3. The four network 

attributes are given as following: degree centrality, betweenness centrality, closeness 

centrality and eigenvector centrality. 

 

Most research works stopped at extraction of network attributes that is, SNA metrics, as 

final stage for detection of covert nodes. But this was taken further by re-ranking those 

SNA metrics before setting rule for identifying covert nodes and their relevancies. 

Network attributes serve as inputs into Bayesian network model for computation of 

inference before drawing covert nodes. Table 3.1 presents network attributes obtained 

with respect to network graph of Figure 3.2 and network attributes of Figure 3.3 is 

presented in Appendix B. 
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Table 3.1: Network Attributes of actors in the N'17 Greece Revolutionary group 
 

Actor Name Actor Degree Closeness Betweenness Eigenvector 

 ID Centrality Centrality Centrality Centrality 

  (   ) (   ) (   ) (   ) 

Alexandros 1 0.4762 0.6563 0.1202 0.3032 
Giotopoulos      

Anna 2 0.2857 0.5122 0.0040 0.1937 

Christodoulos Xiros 3 0.5240 0.6563 0.1043 0.3352 

Constantinos 4 0.1429 0.4286 0.0000 0.1070 

Karatsolis      

Constantinos Telios 5 0.1429 0.4667 0.0952 0.0691 

Dimitris 6 0.5238 0.6563 0.1101 0.3374 

Koufontinas      

Dionysis Georgiadis 7 0.0476 0.4038 0.0000 0.0299 

Elias Gaglias 8 0.0476 0.3231 0.0000 0.0087 

Fotis 9 0.2857 0.5676 0.0147 0.1963 

Iraklis Kostaris 10 0.3333 0.5122 0.0242 0.2243 

Nikitas 11 0.2857 0.5676 0.0147 0.1963 

Ojurk Hanuz 12 0.2381 0.4884 0.0000 0.1842 

Patroclos Tselentis 13 0.2857 0.5000 0.0024 0.2099 

Pavlos Serifis 14 0.6667 0.6563 0.1749 0.3963 

Sardanopoulos 15 0.3333 0.5385 0.0145 0.2326 

Savas Xiros 16 0.5238 0.6563 0.3483 0.2371 

Sotirios Kondylis 17 0.0476 0.4038 0.0000 0.0299 

Thomas Serifis 18 0.3333 0.5122 0.0180 0.2296 

Vassilis Tzortzatos 19 0.0476 0.4038 0.0000 0.0299 

Vassilis Xiros 20 0.1905 0.5250 0.0093 0.1428 

Yiannis 21 0.2857 0.5676 0.0261 0.2134 

Yiannis Skandalis 22 0.2381 0.4884 0.0000 0.1842 
      

 

 

3.3.4 Development of Bayesian network model 

 

The Bayesian model computation is based on framework expressed as equations (3.3) and 

 

(3.4) 

  (  |  ) =   (  |  )  (  ) 

(3.3) 
  (  )    

  (  |  ) ∝   (  |  )  (  ) (3.4) 
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Equations (3.3) and (3.4) are frameworks for computing conditional and marginal probabilities of stochastic 
events A and B. where   (  ) the marginal probability or prior probability of event A and   (  |  ) is conditional 
probability of A given B; it is also called posterior probability.   (  |  ) is conditional probability B given A,   (  ) 
is prior probability usually considered as normalizing constant.   (  |  ) is likelihood of A given fixed B, here   (  
|  ) is equal to   (  |  ) however, at times likelihood L can be multiplied by a factor so that it is proportional to, 
but not equal to probability P. 

 

 
Equation (3.4) becomes a framework for computation of posterior probability when   (  ), marginal probability is used 
as a normalized constant. Posterior probability can be computed using only standardized likelihood or normalized 
likelihood   (  |  ) and prior probability P(A). Therefore, posterior probability distribution   (  |  ) is directly 
proportional to   (  |  ), normalized likelihood and prior probability   (  ). 

 

 

The use of Bayesian model requires data and target event. The target event is covert node 
designated as . From simple rule of probability, probability of event is over sum of possible 
outcome defined as   (  ) = , Equation (3.5) expresses  

∑ 

 
posterior probability of given data, where   (        ,   ) is joint probability distribution and   (        ) is marginal probability 

  (  |        ) =   (        ,  ) 

(3.5) 
  (        )    

 

 

By applying chain rule of probability theory to numerator of (3.5) gives (3.6). 

  (  |        ) =   (|  )    (  )  
(3.6) 

  (        )   
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where   (  |        ) is conditional probability given ,   (        |  ) is likelihood or conditional probability given ,   (  ) is marginal 
probability of covert node and   (        ) is normalized constant. 

 

 
Posterior probability   (  |        ) is an inference needed for identifying covert nodes. Equation (3.6) 
shows that calculation of   (  |        ) depends on likelihood   (        |  ), prior probability   (  ) and 
normalized constant   (        ). But only prior probability is independent of parameter. This implies 
that is an important parameter in the Bayesian model. P(data) in equation (3.6) is used to find other 
parameters for computation of posterior probability. 

 

 

Distribution Types and Involved Parameters 

 

The denominator in (3.6) is expressed as normalized constant (3.7); 

  (        ) = ∫   (        ,   ) = ∫   (        |  )   (  )     (3.7) 

Note: is considered as a vector that is, contains values 1, 2 … , joint 

 
probability distribution of vector values is given as   (        ,   ), applying integral on joint probability distribution normalize the data 
distribution; Equation (3.7) is integrating likelihood,   (        |  ) and prior probability,   (  ) with respect to , 
likelihood   (        |  ) was replaced with binomial distribution: ( )(1 −   )  −   and priori 
probability   (  ) was replaced with beta distribution   (  )

  (  +  )
  (  )   −1(1 −   )  −1 in (3.7)  

 

gives equation (3.8); 

  (  ) = ∫1 ( ) (1 −   )  −     (  +  )   −1(1 −   )  −1 
(3.8) 

  

0    (  )  (  )   
 
 

By factorizing the independent terms from (3.8) gives (3.9) 
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  (  ) =   (  +1)  (  +  )  
∫1   +  −1(1 −   )  +  −  −1 

(3.9) 
  (  −  +1)  (  +1)  (  )  (  )  0   

 

 
From (3.8), beta distribution has − 1 power; and (1 −   ) has − 1power; from equation (3.9) now has + − 1 power, 
and (1 −   ) has + − − 1power after factorized common terms. To replicate − 1 and − 1 power respectively in (3.9) 
then equations (3.10) and (3.11) defined parameters   ′ and   ′ that combined parameters of binomial and beta 
distributions. 

′ =  + 
   (3.10) 

′=+−    (3.11) 

By substituting (3.10) and (3.11) into (3.9) gives (3.12),   

  (  ) =   (  +1)  (  +  )  ∫1 ′−1(1 −   ) ′−1  (3.12) 
  (  −  +1)  (  +1)  (  )  (  )  0    

 

 

Integrate (3.16) with respect to gives (3.13) 

  (  ) =   (  +1)  (  +  )  .   (  ′)  (  ′)  ∫1   (  ′+  ′)  ′−1(1 −   ) ′−1 
(3.14) 

  (  −  +1)  (  +1)  (  )  (  )   (  ′+  ′)   (  ′)  (  ′)   0   
For special case in beta distribution when = = 1 the part of equation (3.13) given as 

 

(3.14) 

∫1   (  ′+  ′)  ′−1(1 −   ) ′−1    = 1 
(3.14) 

  (  ′)  (  ′) 
0   

 
 

Therefore (3.13) becomes (3.15) 

  (  ) =   (  +1) =   !  =   ! = 1  
(3.15) 

  (  +2) (  +1)! (  +1)  !   +1      
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This is a prior predictive about . Equations (3.8) to (3.15) was used to find parameters 

and for computation of posterior distribution. Equation (3.15) is predictive probability 

about covert nodes in a population N. Centrality metrics provided in Table 3.1 are node 

attributes. The Bayesian model for covert nodes detection is expressed in (3.16) 

  (  |  ) =   (   |  )    (  ) 

(3.16) 
  (    )    

 

Where is centrality of the network graphs in Figure 3.1 and 3.2. include degree 
centrality ( ), betweenness centrality ( ), closeness centrality ( ), and eigenvector 
centrality ( ). The centrality metrics were defined as cases. Each was deployed as input 
to the Bayesian model, just to identify more covert nodes. 

 

 

Case A is when degree centrality ( ) replaces in (3.16) gives (3.17) 
  ( |  )  (  ) 

  (  | ) =   (   )  
 

Case B is when betweenness centrality ( ) replaces in (3.16) gives (3.18) 
  ( |  )  (  ) 

  (  |   ) =   (   )  
 

Case C is when closeness centrality ( ) replaces in (3.16) gives (3.19) 
  ( |  )  (  ) 

  (  | ) =   (   )  
 

Case D is when eigenvector centrality ( ) replaces in (3.16) gives (3.20) 
  ( |  )  (  ) 

  (  | ) =   (   )  

 
 
 
 
 
 

 

(3.17) 
 
 
 
 
 
 

 

(3.18) 
 
 
 
 
 
 

 

(3.19) 
 
 
 
 
 
 

 

(3.20) 
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Equations (3.17) to (3.20) have the same priori   (  ). Each probability mass function is based on circumspect and {   , , , } s set of 
network attributes - for predicting 

 

propensity of actors’ vulnerability or evasiveness. serves as needed provision for 

estimating posterior probability which is inference. 

 

3.3.5 Development of BN algorithm 

 

Algorithm here show the procedures for detecting covert members in OCGs. All 

participants in OCG or in presented dataset are depicted as points. All points are 

presented in the same way that is they are equal except in the number of links incident 

on them. The developed BN is then invoked to predict covert nodes from dataset. Since 

all points are represented equally, prior probability is provided as one of parameters 

needed. The likelihood is also provided. The likelihood represents network attribute as a 

normalized likelihood. Normalised likelihood and prior probability are merged with 

parameters ‘a’ and ‘b’ and go to Recursive Bayesian Filter (RBF) for computation of 

inference. The inference is then checked for satisfactory test that is, if a marginal node is 

detected, the detection process terminates by exist and new network attribute will be 

loaded. If not, parameters a and b will be re-initialized. Figure 3.4 illustrates the flow 

diagram of algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4: Bayesian Network Model Computation Framework 
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Recursive Bayesian Filter (RBF) minimizes error by refeeding error back. RBF algorithm is 

given as 3.1. The process within RBF is strictly swapping posterior with prior. The detail of 

the RBF algorithm is given as Algorithm 3.1. The decision block returns the flow process to 

the initializing block where parameters ‘a’ and ‘b’ can be adjusted or reinitialized. This 

permits to observe performance when using different set of values for parameter ‘a’ and ‘b’. 

Parameters and is [0 1]. The ‘Yes’ takes the flow outside after satisfying with set of nodes 

produced as covert nodes. The detail of the Bayesian Network Algorithm is described as 

Algorithm 3.2 and its source codes is in Appendix D. 

Algorithm 3.1 RBF (  (   |  )) 

 
%Recursive Bayesian Filter (RBF) takes   (   |  ) as parameter and returns posterior probability  
Input:   (   |  ) % centrality metric distribution 

  (  ) ∈   (0,1) 

Output:   (  |   ) % posterior probability 
for = 1           ℎ(  (    |  )) 

(  | ) =   (   ). (    |  ) 
  (  |    ) .             (   (  | )) 

  (  ) = (  | ) 
return    (  |   )  
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Algorithm 3.2 Bayesian Network Algorithm  
 

%Bayesian-networks-based algorithm for covert nodes Detection using 

SNA %metrics as inputs 

1 Input:% degree centrality 
 

(a) % betweenness centrality 
 

(b) % closeness centrality, 
 

(c) % eigenvector centrality 
 

2 %Initialize, number of network attributes 
3 ={  , , , } 

 

4 %Initialize N, number of nodes 
5 s =   .           ℎ() 

 

6 for each∈ 
 

7   (  |  ) = RBF (    ) 

 
8 Outlier-inference (Plot (  (  |  ),           ))  

 
 

 

3.3.6 Performance evaluation of BNM 

 

Confusion matrix was deployed for evaluating proposed BNM’s performance. Its tools 

 

include: sensitivity, probability of false alarm, miss rate, and specificity as presented in 

 

Figure 3.5. 
 

 

Definition of terms - The model performance is observed on tools provided in confusion 

 

matrix-Figure 3.5. The chart has two conditions: True condition and Predicted condition. 

 

The  True  condition  denotes  physical,  potential  or  observable  attribute  of  affiliate 

 

criminals like conspirators, sleeper partners and overt members.  Condition positive 

 

denotes fugitive – conspirators and sleeper partners, while condition negative denotes 

 

non-fugitive - attackers. Predicted condition denotes statistical values used for condition 

 

of detection. Predicted condition positive is range of values for detected nodes while 

 

predicted condition negative is range of values for rejected nodes. A node is taken as 

 

detected when it has high maximum-a-posterior (MAP) value. And a node is rejected 
 

 

75 



when it has low MAP. The predicted condition positive is used for nodes that have 

relatively high MAP while predicted condition negative is used for nodes that have 

relatively low MAP. The predicted condition negative represents rejected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.5: The Confusion Matrix 
 

TP denotes number of correctly detected conspirators that is, conspirators that have high 

MAP. FP is number of wrongly detected conspirator that is, attackers that have high 

MAP. FN is number of wrongly rejected conspirators that is, conspirators that have low 

MAP. And finally, TN is number of attackers correctly rejected that is, attackers that 

have low MAP. The four terms: TP, FP, TN and FN are used in computation of equation 

(3.21) to (3.34). Each provides different information on performance evaluation. They 

are presented as following: 

 

Sensitivity, recall, Probability of detection or True Positive Rate (TPR) is expressed in 

(3.21) 

= 

∑ 

(3.21) 
 

∑     + ∑ 
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Miss rate or False Negative Rate (FNR) is expressed as (3.22) 

= 
∑ 

(3.22) ∑   + ∑ 
 

 

 

Probability of false alarm, fall-out or False Positive Rate (FPR) is expressed in (3.23) 

= 

∑ 

(3.23)  
 

 

 

 

Specificity - SPC or True Negative Rate (TNR) is expressed as (3.24) 
 

 

∑  
=∑   +∑ 

 

Prevalence is defined in (3.25) 
∑ + ∑  

= ∑ 
 

 

Precision or Positive Predictive Value (PPV) is defined in (3.26) 
∑ 

= ∑     + ∑ 
 

 

 

False Omission Rate (FOR) is expressed in (3.27) 
 

 

∑  
=∑  +∑ 

 

Positive likelihood Ratio (LR+) is expressed in (3.28) 
    += 

 

 

 

 

Negative likelihood Ratio is expressed in (3.29) 
    −= 

 

 

 

 

 

 

 

 

(3.24) 
 

 

 

 

 

 

 

(3.25) 
 

 

 

 

 

 

 

(3.26) 
 

 

 

 

 

 

 

(3.27) 
 

 

 

 

 

 

 

(3.28) 
 

 

 

 

 

 

 

(3.29) 
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Accuracy (ACC) is defined in (3.30) 
∑ + ∑ 

= ∑  

 

False Discovery Rate (FDR) is expressed as (3.31) 
 

 

∑  
= ∑     + ∑  

Negative Predictive Value (NPV) is expressed in (3.32) 
 

 

∑  
= ∑     + ∑  

Diagnostic Odd Ratio (DOR) is expressed in (3.33) 
=     +    −  

And finally, 1 is expressed in (3.34) 

1= 
  2   
      

( 

1 

)+( 

 1 

) 

      

 
 
 

 

(3.30) 
 
 
 
 
 
 

 

(3.31) 
 
 
 
 
 
 

 

(3.32) 
 
 
 
 
 
 

 

(3.33) 
 
 
 
 
 
 

 

(3.34) 
 

 

Tools given in eqn. (3.21) to (3.34) were used for evaluating direct information on the 

BNM’s performance with respective to two terrorist networks analysed. In addition, 

graphs of SNR are plotted using detection probability (TPR). Receiver Operation 

Characteristic curves (ROC) is also used to access common features or information that 

cannot be directly accessed by plotting detection probability with probability of false 

alarm. It allows to compare the impact of different inputs on the BNM and to find roc 

that has better performance. 
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3.3.7 Application of SNA-Quadrant model 

 

This section presents SNA-Quadrant (SNA-Q) model for validation of EnBNM’s 

detection. The validation was carried out on detected nodes by comparing set of nodes 

detected by EnBNM with the SNA-Q model. The SNA-Quadrant (SNA-Q) model was 

part of literature review section (2.5.1). The Quadrant approach for classification of 

profiles in OCGs (Ismail et al., 2019). It was adopted for validation because scatterplot 

of attributes - Figure 2.13 provide a framework that support relevance of all 

participators in OCGs. Roles and contributions were taken as attributes. Each attribute 

was rated and used to determine how relevancy an actor is (Ismail et al., 2019). 

 

3.3.8 SNA-Q algorithm 

 

The SNA-Q algorithm started with defining a pair of attributes for plotting scatter graph 

of active attribute against passive attribute(Ismail et al., 2019). The graph has quadrants 

Q1 to Q4 describing relevancy of node that fall within it. Q2 and Q4 are points of 

interest (poi). Actors in Q2 are regarded as vulnerable key players while actors in Q4 are 

regarded as less-vulnerable key players or smart criminals. The two quadrants: Q2 and 

Q4 are pois for validating set of nodes detected by EnBNM. Both Q2 and Q4 are also 

validated with ground truth data of participants. The validation permits researchers to 

drawing correlation between two models and to identify potential fugitive. The detail of 

SNA-Q algorithm is given as algorithm 3.3 and its source code is given in appendix E. 
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Algorithm 3.3 SNA-Q Algorithm  
 

%SNA-Q is an algorithm for covert nodes Detection using SNA metrics as inputs 

and return points of interests as outputs 

Input: ∈ % degree centrality, 

∈ % betweenness centrality 

∈ % closeness centrality, 
∈ % eigenvector centrality 

Output: Quadrants ∈ , pointsInQ4∈ % list of values 

1 _          1 = % assign network attribute to active input 
2 _          2 = 

3          1 = % assign network attribute to passive input 

          2 =  
4 _= {            _          1,_          2} 

5 p_= {              _          1, p_          2} 
6 foreach  ∈ pa_ 
7 foreach   ∈ pa_ 
8 (  ,   ) =                       (  ,   ) 
9 X_mean =1/  (∑  =1   ) 

 
10 Y_mean =1/  (∑  =1  ) 

 

11 quadrant =find Quandrant (X_mean, Y_mean)  
12 poi=Identify Q Number of Interests (X_mean, Y_mean )  
13 pointsInQ4.append(poi)  
14 Quadrants. append(quadrant)  
15 return pointsInQ4, Quadrants  

 
 

 

3.4 Chapter Summary 

 

This chapter presented procedures for actualizing the aim and objectives in this work. The 

 

flow chart had three sections: data section, BN model section and SNA-Q model section. 

 

Bayesian model was developed for detection of covert nodes and metrics needed for the 

 

detection of covert nodes were defined. These metrics were extracted from criminal 

 

network graphs and they were presented. The last segment of the methodology presented 

 

SNA-Q model for classification of participants’ relevancy to criminal groups. This is to 

 

be  used  for  verifying  set  of  nodes  detected  by  the  developed  BNM  and  to  know 

 

participants who are potential fugitive. 
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CHAPTER FOUR 
 

4.0 RESULTS AND DISCUSSION 
 

This chapter presents experimental results on developed methodology for detection of 

covert nodes. The developed algorithms were tested with datasets of criminal groups. 

Results were presented according to the two terrorist datasets that is, the N’17 

revolutionary group and the 9/11 terrorist group datasets. The results were presented in 

the following order: experimental results of N’17 revolutionary group in section 4.1, 

experimental results of 9/11 terrorist group in section 4.2 and comparative analysis of 

algorithm’s performance was presented in section 4.3. 

 

Section 4.1 and section 4.2 have three different results each. The first segment presents 

result of evaluation of the BNM algorithm, the second segment presents result of 

evaluation of the SNA-Q algorithm and the third segment presents verification of 

inferred nodes from both the BNM using the SNA-Q classification of profiles. 

 

The BNM’s segment has four cases of results. Cases defined type of network attribute 

used as input. Case 1 represents eqn. (3.21) that is, when degree centrality was used as 

an input; case 2 represents eqn. (3.22) that is, when betweenness centrality was used as 

input; case 3 represents eqn. (3.23) that is, when closeness centrality was used as input 

and case 4 represents eqn. (3.24) that is, when eigenvector centrality was used as input. 

Each input was used to predict participants’ evasion. 

 

The BNM predicts level evasiveness of a given node. The value assigned to an actor 

depends on score that an actor has from a particular network attribute. The peak of 

distribution curve is maximum-a-posteriori (MAP). Each actor has a MAP value. The 

MAP value indicates if a node has chances of evading detection or considered as 

vulnerable. A node that has low MAP is considered as vulnerable while a node that has 
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high MAP is considered to be evasive. From the highest and lowest MAP, only outliers 

are considered that is, inferred / detected nodes. 

 

Likewise, the results of SNA-Q algorithm were defined on four cases A to D. Each 

defined a pair of network attributes used as inputs to the SNA-Q algorithm. Case A 

represents when degree centrality and betweenness centrality were used as inputs; case 

B represents when degree centrality and closeness centrality were used as inputs; case C 

represents when eigenvector centrality and betweenness centrality served as inputs. 

Finally, case D represents when eigenvector centrality and closeness centrality were 

used as inputs to the SNA-Q. 

 

4.1 Experimental Results of Algorithms Using N’17 Criminal Dataset 

 

The results of testing the BNM and the SNA-Q algorithms using the N’17 datasets are 

presented. Section 4.2.1 presents result of evaluating the BNM algorithm, section 4.2.2 

presents result for classification of nodes using the SNA-Q algorithm and section 4.2.3 

presents comparative analysis for verification of nodes inferred by the BNM from the 

N’17 network. 

 

4.1.1 BN Model evaluation results using network attributes of the N’17 criminal 

group 

 

Results presented in this section were obtained from evaluating the BN model with 

network attributes of N’17 criminal group. The network attributes are referred to as case 

1 to 4. Each case has different MAP values for participating nodes which indicates their 

level of evasiveness. The results are presented from case 1 to 4 along with performance 

evaluation on corresponding case. 
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Case 1: Degree Centrality Input in BNM 

 

Figure 4.1 presents the graph of MAP distribution of N’17 participants when degree 

centrality was used as input to the BNM - eqn. (3.21). From the graph, actor ID 14 has 

the least MAP value. This implies that actor Id 14 was the most vulnerable node 

predicted by BNM using degree centrality as input. Theoretically, a node that is located 

at the center of a network structure or having relatively high number of links incident on 

it, usually turns out to be a vulnerable node. Actor IDs 3, 6, and 16 emerged as 

structurally equivalent actors on MAP value of 380.6 above actor ID 14. These actors 

are close to center of the network structure of Figure 3.2, as they were inferred as the 

next vulnerable actors after actor ID 14. 

 

Actor IDs 2, 4, 5, 7, 8, 9, 11, 13, 17, 19, and 21 emerged as outliers with MAP value of 

402.6. They are structurally equivalent actors at the highest MAP of 402.6. Though they 

differ in number of links connected to them, they were inferred as the most evasive 

actors that is, they are less vulnerable to security operatives’ detection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: MAP Distribution of the N'17 Network with Case 1 
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Figure 4.2 presents assessment on BNM’s detection with degree centrality as input. The 

chart has 5 TP, 13 FP, 1 FN and 3 TN. It shows that BNM has 0.833 TPR that is, probability 

of detection; 0.1667 FNR that is, miss rate; 0.8125 FPR that is, Probability of False Alarm 

(Pfa); 0.1875 TNR that is, specificity; 0.2778 precision and 0.3636 accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2: Performance evaluation of BNM's Detection with Case 1 
 

Case 2: Betweenness Centrality Input in BNM 

 

Figure 4.3 presents the MAP distribution of participants in N’17 when betweenness 

centrality was used as input to the BNM - eqn. (3.22). The plot shows that actor IDs 4, 

7, 8, 12, 17, 19 and 20 emerged as structurally equivalent IDs on the least MAP of zero. 

They were inferred as central participants that is, vulnerable actors. Theoretically, only 

nodes that have the highest betweenness metrics are usually taken as key players and as 

vulnerable actors. But here, the BNM was able to identify some actors with low 

betweenness metrics as vulnerable actors. But their key player status can be determined 

by their profile. 

 

 

84 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3: MAP Distribution of the N'17 Network with Case 2 

 

Actor IDs 1, 2, 3, 5, 6, 9, 10,11, 13, 14, 15, 16, 18, 20, and 21emerged as structurally 

equivalent actors on the highest MAP of 402.6. These are less vulnerable actors 

inferred. BNM takes care of hidden data which is inherent in criminal domain through 

probability. Therefore, IDs with zero MAP might have engaged in indicting acts that 

make up for that inference. The BNM was able to infer less-vulnerable actors as central 

participants which deterministic approach could not detect. 

 

Figure 4.4. presents assessment on BNM’s detection using betweenness centrality as input. 

The evaluation chart has 6 TP, 9 FP, 0 FN and 7 TN. These values correspond to 1 TPR that 

is, detection probability; 0 FNR that is, miss rate, 0.5625 FPR that is, probability of false 

alarm (Pfa), 0.4375 TNR that is, specificity, 0.4 precision and 0.5909 accuracy. 
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Figure 4.4: Performance Evaluation of BNM's Detection with Case 2 
 

 

Case 3: Closeness Centrality Input in BNM 

 

Figure 4.5 presents the MAP distribution of N17 network using closeness centrality as 

input to the BNM – eqn. (3.23). Actor IDs 1, 3, 6, 14 and 16 emerged as structurally 

equivalent actors with the lowest MAP of 356.6. They are inferred as central participant 

as they emerged with the least MAP. The set of IDs identified with low MAP here are in 

line with theory that is, they were inferred as vulnerable actors where actors with high 

closeness were being taken as vulnerable actors. 
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Figure 4.5: MAP Distribution of the N17 Network with Case 3 

 

Actor ID 8 has the highest MAP. This indicates that, it is the most evasive actor. It does 

not become structurally equivalent with any of actors that it shared structural 

equivalence property with in earlier detection with other network metrics. Actor IDs 7, 

17 and 19 emerged with the same MAP below actor ID 8. The same MAP denotes that 

they are structurally equivalent. Four actor IDs: 7, 8, 17 and 19 were identified in Figure 

4.1 as structurally equivalent actors on the same MAP value. Here actor ID 8 became 

distinguished from other actors. This is the least suspected actor in the group from its 

position to the central of the network. 

 

Figure 4. 6 presents assessment of BNM’s detection when closeness centrality was used 

as input. The Figure has 4 TP, 13 FP, 2 FN, and 3 TN. This shows that BNM has 0.6667 

TPR that is, detection probability, 0.3333 FNR that is, miss rate; 0.8125 FPR that is, 

Probability of False Aalarm (Pfa), 0.1875 TNR for specificity; 0.2353 precision and 

0.3182 accuracy. 
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Figure 4.6: Performance Evaluation of BNM's Detection with Case 3 
 
 

 

Case 4: Eigenvector Centrality Input in BNM 

 

Figure 4.7 presents the MAP distribution of N’17 network using eigenvector centrality 

as input to the BNM – eqn. (3.24). Actor ID 13 has the least MAP value of 395.9. It is 

not structurally equivalent with any actors. This implies that it was inferred as the most 

vulnerable actor. Actor ID. 21 has the second lowest MAP value. Actor IDs 13 and 21 

were inferred as vulnerable actors through prediction by BNM. None of these two actors 

acceded to the centre of network presented in Figure 3.2. 
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Figure 4.7: MAP Distribution of the N'17 Network with Case 4 
 

In theory, when an actor has high eigenvector metric it is taken as a key player and also as a 

vulnerable actor. But the BNM was able to infer less-susceptible actors that are neither at 

the centre of a network structure nor have the highest links connected to them. Detection of 

less-vulnerable follows the phenomenon that centrality may be unrelated to key players 

status in criminal networks (Bright et al., 2015). From the upper part of the Figure 4.7, five 

(5) actor IDs become structurally equivalent on the highest MAP of 402.7. The actors are 1, 

7, 8, 17 and 19. Out of these five actors, only actor ID 1 has the highest number of links in 

Figure 3.2 and also has the highest eigenvector value in Table 3.1. 

 

The BNM shows that only actors with low eigenvector centrality metrics are less-vulnerable 

to detection. Inclusion of actor ID 1 among nodes that has high MAP shows that. This 

particular actor was alleged and convicted as chief ideologue leader of the N’17 group. But 

he denied of being the denied leader or a participating member. He claimed that the 

allegation of his participation was cooked by the security agent (Kassimeris, 2007). It is a 

manifestation that not all actors that have the high influence impact in a 
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criminal group could be vulnerable to detection. The BN model identified actor IDs 13 and 

21 as the most vulnerable to detection by using eigenvector centrality for prediction. 

 

Figure 4.8 presents assessment of BNM’s detection when eigenvector centrality was 

used as input. The following were obtained from the Figure: 3 TP, 14 FP, 3 FN, 2 TN. It 

implies that BNM with eigenvector centrality has 0.5 TPR that is, probability of 

detection; 0.5 FNR that is, miss rate; 0.875 FPR that is, probability of false alarm (Pfa), 

0.125 TNR that is, specificity, 0.1764 precision and 0.2272 accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.8: Performance evaluation of BNM's Detection with Case 4 
 

Summary of Inferred Nodes from the N’17 Network 

 

Table 4.1 presents the list of actor IDs considered for status verification. They are 

categorised into central and evasive participants. The central participants consist of actor 

IDs with low MAPs while the evasive participants are those with the highest MAPs. The 

former exists in the lowest part of the graphs while the latter occupies the upper part. 

Some actors emerged as structurally equivalent actors in a layer, while some emerged as 

non-structurally equivalent actor. In Figure 4.1 actor ID 14 has the least MAP while in 
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Figure 4.5 actor ID 8 has the highest MAP. These two are not structurally equivalent 

with any actor. Finally, Figure 4.7 has inferred actor IDs 13 and 21. The two did not 

form structurally equivalent with other actors. Actor ID 13 was inferred with the lowest 

MAP therefore it is prominent that can be easily detected by security. 

 

Table 4.1: Nodes Detected by Inference from the N'17 Network using BNM 

Algorithm 
 

Figure number Central  Evasive participants 

 participants  
    

Case 1 - Figure 4.1 14, 16, 6, 3 2, 4, 5, 7, 8, 9, 11, 13, 17, 19, 21 

Case 2 - Figure 4.3 4,7,8,12,17,19, 1, 2, 3, 6, 9, 10, 11, 13, 14, 15, 

 22  16, 18, 20 

Case 3 - Figure 4.5 1, 3, 6, 14, 16 8, 7, 17, 19 

Case 4 - Figure 4.7 13, 21  1, 7, 8, 17, 19  
 

 

Figure 4.9 presents a Venn diagram of actor IDs inferred as evasive participants in 

Table 4.3. The Venn diagram compressed re-occurring evasive actors. No actors were 

duplicated and the place where they were identified was adequately captured. For 

instance, actor IDs 7, 8, 17 and 19 were inferred in cases 1, 3 and 4. They are the only 

IDs having highest number of re-occurrences. They emerged in three instances of cases 

out of four. They are described as legitimate actors as they can hardly be detected by 

security operatives because each has a link connecting to it. Fortunately, BNM predicted 

these four actors as vulnerable in Figure 4.3. Identifying the least susceptible actors is a 

plus to the BNM algorithm. 

 

Actor IDs 2, 9, 11, and 13 occurred in cases 1 and 2 only. They are structurally 

equivalent on number of links connected to each. Actor ID 1 occurred in case 2 and case 

4 only. Actor IDs 4, 5, and 21 occurred in case 1 only and actor IDs 3, 6, 10, 14, 15, 16, 

18 and 20 occurred in case 2 only. 
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Figure 4.9: Venn Diagram of Evasive Nodes in the N'17 Network 

 

4.1.2 Results of classification of N’17 participants using SNA-Q algorithm 

 

Results presented in this section were obtained from classifying participants in the N’17 

network. The participants (nodes) were classified into four categories of criminal 

profiles using the SNA-Q algorithm. The results are presented according to cases A to D 

that is, a pair of network attributes used as inputs to the SNA-Q model. 

 

SNA-Q model has four quadrants Q1 to Q4. Each quadrant harbours a set of actors 

according to a pair of network attributes involved. Points of interest are Q2 and Q4. Q2 is 

designated as the most prominent, these actors are considered to be the most vulnerable 

actors, while Q4 is designated as less prominent, and they are regarded as less vulnerable 

participants or affiliate criminals. Smart participants in terrorist groups or OCGs have high 

propensity to Q4 properties. Legitimate actors can be described as smart participants. 

 

Case A: Degree and Betweenness Centrality Inputs 

 

Figure 4.10 presents a graph of SNA-Q classification obtained when degree centrality and 

betweenness centrality were used in SNA-Q model. Actor IDs 2, 9, 10 13, 15, 18, and 21 
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emerged in Q1; actor IDs 1, 3, 6, 14, and 16 emerged in Q2; actor IDs 4, 7, 8, 11, 12, 

17, 19, 20 and 22 emerged in Q3 and actor ID 5 emerged in Q4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.10: SNA-Quadrant Classification of the N'17 Criminal group with Case A 
 

Case B: Degree and Closeness Centrality Inputs 

 

Figure 4.11 presents a graph of SNA-Q classification obtained when degree centrality 

and closeness centrality were used in SNA-Q model. Q1 has actor IDs 2, 10 13, and 18; 

Q2 has actor IDs 1, 3, 6, 14, 15 and 16; Q3 has actor IDs 4, 5, 7, 8, 12, 17, 19, and 22; 

finally, Q4 has actor IDs 9, 11, 20 and 21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: SNA-Quadrant Classification of the N'17 Criminal group with Case B 
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Case C: Eigenvector and Betweenness Centrality Inputs 

 

Figure 4.12 presents a graph of SNA-Q classification obtained when eigenvector 

centrality and betweenness centrality were used in the SNA-Q model. Q1 has actor IDs 

2, 9, 10, 11, 13, 15, 18, and 21; Q2 contains actor IDs 1, 3, 6, 14 and 16; Q3 has actor 

IDs 4, 7, 8, 12, 17, 19, 20 and 22 and finally Q4 has only actor ID 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.12: SNA-Quadrant Classification of the N'17 Criminal group with Case C 
 

Case D: Eigenvector and Closeness centrality inputs 

 

Figure 4.13 presents a graph of SNA-Q classification obtained when eigenvector 

centrality and closeness centrality were used in SNA-Q model. Actor IDs 2, 10, 13 and 

18 appeared in Q1; actor IDs 1, 3, 6, 9, 11, 14, 15, 16 and 21 appeared in Q2; actor IDs 

4, 5, 7, 8, 12, 17, 19 and 22 appeared in Q3 and Q4 has only actor ID 20. 
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Figure 4.13: SNA-Quadrant Classification of the N'17 Network with Case D 
 

Distributions of N’17 Actors in Quadrants of SNA-Q Model 
 
 

Table 4. 2 presents summary of nodes distribution in SNA quadrants. These were 

quantified in percentage. This was done across all Q1 to Q4. The number of nodes in 

each quadrant was measured and its percentage computed. Recall that the N’17 criminal 

network has 22 actors. 

 

Table 4.2: Distribution of N’17 Participants in SNA-Q Model  
 

 
Q-model variables 

 Distribution  
Total  

Q1(%) Q2(%) Q3(%) Q4(%)    

 Degree and 
31.8 22.7 40.9 4.5 100  Betweenness       

 Degree and Closeness 18.2 27.3 36.4 18.2 100 
      

 Eigenvector and 
36.4 22.7 36.4 4.5 100  Betweenness       

 Eigenvector and 
18.2 40.9 36.4 4.5 100  Closeness       

 

Q1 is the quadrant that has the second highest percentage across all the model variables. 

It has percentage between 36.4 and 18.2. It is designated for prominent actors; those 

engaged more in indicting activities than in covert roles. Their engagement in such 

activities make them become vulnerable to security operative detection. 
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Q2 has percentage between 22.7 and 40.9. This is the quadrant of most prominent 

criminals; participants that excessively engage both in indicting activities as well as 

covert roles that is, roles connected with criminal group existence or persistence. They 

are more vulnerable and more significant than set of actors in Q1. 

 

Q3 has the highest percentage of nodes distribution. Its least percentage in the Table is 

36.4 and the highest percentage is 40.9. It was designated as inconspicuous for 

describing actors whose indicting activities as well as their covert roles were considered 

to be insignificant within SNA-Q model scope. This description revealed factors that 

make them less vulnerable or invulnerable. 

 

Q4 has the least percentage. This quadrant is designated as less-prominent. It contains 

participants who play more vital roles in crime commission than engaging in indicting 

activities. Only few actor IDs were identified in it. These actors are important to OCGs. 

 

Q2 and Q4 are very important in identifying profiles of participants in OCGs. The set of 

nodes in the two quadrants compared favourably with those inferred from the BNM 

model. SNA-Q model helps to examine correlation between properties of nodes inferred 

as central participants and those inferred as evasive participants. 

 

4.1.3 Verification of BNM inferred nodes in the N’17 network 

 

This section attempts to verify the detection made by developed BN model using the 

SNA-Q model. Recall that the SNA-Q is a model used to classify actors into four 

criminal profiles. The focus here is to verify the actor IDs identified as central 

participants and evasive participants by the BN model. 
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(i) Verification of BNM Inferred Central Participants Using SNA-Q Model 

 

Table 4.3 presents inferred participants from the N’17 network by BNM and SNA-Q. 

The Table contains participants’ name and ID number, factional groups and those 

convicted by court as leaders. The factional groups and convicted leaders were used as 

ground truth. shows that out of thirteen (13) nodes that BNM identified as central 

participants, the SNA-Q model confirmed seven (7) as actually belonging to the central 

participants. Moreover, the court convicted three (3) of these actors as leaders based on 

available evidence. However, there were actually five (5) leaders in the group. The BN 

model detected all the five leaders in the group and they were confirmed by the SNA-Q 

model. This shows that the developed BN model has capacity to detect very important 

central nodes in a criminal group. 

 

Table 4.3 shows that actor IDs 1, 3, and 6 who were convicted leaders were also 

detected in all cases of SNA-Q and case 3 of BNM. But case 1 detected actor 3 and 6. 

Actor ID 6 confessed that he was the leader of the group. Actor ID 3 was alleged and 

convicted as group hitman. Actor ID 1 was served 21 years life terms and a 25-year 

sentence as he was convicted as chief ideologue (Kassimeris, 2007). This confirms that 

key players can be vulnerable. And case 3 of BNM has 100 percent detection while case 

2 of BNM bas 66.7 percent. 

 

Actor IDs 14 and 16 were identified under SNA-Q cases and BNM’s case 1 and 3. The 

two actors were convicted members but not as leader. It implies that they were central 

participants but not leaders. Arrest of actor ID 16 led to chain arrest of all participants 

except actor ID 6-Dimitris Koufontinas. Actor IDs 14 and 15 belonged to two factional 

groups. Sardanopoulos was named after actor ID 15. Both actors 14 and 15 belong to G- 

 
 
 

 

97 



first generation leadership faction. They were not convicted as leaders. It is evident that 

they are central participants as they were inferred by the BNM and SNA-Q. 

 

Table 4.3: Comparison of Inferred Central Nodes from the N’17 Network  

 

    BNM Algorithm 

SNA-Q Algorithm 
Inferred participants Ground truth Cases: (central nodes  Cases: (Q2)  

     inferred)    

          

Actor 
Actor Faction Court 

1 2 3 4 A B C D 
ID name Conviction          

Alexandrous 1 G Yes   Yes  Yes Yes Yes Yes 

Christodulos 3 K Yes Yes  Yes  Yes Yes Yes Yes 

Karatsolis 4 S   Yes       
D. 

6 
 

Yes Yes 
 

Yes 
 

Yes Yes Yes Yes 
Koufontinas K 

  

          

Georgiadis 7 K   Yes       

Elias Gaglias 8 K   Yes       
Ojurk 

12 
   

Yes 
      

Harnuz K 
        

          

P Tselentis 13 S     Yes     
Pavlos 

14 
G and  

Yes 
 

Yes 
 

Yes Yes Yes Yes 
Serifis S    

          

Sardanopouls 15 
G and       

Yes 
 

Yes 
S 

       

           

Savas Xiros 16 K  Yes  Yes  Yes Yes Yes Yes 

Kondylis 17 nil   Yes       

V. Tzortzatos 19 K   Yes       

Yianni 21 nil     Yes    Yes 
 
 
 
 

Case 4 and case D detected actor ID 21 as a central participant. Actor ID 13 was among 

convicted members that received a maximum of 25-year sentence, it means ID 13 

played central roles. Actor IDs 7, 8, 17 and 19 are marginal nodes. They are the least 

susceptible actors with single link connected to each of them. Actor ID 17, Sotirios 

Kondylis received maximum 25-years sentence. The BNM is able to detect legitimate 

actors who had been always considered as inconspicuous by the SNA-Q. 
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(ii)Verification of BNM Inferred Evasive Participants Using SNA-Q Model 

 

Table 4.4 compares inferred evasive participants from the N’17 network. List of actors 

are part of those emanated from the Venn diagram of evasive nodes in the N’17 network 

that is, Figure 4.9 and those that occurred in Q4 of SNA-Q model. The Table presents 

only nodes in Q4. Some actor IDs earlier inferred as central participants like IDs 1, 3, 6, 

7, 8, 13, 14, 15, 16, 17 and 19 were removed. 

 

From Table 4.4, it can be seen that all the nodes identified by the BN model as evasive 

nodes were all confirmed by the SNA-Q model. These four nodes were also convicted 

in court even though they did not play central roles. This again confirms the 

effectiveness of developed BN model in identifying other key players in OCGs serving 

as affiliate or legitimate actor. 

 

Table 4.4: Comparison of Inferred Evasive Nodes from the N’17 Network 
 

  
Ground 

BNM     

Participants 
 

Algorithm SNA-Q Algorithm (Q4)  
truth   

(Evasion) 
    

       

Actor 
Actor 

Faction 
Case   Case   Case   Case   Case   Case 

ID 1 2 A B C D   

C. Telios 5 K Yes  Yes  Yes  
        

Fotis 9 G Yes Yes  Yes   
        

Nikitas 11 G Yes Yes  Yes   
        

Vassilis Xiros 20 K  Yes  Yes  Yes 
        

 

Actor ID 20 was inferred as evasive actor in case 2. Case B and case D identified it as a 

smart actor. The ID 20, Vassilis Xiros was a younger brother of Christodulous Xiros 

and Savas Xiros. He was also in the same factional group that is, Koufontinas (K) 

faction with his elder brothers (Rhodes and Keefe, 2007). He was among the five 

convicted members that received the maximum of 25-year sentence. 
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4.2 Experimental Results of Algorithm Using 9/11 Terrorist Group Dataset 

 

The results of BNM and SNA-Q algorithms evaluated with the 9/11 terrorist network is 

presented. Section 4.2.1 contains presentation of results from testing the BNM 

algorithm, section 4.2.2 contains the results of classification of nodes according to 

profile of SNA-Q algorithm and section 4.2.3 presents verification of actors identified 

from the 9/11 network using the SNA-Q. 

 

4.2.1 BN model evaluation results using network attributes of the 9/11 terrorist 

group 

 

The MAP distribution of participants in 9/11 terrorist network and performance of 

BNM’s detection are presented here. Each case that is, input to the BNM has different 

graphical results. 

 

Case 1: Degree Centrality Input in BNM 

 

Figure 4.14 is the MAP distribution of 9/11 network with Case 1. Degree centrality was 

used in BNM - eqn. (3.21) for predicting participants’ evasion. Actor IDs 14 and 54 

were found to be structurally equivalent actors on MAP value of 397.3 MAP. Then actor 

ID 15 has MAP value of 400.8 behind the first least MAP value. Actor-IDs 3, 25 and 41 

too appeared as structurally equivalent actors on 401.2 MAP. These actor IDs were 

inferred as central participants in the criminal group. 
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Figure 4.14: MAP Distribution of the 9/11 Network with Case 1 
 

 

Thirty-eight (38) actors emerged as structurally equivalent on the highest MAP value of 

402 with these IDs: 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 20, 23, 28, 30, 32, 33, 34, 35, 

36, 37, 38, 40, 42, 45, 46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59 and 60. These actors 

were predicted as those having high propensity to evasion that is the least susceptible 

actors to ascribe importance in the group. They could become susceptible under 

different inputs or conditions. 

 

Figure 4.15 presents assessment on the BNM’s detection when degree centrality was used 

as input. The Figure shows that BNM has 26 TP, 12 FP, 15 FN and 7 TN. This means that 

BNM has 0.6341 TPR that is, detection probability, 0.3658 FNR that is, miss rate; 0.6315 

FPR that is, probability of false alarm (Pfa), 0.3684 TNR for specificity; 0.6842 precision 

and 0.55 accuracy in detection using degree centrality network attribute. 
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Figure 4.15: Performance Evaluation of BNM's Detection with Case 1 
 

Case 2: Betweenness Centrality Input in BNM 

 

Figure 4.16 is the MAP distribution of 9/11 network with Case 2. Betweenness 

centrality was used in BNM eqn. (3.22) to predict participants’ evasion. The MAP 

distribution pattern for the 9/11 network is similar with that of the N’17 network under 

Case 2. Nodes were spin into either the lowest MAP or the highest MAP. Majority of 

nodes become structurally equivalent in either of the direction. 
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Figure 4.16: MAP Distribution of the 9/11 Network with Case 2 
 

Twenty-two (22) actors emerged on MAP of zero as structurally equivalent actors. They 

are identified with IDs 1, 5, 6, 18, 23, 24, 26, 33, 34, 35, 36, 37, 43, 44, 46, 47, 48, 49, 

53, 57, 58, and 59. They are inferred as central participants that is, most susceptible to 

detection. This means that their roles are expository by prediction. Some of these 

inferred actors include those having low betweenness metrics; those could be regarded 

as legitimate actors. 

 

Twenty-nine (29) actors emerged on the highest MAP value of 402.7 with the following 

IDs: 2, 4, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 25, 28, 29, 30, 32, 39, 40, 41, 42, 45, 50, 

51, 52, 54, and 60 as structurally equivalent. This MAP value is for actors regarded as less 

susceptibility actors to detection. It was observed from case 2 that BNM was able to predict 

some actors that have similar structural attribute with legitimate actors that is, those 

considered to be unapproachable in terms of vulnerability and key players. Deterministic 

approach does not take nodes that have the least metrics as vulnerable nodes 
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or key player. But through prediction, this had been achieved that is, legitimate actors 

that have low betweenness metrics were predicted to be vulnerable. 

 

Figure 4.17 presents assessment on the BNM’s detection when betweenness centrality 

was used as input. The Figure shows that BNM had 23 TP, 15 FP, 18 FN and 4 TN. 

This scores BNM 0.5609 TPR that is, detection probability, 0.4390 FNR that is, miss 

rate; 0.7894 FPR that is, probability of false alarm (Pfa), 0.2105 TNR for specificity; 

0.6052 precision and 0.45 accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17: Performance Evaluation of BNM's Detection with Case 2 
 

 

Case 3: Closeness Centrality Input in BNM 

 

Figure 4.18 is the MAP distribution of 9/11 network with Case 3. The MAP represents 

participants’ propensity to evasion predicted by BNM using closeness centrality - eqn. 

(3.23). Actor ID 15 has the least MAP value of 392.2. And it did not form structural 

equivalent with any actor. Actor IDs 5 and 37 formed structural equivalents on MAP 
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value of 397.5. Actor ID 35 emerged on MAP value of 397.7. IDs 47, 48 and 49 formed 

a structurally equivalent layer on MAP value of 397.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.18: MAP Distribution of the 9/11 Network with Case 3 
 

Four (4) actors: 12, 32, 40 and 41 are outliers. They emerged on the highest MAP value 

of 402.7 in which they become structurally equivalent. These actors were identified in 

Case 1 but only three re-occurred in Case 2 that is Figures 4.14 and 4.16. Actor IDs 32, 

40, and 41 are conspirators and conspirators are bound to be evasive. 

 

Inferred central participants represent vulnerable participants, those engaged in indicting 

activities. An indicting activity encompasses interacting with criminals too, that is what 

closeness centrality strives to depict. Those inferred as central participants also have high 

closeness metrics, which implies that prediction by BNM agrees with deterministic 

approach that base vulnerability on nodes that have high closeness metric value. 

 

Figure 4.19 presents assessment on the BNM’s detection when closeness centrality was 

the input to BNM. The Figure shows that BNM had 22 TP, 9 FP, 19 FN and 10 TN. 

This gives BNM 0.5366 TPR that is, detection probability, 0.4634 FNR that is, miss 

rate; 105 



0.4737 FPR that is, probability of false alarm (Pfa), 0.5263 TNR for specificity; 0.7097 

precision and 0.5333 accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.19: Performance Evaluation of BNM's Detection with Case 3 
 

 

Case 4: Eigenvector Centrality Input in BNM 

 

Figure 4.13 is the MAP distribution of the 9/11 network with Case 4. It presents 

prediction on participants’ tendency to evasion using eigenvector centrality - a tool 

designed for measuring influence of actors from communication social network. It was 

the virtual influence used for predicting evasiveness of participants in terrorism. Some 

criminal activities and roles are inherently covert, like influence and leadership roles. 

Such activities cannot be assessed and used directly to determine vulnerable actors. The 

BNM was invoked to identify participants like legitimate actors and conspirators that 

direct deterministic approach could fail to identify. 

 

Actor ID 15 has the least MAP value of 392.9. It implies that actor ID 15 is the most 

vulnerable actor by prediction using eigenvector metrics. Actor IDs 26, 29 and 14 have 
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MAP values of 395.8, 396.9, and 398.4 respectively. These IDs queued behind actor ID 

15. Prediction was based on metrics quantifying criminal covert roles. The inclusion of 

conspirators’ IDs 26 and 29 those expected to be less-vulnerable reflect merit of BNM 

over deterministic approach, as some of conspirators could not be detected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.20: MAP Distribution of the 9/11 Network with Case 4 
 

 

Thirty-five (35) actors with IDs 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20, 25, 32, 

33, 34, 35, 36, 37, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59 and 60 emerged as outliers 

and also being structurally equivalent on MAP value 402.7. They were predicted as less 

vulnerable; that is, actors that their covert activities were insignificant. Some of the 

inferred actors in case 4 had also been inferred as evasive nodes in case 1 and case 2 that 

is, Figure 4.14 and Figure 4.16 respectively. 

 

Figure 4.21 presents performance evaluation of the BNM’s detection when eigenvector 

centrality was used as input. The Figure shows that BNM had 20 TP, 15 FP, 21 FN and 

4 TN. This gives BNM 0.4878 TPR that is, detection probability, 0.5122 FNR that is, 

miss rate; 0.7894 FPR that is, probability of false alarm (Pfa), 0.2105 TNR for 

specificity; 0.5714 precision and 0.4 accuracy. 
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Figure 4.21: Performance Evaluation of BNM's Detection with Case 4 
 

 

Summary of Inferred Nodes from the 9/11 Network 

 

Table 4.5 presents the list of actor IDs considered for status verification among 

participants of the 9/11 network. They are categorised into central and evasive 

participants. The central participants consist of actor IDs with low MAP values while 

the evasive participants are those with the highest MAP values. 

 

For central participants, six (6) actor IDs is listed for Case 1 - Figure 4.14, twenty-two 

 

(22) actor IDs is listed for Case 2 - Figure 4.16, Seven (7) actor IDs is listed for Case 3-

Figure 4.18 and finally, four (4) actor IDs is listed for Case 4 - Figure 4.20. For Case 1 - 

Figure 4.14, actor IDs is from the first three lowest MAP values. The list in Case 2 - Figure 

4.16 contains actor IDs that are structurally equivalent on a single MAP of zero. The list of 

actor IDs in Case 3 - Figure 4.18 are IDs drawn from the first four lowest MAP 

 
values. And Case 4 contains actor IDs that made the first four least MAP 
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Table 4.5: Nodes Detected by Inference from the 9/11 Network Using 

BNM Algorithm 
 

 Figure Number Central participants Evasive participants 
    

 CASE 1 - Figure 4.14 14, 54, 15, 3, 25, 41 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 20, 23, 
   28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 42, 45, 

   46, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 60 

 CASE 2 - Figure 4.16 1, 5, 6, 18, 23, 24, 26, 2, 4, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 

  33, 34, 35, 36, 37, 43, 25, 28, 29, 30, 32, 39, 40, 41, 42, 45, 50, 51, 

  44, 46, 47, 48, 49, 53, 52, 54, 60 

  57, 58, 59  

 CASE 3 - Figure 4.18 15, 5, 37, 35, 47, 48, 49 12, 32, 40, 57 

 CASE 4 - Figure 4.20 15, 26, 29, 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 

   20, 21, 25, 32, 33, 34, 35, 36,37, 47, 48, 49, 

   50, 51, 53, 55, 56, 58, 59, 60 

 

Under central participants, actor ID 15 occurs thrice, actor IDs 5, 14, 26, 35, 37, 47, 48, 

and 49 occur twice while the remaining IDs appear once. Mohamed Attah becomes the 

most conspicuous. His re-occurrence buttresses that he is a significant actor among all 

central participants. ‘‘The most important role was played by Mohamed Atta who was 

on the flight AA11 that crashed into the World Trade Centre North…’’ (Latora and 

Marchiori, 2004). He was also described as ring leader of this conspiracy (Kreb, 2002). 

 

Actor IDs 5, 14, 26, 35, 37, 47, 48, and 49 are Salem Alhazmi, Marwan Al-Shehhi, Mounir 

Moutassadiq, Osama Awadallah, Mohamed Abdi, Jean-Marc Grandvisir, Abu Zubeida, and 

Nizar Trabelis respectively. Some actors inferred as central participants through Case 2 - 

Figure 4.16 were found to be marginal actors. And marginal actors are potential legitimate 

actors. Salem and Marwan were hijackers. Salem was on the flight AA77 and Marwan was 

on the flight AA175. The remaining six actors were conspirators. 

 

Actor IDs 1, 3, 6 and 18 are another set of inferred central participants. They are Majed 

Moqed, Hani Hanjour, Ahmed Alnami and Wail Alshehri. Majed and Hani were on flight 

AA77, Ahmed was on AU93 and Wail was in AA11. They were flight hijackers. Hani 

Hanjour, actor ID 3 has relatively high links and was inferred through Case 1 - Figure 
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4.14. But Majed, Ahmed and Wail are marginal actors identified as central participants 

through Case 2 - Figure 4.16. This indicates that marginal nodes were inferred as central 

participants through Case 2 - Figure 4.16 that deterministic approach has failed to detect 

them. 

 

The following are conspirators; actor IDs 23, 24, 25, 29, 33, 34, 36, 41, 43, 44, 46, 53, 

54, 57, 58 and 59. Actor ID 29 was detected in Case 4 - Figure 4.20 and actor ID 54 was 

detected in Case 1 - Figure 4.14. Case 2 - Figure 4.16 detected the rest of actor IDs. Agu 

Budiman and Essid Sami Ben Khemail are actor IDs 29 and 54. Both are high nodal 

degree participants. Both were inferred from Case 4 - Figure 4.20 and Case 1-Figure 

4.14 respectively. 

 

Mamoun Darkazanli, Zakariya Essabar, Said Bahaji, are actor IDs 23, 24 and 25 

respectively. Bandar Alhazmi, Faisal Al Salmi and Abdussattar Shaikh are actor IDs 33, 

34 and 36. Abu Qatada, Jerome Courtaillier, David Courtaillier and Abu Walid are actor 

IDs 41, 43, 44 and 46. Lased Ben Heni, Fahid al Shakri, Madjid Sahoune, and Samir 

Kishk are actor IDs 53, 57, 58 and 59 respectively. Said Bahaji and Abu Qatada have 

seven links, Zakariya Essabar has 5 links, Jerome and David Courtaillier have four 

links. The number of links from three upward could make actors become significant in 

the network as well as making them emerge as central participants or key players. 

 

Mamoun Darkazanli, and Abu Sattar Sheik have three links. Faisal Al Salmi, Bandar 

Alhazmi, Abu Walid, and Lased Ben Heni have two links. Finally, Fahid, al Shakri, and 

Sakir Kishk have a link each. Although three links downward may be as insignificant or 

relatively low for placing an actor as a key player under deterministic approach. Such 

actors are always regarded as marginal actors. But through the BNM inference, marginal 

participants were inferred among the central participants. In a nutshell, this shows more 
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actors acceded to central participants. It has included conspirators those less expected to 

be key players. Secondly, inferring of marginal actors - those that SNA-based detections 

failed to ascribe significance or importance. Through prediction, marginal actors 

become vulnerable, and there is no longer a shield for legitimate actors. 

 

The list of IDs under evasive participants of Table 4.5 were drawn from the highest 

MAP values. Case 3 - Figure 4.18 has the least number of evasive IDs which is four (4); 

Case 1– Figure 4.14 has thirty-eight (38) nodes, Case 2 – Figure 4.16 has twenty-nine 

(29) nodes, and Case 4 -Figure 4.20 has thirty-five (35) nodes. They were predicted by 

inference as less-susceptible actors. 

 

Figure 4.22 presents a Venn diagram showing places of occurrence of actor IDs presented 

under evasive participants in Table 4.5. The Venn diagram includes list of inferred actors in 

Case 3 - Figure 4.18. But the Case’s number was not shown due to scattering of those actors 

in other Cases’ list. The Venn diagram summarize re-occurrence of the actor IDs in Case 1 - 

Figure 4.14, Case 2 - Figure 4.16 and Case 4 - Figure 4.20: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22: Venn Diagram of Evasive Nodes in the 9/11 Network 
 
 

 

Actor IDs: 4, 7, 8, 9, 11, 12, 20, 32, 51 and 60 re-occurred in all the three cases. These 

represent Nawaf Alhazmi, Ahmed Alghamdi, Saeed Alghamdi, Hamza Alghamdi, 
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Mohand Alshehri, Fayez Ahmed, Raed Hijazi, Rayed Mohammed Abdullah, 

Mohammed Bensakhria, and Kamel Daoudi respectively. The first six actors are flight 

hijackers. But only actor IDs 12 and 32 appeared in Case 3 - Figure 4.12 which is Fayez 

Ahmed and Rayed Mohammed Abdullah. 

 

The following actors re-occurred twice: Those that appeared in Case 1- Figure 4.14 and 

 

Case 4 - Figure 4.20 are IDs: 1, 5, 6, 18, 33, 34, 35, 36, 37, 47, 48, 49, 53, 55, 56, 58, and 

 

59. And these are Majed Moqed, Salem Alhazmi, Wail Alshehri, Bandar Alhazmi, 

Faisal Al Salmi, Osama Awadallah, Abdussattar Shaikh, Mohamed Abdi, Jean-Marc 

Grandvisir, Abu Zubeida, Nizar Trabelsi, Lased Ben Heni, Seifallah ben Hassine, 

Essoussi Laaroussi, Madjid Sahoune and Samir Kishk respectively. 

 

Actor IDs 10, 16, 28, 30, 40, 42 and 45 appeared in Case 1-Figure 4.14 and Case 2-Figure 

4.16. They are Ahmed Al Haznawi, Abdul Aziz Al-Omari, Ramzi Bin al-Shibh, Ahed 

Khalil Ibrahim Samir Al-Ani, Tarek Maaroufi, Djamal Benghal and Ahmen Ressam. 

 

Another set of actors appeared twice in Case 2- Figure 4.16 and Case 4 - Figure 4.20 

with the following IDs: 2, 19, 21, 25, and 50. These represent Khalid Al-Mihdhar 

(KAM), Satam Suqami, Nabil al-Marabh, Said Bahaji and Haydar Abu Doha. The first 

two actors are hijackers. Khalid Al-Mihhar (KAM) was identified as a facilitator 

(Karthika and Bose, 2011). 

 

The following actor IDs only occurred once. Actor IDs 23, 38, 46, 57 occurred in Case 1 

 

- Figure 4.14. The IDs represent Mamoun Darkazanli, Mohamed Belfas, Abu Walid and 

Fahid al Shakri. Actor IDs 14, 22, 29, 39, 41, 52 and 54 occurred in Case 2 - Figure 4.16. 

They are identified as Marwan Al-Shehhi, Mustafa Ahamend al-Hisawi, Agus Budiman, 

Imad Eddin Baraat Yarkas, Abu Qatada, Mohammed Bensakhria, and Essid Sami Ben 

 
Khemail. Finally, actor IDs 3, 13 and 17 only occurred in CASE 4-Figure 4.20 alone. 
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actors are Hani Hanjour, Zaid Jarrah, and Waleed Alshehri. Mustafa Ahamend al-

Hisawi was said to be sponsor of the 9/11 while Zaid Jarrah was a pilot. The two were 

actors identified as being evasive. 

 

Notice that Mustapha Ahamend al Hishawi appeared less important in the network, yet 

he was a sponsor, which make him very relevant to the survival of the group. Again, 

Zaid Jarrah appeared in inconspicuous in the network but he was a pilot. This made him 

close to important member of the group - hence his detection with eigenvector attribute. 

All this demonstrate the strength of the BN model. 

 

4.2.2 Results of classification of the 9/11 participants using SNA-Q algorithm 

 

Results of classification of participants in 9/11 criminal group using SNA-Q algorithm 

is presented here. Four cases of paired network attributes were used. The results are 

presented according to cases A to D that is, a pair of network attributes were used as 

inputs to SNA-Q model. Quadrants ae designated as following as: Q1 for prominent, Q2 

for the most prominent, Q3 for inconspicuous and Q4 for less-prominent. The point of 

interests is Q2 and Q4. Outcome of the classification in Q2 and Q4 were used to 

validate the actor IDs detected in BN model. 

 

Case A: Degree and Betweenness Centrality Inputs 

 

Figure 4.23 presents the classification of participants in the 9/11 criminal group. The 

SNA-Quadrant model was tested using degree and betweenness centrality of 

participants in the 9/11. Q1 has thirteen (13) nodes: 28, 14, 25, 41, 60, 40, 32, 9, 8, 24, 

52, 29 and 39. This denotes vulnerable actors on account of having high degree 

centrality but low covert roles – that is, relevant actors with respect to participation in 

heinous activities denoted by high degree centrality but less-important in roles 

considered to be covert roles. These participants could be regarded as gateway terrorists 
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champion the course of terrorisms. There is high propensity for actors in Q1 to replace 

any ex-communicated terrorists in Q2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.23: SNA-Quadrant Classification of the 9/11 Criminal group with Case A 
 

Q2 the second quadrant, contains actors that are grossly involved in indicting activities 

as well as covert activities. Some factional leaders, financial managers and experts in 

special skills are likely to be in this class. Factional leaders, for instance, need frequent 

relation with subordinates, which gives him prominence. Distribution of resources could 

make a participant become prominent. Prominence could also come through 

communications. But the provision of logistic, tactics, motivation and orders could be 

seldom that is, once in a while and unnoticed. For instance, an informant might be 

infrequent. Such a role is regarded as passive. When non-frequent activities become 

noticeable, it makes participants become vulnerable. But when it is below a noticeable 

threshold, the actor becomes less susceptible to security operatives. 

 

The significance of Q2 is that actors’ vulnerabilities lie with prominence in both two 

attributes. That is the vulnerability of these actors depends on their exorbitant activities. 
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Q2 has seven (8) nodes: 15, 54, 42, 4, 13, 27, 3 and 31. Out of the actors in Q2, four (4) 

 

are attackers: 3, 4, 13, 15 and four (4) conspirators: 27, 31, 42, and 54. 
 

 

Q3 is for errand nodes and few fugitives. Based on the description of active and passive 

attributes, both attributes usually fall below average. And the implication is that they are 

less indictable. 

 

The last quadrant Q4 is the quadrant of smart criminals. Actors here are less vulnerable 

as an assessment of active attribute will be insignificant. It falls below average of all 

frequent relationships, and activities. They are different from Q3, their passive attributes 

are noticeable and significant. A fugitive is less suspected. Q4 has only actor ID 10 that 

is, Ahmed Haznawi who was an attacker. 

 

Case B: Degree and Closeness Centrality Inputs 

 

Figure 4.24 is the node classification of participants in the 9/11 criminal group using 

degree and closeness centrality as inputs to SNA Quadrant model. Here, degree 

centrality was retained as an activity that make participants become vulnerable, while 

closeness was used as one that hide or lower actor’s susceptibility. 

 

Excessive relationships, sharing of ideas or resources with criminals could raise actors’ 

susceptibility. But due to vast relationships among criminals and unavailability of data 

about criminal relationships, this may prevent security operatives from veracity of 

criminal closeness. Closeness constitutes parts of activities that conceal participants. For 

instance, proximity could be obstructed when exact number of overt criminals an actor 

relate with is unknown. There could be discrepancy between the proximity in a network 

graph and that of geographical proximity. Two actors could be geographically close, but 

they could be far apart in network graph. 
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Figure 4.24: SNA-Quadrant Classification of the 9/11 Criminal group with Case B 
 

Sharing resources using weak ties (kinships) conceal actors who are really close. There 

was a report of a drug cartel where the network leader had one of his associates as his 

son. It was found that the son had a higher proximity than his father. And the father had 

low proximity because he did not engage in a phone conversation with his associates 

including the son as his son did with others (Bright, Greenhill, Reynolds, et al., 2015). 

 

Q1 has six (6) actors consisting of three (3) attackers and three (3) conspirators. The 

attackers: 4, 8, 9 are Nawaf Alhazmi, Saeed Alghamdi and Hamza Alghamdi. The 

conspirators: 42, 52 and 60 are Djamal Benghal, Mohammed Bensakhria, and Kamil 

Daoudi respectively. 

 

Q2 has fourteen (15) actors: 15, 54, 14, 28, 27, 13, 41, 3, 25, 32, 40, 24, 29, 39 and 31. 

Four (4) are attackers:3, 13, 14 and 15; and the remaining ten are conspirators. Q3 has 

remaining thirty-five (35) entrapped actors These actors were regarded as less indictable 

or inconspicuous actors. 
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Q4 has seven actors: 30, 26, 23, 22, 16, 12 and 10. They were identified as Ahed Khalil 

Ibrahim Samir Al-Ani, Mounir El Motassadeq, Mamoun Darkazanli, Mustapha 

Ahamend al-Hisawi, Abdul Aziz Al-Omari, Fayez Ahmed and Ahmed Al Haznawi 

respectively. These actors include both attackers and conspirators. The conspirators are 

30, 26, 23 and 22 while the attackers are 10, 12 and 16. 

 

Case C: Eigenvector and Betweenness Centrality Inputs 

 

Figure 4.25 presents classification of participants in the 9/11 using eigenvector and 

betweenness centralities as inputs to SNA-Quadrant model. Eigenvector centrality 

represents active attribute while betweenness represent passive attributes. The 

peculiarity of the combination lies with leaderships or influence as it affects key players. 

Influence or leadership roles at disposal of individual vary. Its possession and usage 

sometime indict actor’s vulnerability. 

 

High prominence could be ascribed to actors who exorbitantly exhibit his leadership 

roles than those who are not. Between centrality was used for passive attribute here to 

represent activities that key players - conspirators and leaders - enjoy most because of 

being less indicting. The combination is to show that some of high-profile criminals 

possess some attributes that lower their susceptibilities. An affiliate terrorist may avoid 

leaderships roles that is, indicting activities, but they cannot do without partaking in 

some activities considered as lessen to security operative attention. 
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Figure 4.25: SNA-Quadrant Classification of the 9/11 Criminal group with Case C 
 

Q1 has eleven (11) actors: 14, 16, 22, 23, 24, 25, 26, 28, 29, 39, and 41.  There are two 

 

(2) attackers, and nine (9) are conspirators. Q2 has five (5) actors: 13, 15, 27, 31 and 54. 

Two (2) are attackers and three (3) are conspirators. Q4 has four (4) actors: 3, 4, 10 and 

42. Three (3) out of these actors are attackers. 

 

Case D: Eigenvector and Closeness Centrality Inputs 

 

Figure 4.26 presents node classification for 9/11 using eigenvector and betweenness 

centralities. Q1 has no actors within it. Q2 has sixteen (16) actors: 13, 14, 15, 16, 22, 23, 

24, 25, 26, 27, 28, 29, 31, 39, 41 and 54. Only (4) out of this list are attackers, the 

remaining twelve actors are conspirators. Q4 has six (6) actors: 3, 10, 30, 32 and 40. 
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Figure 4.26: SNA-Quadrant Classification of the 9/11 Criminal group with Case D 
 

Distributions of Actors in Quadrants of SNA-Q models 

 

Table 4.6 presents distribution of nodes in SNA-Q models. These were quantified in 

percentage. Percentage of nodes in each quadrant was given. This was done across all 

Q1 to Q4. Number of nodes under Q1 to Q4 was divided by sum of total nodes in SNA-

Q model. 

 

Table 4.6: Distribution of 9/11 participants in the SNA-Quadrant Model  
 

Q-model variables 
 Distribution  

Total 
Q1(%) Q2(%) Q3(%) Q4(%)   

Case A - Figure 4.23 
18.3 13.3 66.7 1.7 100 

     

Case B - Figure 4.24 
8.3 23.3 58.3 10.0 100 

     

Case C - Figure 4.25 
18.3 8.3 66.7 6.7 100 

     

Case D - Figure 4.26 
0.0 25.0 65.0 10.0 100 
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Q1 is the quadrant that has the least percentage of zero and the highest percentage of 

18.3. It was designated as prominent for describing participants that engaged more in 

indicting activities than covert activities. The actors in Q1 are dispensable. 

 

Q2 has percentage between 8.3 and 25.0. Actors in Q2 and Q1 are equal vulnerability 

level. But in terms of relevancy to the criminal group, actors in Q2 are more important 

than Q1 because, Q2 actors had more covert roles that Q1 actors. Detection and removal 

of actors in Q2 may be effective for disrupting a criminal network. 

 

Q3 has the highest percentage of node distribution. It has 66.7 percent as the highest and 

58.3 as lowest percentage. Actors in Q3 were assumed to be less conspicuous and highly 

elusory. 

 

Q4 has the least percentage across all the model variables. Its highest percentage is 10.0 

and the lowest is 1.7 percent. The quality of actors in Q4 is more significant than their 

quantity. Actors in Q4 are less-vulnerable due to low or incessantly participation in 

indicting activities. But they are important to the group because they played covert roles 

too. High profile members aiding resistance to security perturbation are few compared 

to the entire group. And the importance of high-profile members lies in the ability to 

evade security detection. This can contribute to crime persistence. 

 

Finally, the following are actor IDs that reoccurred in quadrant of Case A through Case D. 

There are two types of participants involved: attackers and conspirators. The two types of 

participants were found in Q4. An attacker with ID 10 is the only one consistently appeared 

in the Q4 from Case A - Figure 4.23 to case D-Figures 4.26. A conspirator with ID 30 

emerged in Q4 of Case B - Figure 4.24 and Case D - Figure 4.26 only. An attacker with ID 

3 appeared in Q4 of Case C – Figure 4.25 and Case D -Figure 4.26. It was also observed in 

Q2 of Case A – Figure 4.23 and Case B - Figure 4.24. Actor ID 4 occurred 
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in Q4 of Case C - Figure 4.25. A conspirator with ID 40 featured in Q4 of Case D - 

Figure 4.26. A conspirator with ID 42 featured in Q4 of Case C - Figure 4.25. 

 

4.2.3 Verification of BNM inferred nodes in the 9/11 network 

 

This section used the SNA-Q algorithm to verify and validate set of nodes detected 

through the BNM algorithm for the 9/11 criminal group. It also validates the 

performance of BNM. There is a strong correlation between set of nodes inferred by the 

BNM and SNA-Quadrant. SNA-Q served as criminal profiles in absence of real data 

about participants in OCGs. The verification was carried on set of actors inferred as 

central participants and evasive participants. 

 

(i) Verification of BNM Inferred Central Participants Using SNA-Q Model 

 

Table 4.7 presents nodes inferred as central participants in 9/11 criminal network by BNM 

and SNA-Q. The Table contains forty (40) inferred actors. Twenty-eight (28) out of forty 

 
(40) are inferred by the BNM. Twenty-one (21) was inferred by the SNA-Q. It shows 

that BNM provided additional nineteen (19) actors that did not fall within Q2 of SNA-

Q. The actors are identified as 1, 5, 6, 18, 33, 34, 35, 36, 37, 43, 44, 46, 47, 48, 49, 53, 

57, 58, and 59. 

 

Ten (10) out of forty (40) listed actors are inferred by both the BNM and SNA-Q. The 

IDs are 3, 14, 15, 23, 24, 25, 26, 27, 41 and 54. Actor ID 15 has the highest re-

occurrence. It occurred in seven (7) cases: thrice under BNM cases and four times under 

SNA-Q which implies that actor ID 15 is an important central participant. Its emergence 

through case A to D confirm that, it is an actor that has influence, participated in 

indicting activities and also play covert roles for the group. 
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Table 4.7: Comparison of Inferred Central Nodes from the 9/11 Network  
 

9/11 Participants    BNM Algorithm  SNA-Q Algorithm (Q2) 

Actor Name 
Actor- 

Type 
Case Case Case Case Case Case Case Case 

ID 1 2 3 4 A B C D   
           

Majed Moqed 1 A  YES       

Hani Hanjour 3 A YES    YES YES   

Nawaf Alhazmi 4 A     YES    

Salem Alhazmi 5 A  YES YES      

Ahmed Alnami 6 A  YES       

Ziad Jarrah 13 A     YES YES YES YES 

Marwan Al-Shehhi 14 A YES   YES  YES  YES 

Mohamed Atta 15 A YES  YES YES YES YES YES YES 

Abdul Aziz Al-Omari 16 A        YES 

Wail Alshehri 18 A  YES       
Mustafa Ahamend al-          

YES 
Hisawi 22 C 

       

        

Mamoun Darkazanli 23 C  YES      YES 

Zakariya Essabar 24 C  YES    YES  YES 

Said Bahaji 25 C YES     YES  YES 

Mounir El Motassadeq 26 C  YES  YES    YES 

Zacarias Moussaoui 27 C    YES YES   YES YES   YES 

Ramzi Bin al-Shibh 28 C      YES  YES 

Agus Budiman 29 C      YES  YES 

Lofti Raissi 31 C      YES YES YES 
Rayed Mohammed        

YES 
  

Abdullah 32 C 
       

        

Bandar Alhazmi 33 C  YES       

Faisal Al Salmi 34 C  YES       

Osama Awadallah 35 C  YES YES      

Abdussattar Shaikh 36 C  YES       

Mohamed Abdi 37 C  YES YES      

Imad Eddin Baraat Yarkas 39 C      YES  YES 

Tarek Maaroufi 40 C      YES   

Abu Qatada 41 C YES     YES  YES 

Djamal Benghal 42 C     YES    

Jerome Courtaillier 43 C  YES       

David Courtaillier 44 C  YES       

Abu Walid 46 C  YES       

Jean-Marc Grandvisir 47 C  YES YES      

Abu Zubeida 48 C  YES YES      

Nizar Trabelsi 49 C  YES YES      

Lased Ben Heni 53 C  YES       

Essid Sami Ben Khemail 54 C YES    YES YES YES YES 

Fahid al Shakri 57 C  YES       

Madjid Sahoune 58 C  YES       

Samir Kishk 59 C  YES       

   6 22 7 4 7 15 5 16 
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Actor ID 14 and 26 re-occurred twice under BNM’s cases. Actor ID 14 has its profile 

description in case B and D while actor ID 26 has its profile in case D only. It means 

that both actors are significant. The case D denotes participants that have significant 

influence and also have significant covert role offered to the group. Case B provide 

additional feature that actor ID 14 has. Case B denotes feature for being involved in 

indicting activities and covert roles. 

 

The remaining five (5) actor IDs: 3, 23, 24, 25 and 41 occurred once either in case 1 or 

2. Actor IDs 24, 25 and 41 have their profiles description in case B and D. The similar 

digital profile description with actor ID 14. This trio are conspirators. Actor ID 3 has its 

profile description in case A and case B. The case A is description of participant that is 

actively participated in indicting activities and covert roles – intermediary. Actor ID 13 

is an attacker. Actor ID 23 has profile under case D which denotes being prominent 

through influence and proximity combined. 

 

Case 2 of BNM has the highest number of inferred central participants given as twenty-

two (22). Some of the actors include those that SNA-Q regarded their profile as 

inconspicuous. They are also regarded as legitimate actors. It is obvious that roles of 

legitimate actors may be difficult to quantify. That is the reason they are missing out in 

Q2 – simply because they have low participation; they interact less with criminal 

members or they have inconspicuous relationship with criminal group member. 

Nevertheless, they are facilitators and sometimes aid crime commission. 

 

Out of the twenty-two (22) inferred actor IDs 23 and 24 occurred once under BNM. 

Both are confirmed by SNA-Q. Significance of actor ID 23 was given in case D and that 

of actor ID 24 was obtained in both case B and case D. The two actors are conspirators. 
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Actor ID 26 is another that inferred as a central participant through case 2 and its 

importance was confirmed through case D. 

 

Actor IDs 5, 35, 37, 47, 48 and 49 were inferred under case 2 and case 3 but they did not 

fall within case 2 of SNA-Q which implies that SNA-Q profile is insufficient in 

providing profile status for nodes inferred by BNM. SNA-Q criminal profile 

classification covers all six (6) actors inferred under case 1 and four (4) actors inferred 

under case 4. But profile of only one actor ID out of seven in case 3 and three (3) actor 

IDs in case 2 out of twenty-two (22). 

 

(ii) Verification of BNM Inferred Evasive Participants Using SNA-Q Model 

 

Table 4.8 presents comparison of evasive nodes detected by the BNM algorithm with 

SNA-Q. The Table shows actors inferred as being evasive with those inferred in Q4 of 

SNA-Q. Recall that quadrant Q4 designates important participants who are less 

vulnerable to security operative detection. This is to identify potential fugitive in the 

9/11 network. The Table has fourteen (12) actors. 

 

Actor IDs 12 and 32 occurred as evasive nodes in all cases of BNM. Profiles of actor ID 

12 is obtained in case B and D while profile of actor ID 32 is obtained in case D. Actor 

IDs 4 and 40 occurred in three cases of BNM. Their profiles are given in C and D 

respectively. The description of participants in Q4 of case C and case D is for those 

partake less in indicting activities but active in furnishing the group with covert role. 

 

Actor IDs 10, 16, 30 and 42 occurred twice in cases of BNM. SNA-Q confirmed their 

profile status as smart actors under case A to for actor ID 10; case B and case D for 

actor ID 30; case B for actor ID 16 and case C for actor ID 42. 
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Actor IDs 3, 22 and 23 occurred once in BNM’s cases. Both actor IDs 3 and 23 were 

confirmed as smart participants. They were also inferred and confirmed as central 

participants. Actor ID 22 was inferred as evasive participant confirmed as smart actor. It 

was found that as financial aider to the group. This implies that not all key players 

occupy central position of criminal structure. 

 

Table 4.8: Comparison of Inferred Evasive Nodes from the 9/11 Network  
 

9/11 Participants    BNM Algorithm  SNA-Q Algorithm: Q4 

Actor Name 
Actor- 

Type 
Case Case Case Case Case Case Case Case 

ID 1 2 3 4 A B C D   
           

Hani Hanjour 3 A    YES   YES YES 

Nawaf Alhazmi 4 A YES YES  YES   YES  

Ahmed Al Haznawi 10 A YES YES   YES YES YES YES 

Fayez Ahmed 12 A YES YES YES YES  YES  YES 

Abdul Aziz Al-Omari 16 A YES YES    YES   
Mustafa Ahamend al-    

YES 
   

YES 
  

Hisawi 22 C 
      

        

Mamoun Darkazanli 23 C YES     YES   

Mounir El Motassadeq 26 C      YES   
Ahed Khalil Ibrahim Samir   

YES YES 
   

YES 
 

YES 
Al-Ani 30 C 

    
        

Rayed Mohammed   
YES YES YES YES 

   
YES 

Abdullah 32 C 
   

        

Tarek Maaroufi 40 C YES YES YES     YES 

Djamal Benghal 42 C YES YES     YES  

   9 9 3 4 1 7 4 6 
 
 

4.3 Analysis of BNM Algorithm’s Performance 

 

The BNM algorithm was tested with two criminal datasets. Its performance was collected 

and examined with respect to defined cases of inputs used in the BN model. Variety of 

analysis carried out on of BNM permits to evaluate its achievement with datasets on two 

criminal groups. The analysis was divided into three subsections. The first sub section 

presents summary of direct evaluation metrics about BNM’s detection performance. The 

second sub section presents indirect evaluation on BNM’s detection performance using 
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Receiver Operating Characteristic (ROC) plotted as Signal to Noise Ratio (SNR). Finally, 

 

BNM algorithm was compared with the entropy variation algorithm. 
 

 

4.3.1 Summary of direct assessment metrics on BNM’s performance 

 

Table 4.9 presents summary of metrics obtained from direct assessment of BNM’s 

performance. The value of prevalence is the same for all the inputs under each network. 

There is prevalence of 0.6833 and 0.2727 for 9/11 and N’17 respectively. The precision 

was low under N’17 and it was significant under 9/11 network. 

 

Table 4.9: Summary of BNM’s Performance Metrics 
 

   N17 network   Sept 11 network  

  BNM BNM BNM BNM BNM BNM BNM BNM 

  (dgr) (btw) (cls) (egv) (dgr) (btw) (cls) (egv) 

 TPR 0.8333 1 0.6667 0.5 0.6341 0.5609 0.5366 0.488 

 FNR 0.1667 0 0.3333 0.5 0.3659 0.439 0.4634 0.512 

 FPR 0.8125 0.5625 0.8125 0.875 0.6316 0.7895 0.4737 0.79 

 TNR 0.1875 0.4375 0.1875 0.125 0.3684 0.2105 0.5263 0.211 

 Prevalence 0.2727 0.2727 0.2727 0.2727 0.6833 0.6833 0.6833 0.683 

 Precision 
0.2778 0.4 0.2352 0.1764 0.6842 0.6053 0.7097 0.571  

(PPV)          

 FOR 0.25 0 0.4 0.6 0.6818 0.8182 0.6552 0.84 

 LR+ 1.0256 1.7778 0.8205 0.5714 1.0041 0.7106 1.1328 0.618 

 LR- 0.8889 0 1.7778 4 0.993 2.0854 0.8805 2.433 

 Accuracy 0.3636 0.5909 0.3182 0.2273 0.55 0.45 0.5333 0.4 
 

(ACC)          

 FDR 0.7222 0.6 0.7647 0.8235 0.3158 0.3947 0.2903 0.429 

 NPV 0.75 1 0.6 0.4 0.3182 0.1818 0.3448 0.16 

 DOR 1.1538 0 0.4615 0.1429 1.0111 0.3407 1.2865 0.254 

 F1 score 0.4167 0.5714 0.3478 0.2609 0.6582 0.5823 0.6111 0.526 
 
 

 

Table 4.9 shows that the highest TPR 1 is obtained under N17 network with BNM (btw) 

and followed by 0.833 and 0.6341 obtained for BNM (dgr) under N17 and the 9/11 

network respectively, while the least TPR (probability of detection) is 0.4878 obtained 

by BNM (egv) under the 9/11 network. The highest probability of false alarm (Pfa) FPR 

is 0.875 obtained by BNM (egv) under the N17 network, follow by 0.812 recorded for 

 

126 



both BNM (dgr) and BNM (cls) under the N17 network. And 0.4736 is the least FPR 

recorded under 9/11 for BNM (cls). And BNM (cls) has the highest TNR of 0.5267 

under the 9/11 network. 

 

Precision values are very low under N17 network and the highest value of 0.7096 is 

recorded under 9/11 network with BNM (cls) follow by 0.6818 obtained by BNM (dgr). 

BNM (egv) has the highest false omission rate of 0.84 and followed by BNM (btw) 

recorded 0.81981 FOR under the 9/11 network. And BNM (btw) has 0 false omission 

rate under N17 network. The lowest record of FOR implies that all nodes selected as 

conspirators are true conspirators. And the BNM (btw) had 0 for those missed detection 

while BNM (dgr) has 0.25 of those missed detection. 

 

The highest accuracy recorded is 0.5909 by BNM (btw) under N17 network. BNM (dgr) 

and BNM (cls) has 0.55 and 0.533 scores respectively under 9/11 network. And the 

BNM (egv) has the least accuracy value of 0.2272. The highest false discovery rate 

(FDR) is 0.8235 recorded by BNM (egv) and the least is 0.6 by BNM (btw) under N17 

network. But 9/11 has low FDR values. The least is 0.2903 and the highest is 0.4285 for 

BNM (cls) and BNM (egv) respectively. 

 

Finally, 9/11 network has the highest metric of F1 score of 0.6582 by BNM (dgr), 0.6111 

for BNM (cls), 0.5822 for BNM (btw) and 0.5263 for BNM (egv). And N17 network 

recorded the least as 0.2608 by BNM (egv), 0.3478 by BNM (cls), 0.416 value by BNM 

(dgr) and its highest as 0.5714. All show that there are slight differences from the direct 

evaluation carried out on the BNM detector using different attributes as inputs. It simply 

implies that, some attribute yet unknown may have significant impact BNM detection. 

 

The variation of the algorithm’s performance under different network attributes could be 

due to the different criminal nodes profiles (e.g., prominent, inconspicuous and evasive). 
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It could be that certain profiles are better described by certain network node attribute. 

Again, the nature of data the datasets used could be a significant factor in the overall 

performance evaluation. Datasets of criminals are prone to missing data, outliers, sundry 

inconsistency, all of which is attributed to hidden nature of criminal activities. 

Nevertheless, it is a good consolidation that the developed BNM performed appreciably 

well in the detection of covert nodes with ambiguous characteristics. 

 

4.3.2 Performance assessment on attributes used in enhanced BNM 
This section provides probability of detection (   ) against probability of false alarm for 
each attribute used in detection (   ). This is presented in terms of Signal-to-Noise Ratio 

 

(SNR) curves obtained through Receiver Operating Characteristic (ROC). A detector’s 

performance is measured from its ability to achieve a certain probability of detection, 

and probability of false alarm . A given SNR value, ‘ROC_SNR’ function 

 

automatically calculates and values that is linear or square law detector can achieve 

using a single pulse. The in Table 4.9 was used as signal pulse to generate the 

ROC_SNR curves. Evaluation was carried on the two criminal networks and different 

attributes used for their detection. 

 

(i) EnBNM’s Performance on N’17 Network 

 

Probability of detection against probability of false alarm was carried on four attributes 

used as inputs when experimenting EnBNM’s algorithm. 

 

Performance on Case 1: Degree Centrality 

 

Figure 4.27 presents performance of EnBNM using degree centrality attribute with of 

0.833. Probability of false alarm increases as probability of detection increases. 

of 0.2, is obtained at of 10−2 and of 0.6 is obtained at of 10−1. 
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Figure 4.27: Detection Probability against False Alarm Detection Case 1of N’17 
 

Performance on Case 2: Betweenness Centrality 

 
Figure 4.28 presents performance of EnBNM using betweenness centrality attribute with of 1 meaning all 
key actors were detected using the betweenness centrality as input. The probability of false alarm started 

emerged around from 10−4, and increases as 

the probability of detection increases. of 0.22, is obtained at of 10−2 and of 
0.65 is obtained at of 10−1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.28: Detection Probability against False Alarm Detection Case 2 of N’17 
 

Performance on Case 3: Closeness Centrality 

 

Figure 4.29 presents performance of EnBNM under closeness centrality attribute with of 

0.666 shown in the graph. With the same trend of increases with . Probability of 
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detection, of 0.2, with probability of false alarm of 10−2 and of 0.6 is obtained 
at of 10−1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.29: Detection Probability against False Alarm Detection Case 3 of N’17 
 

Performance on Case 4: Eigenvector Centrality 

 

Figure 4.30 presents performance of EnBNM under eigenvector centrality attribute with 

of 0.5 shown in the graph. Probability of detection, of 0.2 was obtained when 

probability of false alarm is 10−2 and of 0.6 is obtained at of 10−1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.30: Detection Probability against False Alarm Detection Case 4 of N’17 
 

(ii) EnBNM’s Performance on 9/11 Network 

 

Graphs of probability of detection to probability of false alarm over detected members 

of 9/11 terrorist group were used in examine EnBNM’s performance. The slight 

differences in each graph is contribution of each attribute in the algorithm. 
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Performance on Case 1: Degree Centrality 

 
Figure 4.31 presents performance of EnBNM using degree centrality attribute with of 0.6341. The Figure 
presents probability of detection over probability of false alarm over detection of participants in N’17 

network. of 0.2 was obtained at of 10−2 

and of 0.6 at of 10−1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.31: Detection Probability against False Alarm Detection Case 1 of 9/11 
 

Performance on Case 2: Betweenness Centrality 

 

Figure 4.32 presents performance of EnBNM using betweenness centrality attribute 

with of 0.5609. The curve is for against under testing of 9/11 terrorist network. 

of 0.2 was obtained at of 10−2 and of 0.6 at of 10−1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.32: Detection Probability against False Alarm Detection Case 2 of 9/11 
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Performance on Case 3: Closeness Centrality 

 

Figure 4.33 presents performance of EnBNM using closeness centrality attribute with 
 

of 0.5366. It shows that of 0.2 was obtained at of 10−2 and of 0.6 at of 10−1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.33: Detection Probability against False Alarm Detection Case 3 of 9/11 
 

Performance on Case 4: Eigenvector Centrality 

 

Figure 4.34 presents performance of EnBNM using eigenvector centrality attribute with 

of 0.4878. This is the least detection probability from all attributes used in EnBNM. 

 
The probability of detection shows that 0.2 of was obtained at of 10−2 and of 0.6 at of 10−1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.34: Detection Probability against False Alarm Detection Case 4 of 9/11 132 



These values are the same with values obtained in Figure 4.29 which is curve for 9/11 

using eigenvector centrality. It implies that eigenvector centrality is a poor attribute so 

far from the four attributes used in predicting covert members. 

 

Probability of detection against probability of false alarm presented through Figures 
4.27 to 4.34 reveal property of attributes used in predicting covert nodes. Eigenvector 
centrality has the least TPR of 0.5 and 0.4878 from Table 4.9 under N’17 and 9/11 

network respectively. These produce of 0.2 at = 10−2 and of 0.6 obtained at = 10−1. 
Degree centrality that had 0.8333 and 0.6341 TPR under N’17 

 
and 9/11 networks also had of 0.2 at = 10−2 and of 0.6 at = 10−1. Betweennss centrality is only attribute that had 100 percent TPR, 

which was obtained under N’17 network. This gives of 0.22 at = 10−2 and of 0.65 at = 10−1. It implies that input has little impact 
in influncing detection of EnBNM. 

 

 

4.3.3 Comparison of BNM algorithm with entropy variation algorithm 

 

The EnBNM algorithm was compared with the entropy variation algorithm using three 

networks of different sizes: kite network, the N17 network and the 9/11 network. 

Algorithm were compared on indication to identify detected node using only degree 

centrality as input. The results were presented separately to observe the trade off in the 

two algorithms over the dataset sizes. 

 

(i) Comparison of Algorithms of BNM and Entropy Variation Using the Kite 

Network Dataset 

 

Figure 4.35 presents entropy variations of the Kite network (Appendix F). It shows that 

actor ID 8 has the lowest depression of entropy connectivity and entropy centrality. This 

is a node that its removal can cause the network to disintegrate into two sub networks. 

Removal of actor ID 7, a central node cannot cause breaking up of the network. Even 
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though it has a high centrality value it is not regarded as key player under entropy 

connectivity and entropy centrality. Note that from entropy curves, the lowest point of 

depression depicts a node that its absence in the network will lower entropy of the 

network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.35: Entropy variation of the kite network 
 

Figure 4.36 is MAP distribution of the kite network. The Figure identified ID 7 as a 

central node with lowest depression. From Figures 3.35 and 3.36 show that different 

actor IDs were identified by entropy variation algorithm and BNM. It is obvious and 

conspicuous depression of BNM - Figure 3.36 is sharper than one in entropy variation 

curves - Figure 3.35. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.36: MAP Distribution of the Kite Network 
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(ii) Comparison of BNM and Entropy Variation Algorithm Using the N’17 Network 

Dataset 

 

Figure 4.37 presents entropy variation of N17 network. Actors with lowest depression 

are assumed to be key players in entropy algorithm. According to the entropy algorithm, 

lowest depression nodes will cause serious disruption in the network structure when 

removed. The Figure contains both entropy centrality and entropy connectivity . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.37: Entropy variation of N17 network 
 

Four actors are noticed in entropy centrality and five (5) actors are noticed in the 

entropy connectivity considering depressions in the graph. The actors are 1, 3, 6, 14, and 

16 for but include all except 16. Actor 16 is Pavlos Serifis. These are the same set of 

actors inferred as central participants in Case 1-Figure 4.1 and Case 3-Figure 4.3. Figure 

4.38 and Figure 4.39 present snapshots of data points and prevalence of central actors. 

Figure 4.38 and Figure 4.39 have actor ID 1, 3, 6, 14 and 16 as key players. Both 

algorithms identified the same set of actors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.38: Snapshot of cursor data for the N17 entropy variation 
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Figure 4.39: Snapshot of cursor data for MAP Distribution of the N’17 
 

 

(iii) Comparison of BNM and Entropy Algorithms using the 9/11 Network Dataset 

 

Figure 4.40 presents graph of entropy variation of the 9/11 network. Actor ID 54 has the 

lowest entropy value, followed by actor IDs 42 and 28. They were identified as Essid 

Sami Ben Khemail, Gjamal Bengal and Ramzi Bin al-Shibh respectively. By entropy 

connectivity and entropy centrality, these are relevant actors that their removal can 

disrupt the 9/11 network structure. Secondly, the most central actors become faded away 

as the size of the network increases. Figure 4.41 and 4.42 present snapshots of the data 

points under entropy variation and MAP distribution respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.40: Entropy variation of the 911 network 
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Figure 4.41: Snapshot of cursor data for 9/11 entropy variation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.42: Snapshot of cursor data for 9/11 MAP Distribution 
 

The EnBNM compared favourably well with the entropy variation algorithm. Both 

detect some set of nodes in common. However, a close look at Figures 4.35 and 4.37 of 

entropy variation curves compared with the EnBNM curve of Figure 4.36 and 4.39 

showed that depressions that indicate important points are not sharp under entropy 

variation. This situation become more obvious in the 9/11network dataset which is a 

larger dataset than the N’17 datasets. With even larger set, no points will be detectable 

in the entropy variation curve. This simply means that the BNM can handle larger 

datasets than the formers. This is a significance performance indicator. 
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4.4 Summary 

 

This research work presents empirical evidence to support the phenomenon that not all 

key players in OCGs are central nodes (section 2.6). The developed EnBNM algorithm 

was able to predict set of nodes using the network attributes of nodes as inputs to the 

EnBNM. The first inference was made on central participants - nodes vulnerable to 

detection. The second inference was on set of nodes that are less vulnerable. The set of 

nodes in the two inferences were analysed to identify key players using SNA-Q 

classification as ground truth information about participators. 

 

The results shows that there is strong correlation between the EnBNM and SNA-Q; 

some nodes were detected in common. However, the EnBNM inferred more central 

participants than the SNA-Q. Case 2 has large portion of inferred central participants. 

Majority of this actors were classified as inconspicuous by SNA-Q including nodes that 

having legitimate actors’ attributes. Detection of this class participants is unprecedented 

in covert nodes detection. Finally, detection of financial aiders among evasive confirm 

that that some key players are not centric actors. 
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CHAPTER FIVE 
 

5.0 CONCLUSION AND RECOMMENDATION 
 

5.1 Conclusion 
 

 

The development of Bayesian Network Model (BNM) for detection of covert nodes was 

achieved. The set nodes identified are from central as well as peripheral of a network 

structure that is, detection was not limited to central nodes alone. 

 

Algorithm for detection of covert nodes based on Bayesian Network was developed. 

The algorithm presents procedural steps for enhancing Bayesian Network Model for 

detecting covert nodes. 

 

Evaluation of the Enhanced Bayesian Network Model (EnBNM) algorithm was carried 

out on two terrorist groups datasets. The Algorithm detected both known and unknown 

key players. Unknown key players referred to new nodes detected by EnBNM while 

known key players referred to actors that previous works or literature identified as key 

players. 

 

The validation was carried out on detected nodes using ground truth data and SNA-Q. 

The ground truth validates SNA-Q; all actors convicted as leaders by court were also 

identified as key players by SNA-Q. This SNA-Q detection was also used for validation 

of detection on 9/11 dataset. The validation was achieved. 

 

Finally, comparison analysis was successfully carried out between EnBNM and entropy 

variation algorithms using kite, N’17 and 9/11 networks. The comparative analysis 

revealed strength of EnBNM over entropy over data size. The trade-off is that EnBNM 

detect more covert nodes with different inputs 
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5.2 Recommendation 

 

The following are recommended: 
 

 

1. Extraction of covert networks from telecommunication network is a research 

area that detection of covert nodes hinged on. Much are still needed to be done. 

 
2. Investigating features and developing techniques that would aid detection of 

legitimate actors because of their pertinent to crime commission. 

 

3. Finding attributes apart from social network attribute is a research area for 

mitigating challenges associated with profile status verification of participants in 

OCGs. 

 

5.3 Contribution to body of knowledge 

 

Through the development of BNM and implementation with terrorist datasets, the 

following were extracted as contribution to the knowledge: 

 

1. Bayesian network inference identified low degree actors as key players that 

deterministic approach cannot detect; all key players are not bound to central of a 

network. 

 
2. Level of participation in criminal activities is incongruent to participants’ level of 

conversation; some actors evade detection due to low or inconspicuous relationship 

with overt criminals; 

 
3. Identify position of fugitive; some actors that are important to the OCGs but have 

low propensity to detection; 

 
4. Finally, prediction through BNM inference identify more central participants - key 

players than SNA-based approaches. 

 
 
 

 

140 



REFERENCES 

 

Abazia, F. (2017) Mapping crime: network analysis of the mala del brenta criminal 
organization, American Political Science Association, 15(3), pp. 45–67. 

 

Agreste, S., Catanese, S., De Meo, P., Ferrara, E. & Fiumara, G. (2016) ‘Network 
structure and resilience of mafia syndicates’, Information Sciences. Elsevier Inc., 
351, pp. 30–47. 

 

Ahsan, M., Singh, T. & Kumari, M. (2015) ‘Influential node detection in social network 
dring community detection’, IEEE Cognitive Computing and Information 

Processing (CCIP), 2015 International Conference. 
 

Alvarez, A. J., Herrera, G. C. & Gonz, L. A. (2015) ‘Eigencentrality based on 

dissimilarity measures reveals central nodes in complex networks’, Nature 
Publishing Group. Nature Publishing Group, pp. 1–10. 

 

Ashby, M. (2016) Using crime science for understanding and preventing theft of metal 
from the British railway network. University of London. 

 

Barnes, N. (2017) ‘Criminal politics: an integrated approach and violence’, American 
Political Science Association, 15(4), pp. 967–987. 

 

Basaras, P. (2013) ‘Detecting influential spreaders in complex, dynamic 
networks’, Lincoln Laboratory Journal, 20(1), pp1-10. 

 

Basaras, P., Iosifidis, G., Katsaros, D. & Tassiulas, L. (2017) ‘Identifying influential 
spreaders in complex multilayer networks: a centrality perspective’, IEEE 
Transaction on Network Science and Engineering, (06), pp. 1–8. 

 

Basu, A. (2014) ‘Social network analysis: a methodology’, Springer International 
Publishing Switzerland, pp. 215–242. 

 

Behzadan, V. (2016) Real-time inference of topological structure and vulnerabilities for 
adaptive. The University of Nevada Reno. 

 

Behzadan, V., Nourmohammadi, A., Gunes, M. & Yuksel, M. (2017) ‘On fighting  
fire with fire: strategic destabilization of terrorist networks’, Proceedings of the 
2017 IEEE/ACM International Conference on Advances in Social Networks 
Analysis and Mining 2017, (iv), pp. 1120–1127. 

 

Belinda, C. (2010) ‘Group-based social network characterisation of hidden terrorist 

networks’, the 1st International Cyber Resilience Conference, (08), pp. 11–21. 
 

Berlusconi, G. (2013) ‘Do all the pieces matter? assessing the reliability of law 
enforcement data sources for the network analysis of wiretaps’, Global Crime, 
14(January 2015), pp. 61–81. 

 

Berlusconi, G., Calderoni, F., Parolini, N., Verani, M. & Piccardi, C. (2016) ‘Link 
prediction in criminal networks: A Tool for Criminal Intelligence Analysis’, 
PLOS ONE, pp. 1–21. 

 

Berzinj, A., Kaati, L. & Rezine, A. (2012) ‘Detecting key players in terrorist 

networks’, European Intelligence and Security Informatics Conference, pp. 297– 

302. 
 
 
 

141 



Bichler, G., Bernardino, S., Malm, A., Beach, L., Cooper, T. & Bernardino, S. (2017) 

‘Drug supply networkss: a systematic review of the organizational structure of 
illicit drug trade’, Global Crime, Routledge Taylor & Francis Group. Routledge, 

06(05), pp. 14–35. 
 

Bliss, N. T. & Schmidt, M. C. (2013) ‘Confronting the challenges of graphs and 
networks’, Lincoln Laboratory Journal, 20(1), pp1-20. 

 

Blondel, V. D., Decuyper, A. & Krings, G. (2015) ‘A survey of results on mobile 
phone datasets analysis’, EPJ Data Science, 4(1), pp. 1–55. 

 

Bonacich, P. & Lloyd, P. (2001) ‘Eigenvector-like measures of centrality for 
asymmetric relations’, Social Networks, 23(3), pp. 191–201. 

 

Borgatti (2006) ‘Identifying sets of key players in a social network’, Springer, pp. 21– 
34. 

 

Borgatti, S. P., Everett, M. G. & Freeman, L. C. (2012) UCINET 6 for 
Windows Software for Social Network Analysis. pp 1-9. 

 

Bright, D. (2015) ‘Disrupting and dismantling dark networks: lessons from social 
network analysis and law enforcement simulations’, in Illuminating Dark 
Networks. pp1-6. 

 

Bright, D., Greenhill, C., Britz, T. & Ritter, A. (2017) ‘Criminal network 

vulnerabilities and adaptations’,  Global Crime, Routledge Taylor & Francis 

Group. Routledge, 07(2), pp. 1–18. 
 

Bright, D., Greenhill, C., Reynolds, M., Ritter, A. & Morselli, C. (2015a) ‘The use of 
actor-level attributes and centrality measures to identify key actors: a case study 

of an Australian drug trafficking network’, Journal of Contemporary Criminal 
Justice, 31(3), pp. 262–278. 

 

Bright, D., Greenhill, C. & Ritter, A. (2015b) ‘Networks within networks : using 
multiple link types to examine network structure and identify key actors in a 
drug trafficking operation’, Routledge taylor and Francis Group, (5), pp. 37–41. 

 

Brunetto, D., Calderoni, F. & Piccardi, C. (2016) ‘Communities in criminal networks: 

a case study’, MOX, Dipartimento di Matematica Politecnico di Milano, Via 

Bonardi 9 - 20133 Milano (Italy), (26). 
 

Burcher, M. & Whelan, C. (2017) ‘Social network analysis as a tool for criminal 
intelligence: understanding its potential from the perspectives of intelligence 
analysts’, ResearchGate. Trends in Organized Crime, (May), pp. 1–18. 

 

Butt, W. H., Qamar, U. & Khan, S. A. (2014) ‘Hidden members and key players 
detection in covert networks using multiple heterogeneous layers’, Journal of 
Industrial and Intelligent Information, 2(2), pp. 142–146. 

 

Calderoni, F. (2010) ‘Strategic positioning in mafia networks’, Joint Research Centre 
on Transitional Crime, Universita Cattolics del Sacro Cuore di Milano, pp. 198– 
199. 

 

Calderoni, F. (2012) ‘The structure of drug trafficking mafias : the ‘ Ndrangheta and 
cocaine’, Springer Science +Business Media, 58(9), pp. 321–349. 

 
 

142 



 

Campana, P. & Varese, F. (2012) ‘Listening to the wire: criteria and techniques for the 
quantitative analysis of phone intercepts’, Springer Science +Business Media, 
15, pp. 13–30. 

 

Carley, K. M., Reminga, J., Kamneva, N. & Carley, K. M. (1998) ‘Destabilizing 
terrorist networks’, in Institute for Software Research , Carnegie Mellon 

University.pp1-7. 
 

Carter, K. M., Idika, N., Streilein, W. W. & Member, S. (2014) ‘Probabilistic threat 
propagation for network security’, IEEE Transactions on Information Forensics 
and Security, 9(9), pp. 1394–1405. 

 

Catanese, S., Ferrara, E. & Fiumara, G. (2013) ‘Forensic analysis of phone call 
networks’, Social Network Analysis and Mining, 3(1), pp. 15–33. 

 

Chatterjee, J. (2005) 'The changing structure of organized crime groups' International 
Conference on Advances in Social Network Analysis and Mining, pp. 149–164. 

 

Clauset, A., Moore, C. & Newman, M. E. J. (2008) ‘Hierarchical structure and 
the prediction of missing links in networks’, Letters, 453(5), pp. 98–101. 

 

Clauset, A. & Woodard, R. (2013) ‘Estimating the historical and future probabilities 
of large terrorist events’, Annals of Applied Statistics, 7(4). 

 

Costa, L. da F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2006) 

Characterization of complex networks: A survey of measurements.pp1-11. 
 

Course, C. & Hill, A. (2014) ‘The case of the terrorist organization november 17 (17n) 
media and political power’, 17.pp1-23. 

 

Dawoud, K., Alhajj, R. & Rokne, J. (2010) ‘A global measure for estimating the 

degree of organization of terrorist networks’, International  Conference  on 

Advances in Social Network Analysis and Mining. 
 

Du, Y., Gao, C., Hu, Y., Mahadevan, S. & Deng, Y. (2014) ‘A new method of 
identifying influential nodes in complex networks based on TOPSIS’, Physica 
A: Statistical Mechanics and its Applications. Elsevier B.V., 399, pp. 57–69. 

 

Duch, J. & Arenas, A. (2005) ‘Community detection in complex networks using 
extremal optimization’, Physical Review E - Statistical, Nonlinear, and Soft 
Matter Physics, 72(2), pp. 1–4. 

 

Duijn, P. A. C., Kashirin, V. & Sloot, P. M. A. (2014) ‘The relative ineffectiveness of 
criminal network disruption’, Scientific Reports. 

 

Eilstrup-Sangiovanni, M. & Jones, C. (2008) ‘Assessing the dangers of illicit 

networks: Why al-Qaida may be less threatening than many think’, International 

Security, 33(2), pp. 7–44. 
 

Eiselt, H. A. & Bhadury, J. (2015) ‘The use of structures in communication  
networks to track membership in terrorist groups’, Journal of Terrorism 
Research, 6(1), pp. 1–18. 

 

Everton, S. F. (2009). Disrupting dark network with social networks analysis. Expert 
Systems with Applications. pp1-13. 

 

143 



 

 

Eyal, R., Kraus, S. & Avi, R. (2011) ‘Identifying missing node information in social 
networks’, Twenty-Fifth AAAI Conference on Artificial Intelligence Identifying, 
pp. 1166–1172. 

 

Ferrara, E., De Meo, P., Catanese, S. & Fiumara, G. (2014) ‘Detecting criminal 
organizations in mobile phone networks’, Expert Systems with Applications. 

Elsevier Ltd, 41(13), pp. 5733–5750. 
 

Fortunato, S. (2010) Community detection in graphs, physics reports. Complex 
Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 
65, 10133, Torino, I-ITALY. pp1-34. 

 

Freeman, L. (1978) ‘Centrality in social networks: conceptual clarification’, Social 
Networks, 1, pp. 215–239. 

 

Ghasemi, M., Seidkhani, H., Tamimi, F., Rahgozar, M. and Masoudi-nejad, A. (2014) 
‘Centrality measures in biological networks’, pp. 1–17. 

 

Gliwa, B., Zygmunt, A. & Byrski, A. (2012) ‘Graphical analysis of social group 
dynamics’, 2012 Fourth International Conference on Computational Aspects of 
Social Networks (CASoN), 1, pp. 41–46. 

 

Grassi, R., Calderoni, F., Bianchi, M. & Torriero, A. (2019) ‘Betweenness to assess 
leaders in criminal networks: new evidence using the dual projection approach’, 
Social Networks. Elsevier, 56, pp. 23–32. 

 

Gregory, S. (2007) ‘An algorithm to find overlapping community structure in 
networks’, 4702 LNAI, pp. 91–102. 

 

Guillaume, J. & Latapy, M. (2006) ‘Bipartite structure of all complex networks’, 
HAL Id : hal-00016855 Bipartite Structure of all Complex Networks, (5), pp. 
215–221. 

 

Gunnell, D., Hillier, J. & Blakeborough, L. (2016) Social network analysis of 
an urban street gang using police intelligence Data. pp 1-16. 

 

Hasan, M. Al, Chaoji, V., Salem, S., Zaki, M. & York, N. (2006) ‘Link prediction 

using supervised learning’, In Proc. of SDM 06 workshop on Link Analysis,  
Counterterrorism and Security.pp1-14. 

 

Hensen (2011a) ‘Calculating and visualizing network metrics’, in NodeXL Tutorial-5, pp. 

69–78. 
 

Hensen (2011b) ‘Social network analysis measuring mapping and modeling 
collections of connections’, in NodeXL Tutorial-3, pp. 31–50. 

 

Holme, P. (2003) ‘Congestion and centrality in traffic flow on complex networks’, pp. 

1–9. 
 

Hu, P. & Mei, T. (2017) ‘Ranking influential nodes in complex networks 
with structural holes’, Physica A. Elsevier B.V.pp 1-16. 

 

Huang, D.-W. & Yu, Z.-G. (2017) ‘Dynamic-sensitive centrality of nodes in temporal 

networks.’, Scientific reports. Nature Publishing Group, 7(41454), pp. 1–11. 
 

144 



 

 

Hulst, R. (2009) ‘Introduction to social network analysis ( SNA ) as an investigative 
tool’, Springer, 12, pp. 101–121. 

 

Hussain, D. M. A. (2009) ‘Predicting hierarchical structure in small world’, 
ResearchGate, (012), pp. 1–2. 

 

Hussain, D. M. A. & Ortiz-arroyo, D. (2008) ‘Locating key actors in social networks 
using bayes’ posterior probability framework’, Springer-Verlag, pp. 27–38. 

 

Husslage, B. G. M., Lindelauf, R. & Hamers, H. J. M. (2012) ‘Leaderless covert 

networks: a quantitative approach’, CentER Discussion Paper;2012 Tilburg: 
Econometrics. General, 2012–0057, pp. 1–15. 

 

Ilachinski, A. (2005) Self-organized terrorist- counterterrorist adaptive coevolution. 

Expert Systems with Applications.pp1-15. 
 

Interpol (2018) Organized crime underpins major conflicts and terrorism globally, of 

illicit flow. pp1-13. Retrived on 25
th

 of September, 2019. 
 

Ismail, Abideen, Onwuka, E. N., Salihu, B. A. & Ubadike, C. O. (2019a) ‘Towards 
mining of stakeholders in criminal organizations from telecommunication 

metadata : analytic approach to latent feature extraction’, Journal of science 

technology and education, 7(3), pp. 42–48. 
 

Ismail, A., Onwuka, E. N., Salihu, B. A. & Ubadike, O. C. (2017) ‘Survey of techniques 

for detecting covert members of dark networks’, in Proceeding of 2nd 
International Engineering Conference (IEC2017) Federal University of 

Technology, Minna, Nigeria. Minna, pp. 226–233. 
 

Ismail, A, Onwuka, N., Salihu, A. & Ubadike, O. C. (2019b) ‘Detecting covert 

members: quadrant approach for classification and identification of smart 
criminals’, International Journal of Information Processing and Communication 

(IJIPC), 7(2), pp. 71–82. 
 

Jalayer, M., Azheian, M. & Kermani, Mehrdad Agha Mohammad, A. (2018) ‘A 

hybrid algorithm based on community detection and multi-attribute decision 

making  for  influence  maximization’,  Computers  &  Industrial  Engineering.  
Elsevier pp1-18. 

 

Jones, N. P., Dittmann, W. L., Wu, J. & Reese, T. (2018) ‘A mixed-methods social 

network analysis of a cross-border drug network: the Fernando Sanchez 

organization ( FSO )’, Springer Science+Business Media. Trends in Organized 
Crime. pp 1-23. 

 

Karthika, S. & Bose, S. (2011) ‘A comparative study of social networking approaches in 
identifying the covert nodes’, International Journal on Web Service Computing 
(IJWSC), 2(3), pp. 65–78.  
[  

Kassimeris, G. (2007) ‘For a place in history: explaining greece’s revolutionary 
organization 17 november by’, The Journal of Conflict Studies, (September 
2002), pp. 129–145. 

 
 

 

145 



Kasture, P. (2012) ‘Cluster based Outlier Detection’, International Journal of Computer 
Applications, 58(10), pp. 11–15. 

 

Keller, F. B. (2015) Networks of power: using social network analysis to understand 
who will rule and who is really in charge of the chinese communist party. Expert 
Systems with Applications.2(6), pp1-23. 

 

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & 
Makse, H. A. (2010) ‘Identification of influential spreaders in complex 
networks’, Nature Physics. Nature Publishing Group, 6(11), pp. 888–893. 

 

Klemm, K., Serrano, M. A., Eguiluz, V. M. & Miguel, M. S. (2012) ‘A measure of 
individual role in collective dynamics: spreading at criticality’, Scientific 
Reports, 2(2), pp. 292 -301. 

 

Klerks, P. (2001) ‘The network paradigm applied to criminal organisations: 

theoretical nitpicking or a relevant doctrine for investigators on recent 

developments in the netherlands’, Connection, 24(3), pp. 53–65. 
 

Kossinets, G. (2006) ‘Effects of missing data in social networks’, Social Networks 
Elsevier, 28, pp. 247–268. 

 

Kramer, S. (2007) ‘A new method for detecting and tracking covert terrorist networks’, 
Paragon Science, Inc., pp1-46. 

 

Kreb, V. E. (2002) ‘Mapping networks of terrorist cells’, Connections 2002, 24(3), 
pp. 43–52. 

 

Kriegler, A. (2014) ‘Using social network analysis to profile organised crime’, Institute 
for Security Studies, (09), pp. 1–8. 

 

Lampe, K. Von (2009) ‘Human capital and social capital in criminal networks: 
introduction to the special issue on the 7th bankensee colloquium’, Springer 
Science+Business Media, 12, pp. 93–100. 

 

Latora, V. & Marchiori, M. (2004) ‘How the science of complex networks can help 
developing strategies against terrorism’, Chaos,Solutions and Fractal, 20, pp. 
69– 75. 

 

Le, V. (2012) ‘Organised crime typologies: structure, activities, and conditions’, 
International Journal of Criminology and Sociology, 1, pp. 121–131. 

 

Lee, M., Lee, J. & Park, J. (2012) ‘QUBE: a quick algorithm for updating 

betweenness centrality’, Proceedings of the 21st international conference on 

World Wide Web, pp. 351–360. 
 

Leuprecht, C., Aulthouse, A. & Walther, O. (2016) ‘The puzzling resilience of transnational 

organized criminal networks’, Police Practice and Research, 17(4). 
 

Levi, M. (2007) ‘Organized crime and terrorism’. Oxford University Press.pp-45. 
 

Lin, S. & Chalupsky, H. (2003) ‘Unsupervised link discovery in multi-relational 

data via rarity analysis’, Third IEEE International Conference on Data Mining 

(ICDM’03). pp1-23. 
 

 

146 



Liu, J. J., Lin, J., Guo, Q. & Zhou, T. (2016) ‘Locating influential nodes via dynamics-

sensitivity centrality’, Scientific Report. Elsevier B.V., 43(xxxx), pp. 600–614. 
 

 

Lü, L.& Zhou, T. (2011) ‘Link prediction in complex networks: a survey’, Physica 
A. Elsevier B.V., 390(6), pp. 1150–1170. 

 

Madeira, M. & Joshi, A. (2013) ‘Analyzing close friend interactions in social media’, 
Proceedings - SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013, pp. 
932–935. 

 

Maeno, Y. (2007) ‘Node discovery problem for a social network’ Expert Systems with 
Applications. pp. 62–76. 

 

Maeno, Y. (2009) ‘Node discovery in a networked organization’, IEEE International 
Conference on Systems, Man, and Cybernetics, (October), pp. 3522–3527. 

 

Maeno, Y. & Ohsawa, Y. (2007a) ‘Analyzing the covert social network foundation 
behind terrorism disaster’, International Journal of Services Sciences, 2(x), p. 

pp.125-141. 
 

Maeno, Y. & Ohsawa, Y. (2007b) ‘Human – computer interactive annealing for 
discovering invisible dark events’, IEEE Transactions on Industrial Electronics, 
54(2), pp. 1184–1192. 

 

Maksim, T. & Carley, K. M. (2003) ‘Bouncing back: recovery mechanisms of 
covert networks’, casos, pp. 1–7. 

 

Malm, A. & Bichler, G. (2011) ‘Networks of collaborating criminals: assessing the 
structural vulnerability of drug Markets’, Journal of Research in Crime and 
Delinquency, 48(2), pp. 271–297. 

 

Malm, A., Bichler, G. & Nash, R. (2016) ‘Co-offending between criminal enterprise 
groups’, Routledge talour and Francis Gruop, 0572(06), pp. 112–128. 

 

Manning, J. D. (2010) Dark Networks, U.S. Army College, Carlisle Barrack. pp1-78. 
 

Matous, P. & Wang, P. (2019) ‘External exposure, boundary-spanning, and opinion 
leadership in remote communities: A network experiment’, Social Networks. 
Elsevier, 56, pp. 10–22. 

 

Memon, N., Wiil, U. K., Alhajj, R., Atzenbeck, C. & Harkiolakis, N. (2011) ‘Harvesting 
covert networks: a case study of the iminer database’, International Journal of 
Networking and Virtual Organisations, 8(1/2), p. 52. 

 

Minor, T. (2012) ‘Attacking the nodes of terrorist networks.’, Global Security Studies, 
3(2), pp. 1–13. 

 

Molinero, X., Riquelme, F. & Serna, M. (2018) ‘Satisfaction and power in unanimous 
majority influence decision models’, Electronic Notes in Discrete Mathematics, 
Science Direct, 68, pp. 197–202. 

 

Morselli, C. (2009) ‘Inside criminal networks’, Springer Science +Business Media. 

series/656. Edited by F. Bovenkerk. Springer, pp. 1-12. 
 
 

 

147 



Morselli, C. (2010) ‘Assessing vulnerable and strategic positions in a criminal network’, 
Journal of Contemporary Justice, 26(4), pp. 382–392. 

 

Namtirtha, A., Dutta, A. & Dutta, B. (2018) ‘Identifying influential spreaders in 
complex networks based on kshell hybrid method’, Physica A: Statistical 
Mechanics and its Applications, pp 499-521. 

 

Onwuka;, E. N., Bala;, A. S. & Murtala, S. (2016) ‘A Survey of influential nodes 

detection methods in mobile phone network’. International Conference on 
Information and Communication Technology and its Applications,(ICTA) 2016, 

Federal University of Technology, pp. 213–219. 
 

Ortiz-arroyo, D. (2010) ‘Discovering sets of key players in social networks’, (11), pp.  
1–20. 

 

Ouellet, F., Boivin, R. & Leclerc, C. (2013) ‘Friends with (out) benefits: co-offending 
and re-arrest’, Routledge taylor and Francis Group, 14(4), pp. 141–154. 

 

Ozgul, F. (2016) ‘Analysis of topologies and key players in terrorist networks’, Socio-
Economic Planning Sciences. Elsevier Ltd. pp 1-23. 

 

Palla, G., Der´eny, I., Farkas, I. & Vicsek, T. (2005) ‘Uncovering the overlapping 
community structure of complex networks in nature and society’, physics.soc-ph, 
1(6), pp. 1–10. 

 

Parisi, F., Caldarelli, G. & Squartini, T. (2018) ‘Entropy-based approach to missing-
links prediction’, Applied Network Science. Applied Network Science, pp. 1–15. 

 

Park, O. (2018) ‘Social network analysis for law enforcement’, Interanational 
Association of Crime Analysts iaca, 02, pp. 1–19. 

 

Paul, A. (2012) ‘Detecting Covert members of terrorist networks’. Expert Systems with 
Applications. pp 1-15. 

 

Pei, S., Morone, F. & Makse, H. A. (2017) ‘Theories for influencer identification in 
complex networks’, Expert Systems with Applications.pp1-12. 

 

Petta, D. L. (2018) ‘Why there is no real difference between a terrorist organization 

and an organized crime faction, just a matter of interaction towards the state’, 

Contemporary Voice, 1(5), pp. 39–48. 
 

Piraveenan, M. R. (2010) ‘Topological analysis of complex networks using 
assortativity’. Expert Systems with Applications. pp 1-23. 

 

Qiao, T., Shan, W. & Zhou, C. (2017) ‘How to identify the most powerful node in 
complex’, Entropy, 19(4), pp. 1–24. 

 

Reingen, P. H. & Zinkhan, G. M. (1994) ‘Structural holes: the social structure of 
competition’, American Marketing Association, pp. 152–155. 

 

Ren, G., Wang, X., Ren, G. & Wang, X. (2014) ‘Epidemic spreading in time-varying 
community networks’, An interdisciplinary journal of Nonlinear Science, 
023116, pp. 24–32. 

 
 
 

 

148 



Ren, J., Wang, C., Liu, Q., Wang, G. & Dong, J. (2016) ‘Identify influential  
spreaders in complex networks based on potential edge weights’, Internal Journal 

of Innovative Computing, Information, and Control, 12(2), pp. 581–590. 
 

Reserved, A. R., Pdf, T. & Datasets, M. (2019) ‘Learn to conduct descriptive whole 
social network analysis within an educational setting in ucinet with data from the 

inclusive education project learn to conduct descriptive whole social network 

analysis within an educational setting in ucinet with data’, SAGE Publications. 
 

Rhodes, C. J. and Keefe, E. M. J. (2007) ‘Social network topology: a bayesian approach’, 
Journal of the Operational Research Society, 58(12), pp. 1605–1611. 

 

Roberts, N. and Everton, S. F. (2011) ‘Strategies for combating dark 
networks’, Journal of Social Structure, 12, pp 1-22. 

 

Robinson, D. & Scogings, C. (2018) ‘The detection of criminal groups in real‑world 
fused data: using the graph‑mining algorithm “graphextract”’, Security 
Informatics. Springer Berlin Heidelberg, 7(2), pp. 1–16. 

 

Rodrigues, E. M. & Milic-Frayling, N. (2011) ‘Flickr linking people, photos, 
and tags’, in NodeXL Tutorial-13, pp. 201–223. 

 

Rostami, A. & Mondani, H. (2015) ‘The complexity of crime network data: a case study 
of its consequences for crime control and the study of networks’, PLOS ONE. 
Edited by T. Niederkrotenthaler. Public Library of Science, 10(3), pp 1-34. 

 

Rotman, D. & Golbeck, J. (2011) ‘YouTube contrasting patterns of content, 

interaction, and prominence’, in NodeXL Tutorial-14, pp. 225–246. 
 

Salvatore, C., Pasquale, D. M. & Giacomo, F. (2016) ‘Resilience in criminal 
networks’, AAPP | Atti della Accademia Peloritana dei Pericolanti Classe di 

Scienze Fisiche, Matematiche e Naturali, 94(2), pp. 1–19. 
 

Saxena, C., Doja, M. N. & Ahmad, T. (2018) ‘Group based centrality for 
immunization of complex networks’, Physica A. Elsevier B.V. pp 1-18. 

 

Serin, E., Adali, S. & Balcisoy, S. (2009) ‘Entropy-based sensitivity analysis and 

visualization of social networks’. Expert Systems with Applications. pp 1-9. 
 

Sharma, S. & Singh, A. (2016) ‘An efficient method for link prediction in 
weighted multiplex networks’, Computational Social Networks. pp 1-14. 

 

Sina, S., Rosenfeld, A. & Kraus, S. (2013) ‘Solving the missing node problem using 
the structure and attribute information’, Expert Systems with Applications. 2(07), 

pp. 744–751. 
 

Smith, M., Shneiderman, B., Milic-frayling, N., Rodrigues, E. M., Barash, V., Dunne, 

C., Capone, T., Perer, A. & Gleave, E. (2009) ‘Analyzing ( social media ) 
networks with nodeXL’. Expert Systems with Applications.pp 1-15. 

 

Smith, S. T., Kao, E. K., Senne, K. D. & Bernstein, G. (2014) ‘Bayesian network 

detection using absorbing markov chains’, ICASSP, IEEE International 
Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 

3435– 3439. 
 

 

149 



Smith, S. T., Kao, E. K., Senne, K. D., Bernstein, G. & Philips, S. (2014) ‘Bayesian 
discovery of threat networks’, IEEE Transactions on Signal Processing, 
62(2), pp. 5324–5338. 

 

Smith, S. T., Philips, S. & Kao, E. K. (2012) ‘Harmonic space-time threat 

propagation for graph detection’, ICASSP, (1), pp. 3933–3936. 
 

Smith, S. T., Senne, K. D., Philips, S., Kao, E. K. & Bernstein, G. (2013) ‘Covert 
network detection’, Lincoln Laboratory Journal, 20(1), pp. 47–61. 

 

Sparrow, M. K. (1991) ‘The application of network analysis to criminal intelligence: 
An assessment of the prospects’, Social Networks, 13(3), pp. 251–274. 

 

Sun, Q., Qiao, Y., Wang, J. & Shen, S. (2016) ‘Node importance evaluation method in 

wireless sensor networks based on an energy field model’, Eurasip Journal on 
Wireless Communications and Networking. EURASIP Journal on Wireless 

Communications and Networking, 2016(1), pp. 1–9. 
 

Tayebi, M. A. (2015) Predictive models for public safety using social network 
analysis.PhD Thesis, Simon Fraser University Summer.pp1-189. 

 

Thangaraj, M. and Amutha, S. (2018) ‘Mgephi: modified gphi for effective social 
network analysis’, International Journal of Scientific Research in Computer 
Science, Engineering and Information Technology, 3(1), pp. 39–50. 

 

UCINET Software - 17 November Greece Bombing (2017). 

 

UCINET Software - 9/11 Hijackers (2017). 

 

United Nations (2014) ‘World crime trends and emerging issues and responses in the 

field of crime prevention and criminal justice’, Commission on Crime 
Prevention and Criminal Justice, 23rd session, 00885(2), pp. 1–30. 

 

Varese, F. (2013) ‘The structure and the content of criminal connections: The 
Russian Mafia in Italy’, oxford journals, 29(5), pp. 899–909. 

 

Wang, S., Du, Y. & Deng, Y. (2016) ‘A new measure of identifying influential nodes: 
Efficiency centrality’, Communications in Nonlinear Science and Numerical 
Simulation. Elsevier B.V. pp 1-22. 

 

Wang, S., Du, Y. & Deng, Y. (2017) ‘A new measure of identifying influential nodes: 

efficiency  centrality’,  Communications  in  Nonlinear  Science  and  Numerical 

Simulation, 47, pp. 151–163. 
 

Wang, S. and Zhao, J. (2015) ‘Multi-attribute integrated measurement of node 
importance in complex networks’, Chaos, 25(11). pp 1-19. 

 

Welser, H. T., Underwood, P., Cosley, D., Hansen, D. & Black, L. W. (2011) 
‘Connections of creativity and collaboration’, in NodeXL Tutorial-15: Analyzing 
Social Media Networks with Nodexl. Elsevier Inc., pp. 247–271. 

 

Xu, J. & Chen, H. (2008) ‘The topology of dark networks’, Communication of the 
ACM, 51(10), pp. 58–65. 

 
 

 

150 



Yang, A., Tang, Y., Wang, J. & Chen, J. (2014) ‘Covert nodes mining in social 

networks based on games theory’, Proceedings of the 2014 IEEE 18th 
International Conference on Computer Supported Cooperative Work in Design, 

CSCWD 2014, pp. 541–545. 
 

Yao, L., Wang, L., Pan, L. & Yao, K. (2016) ‘Link prediction based on common-
neighbors for dynamic social network’, Procedia - Procedia Computer Science. 
Elsevier Masson SAS, 83(Ant), pp. 82–89. 

 

Ying, L., Tang, M., Do, Y. & Hui, P. M. (2017) ‘Accurate ranking of influential 
spreaders in networks based on dynamically asymmetric link-impact’, pp. 1–9. 

 

Zejun, S., Bin, W., Jinfang, S., Yixiang, H., Yihan, W. & Junming, S. (2017) 
‘Identifying influential nodes in complex networks based on the expansion 
factor’, International Journal of Modern Physics C, 27(09), p. 1650105. 

 

Zhang, J., Chen, D., Dong, Q. & Zhao, Z. (2016) ‘Identifying a set of influential 
spreaders in complex networks’, pp. 1–13. 

 

Zhao, B., Sen, P. & Getoor, L. (2006) ‘Entity and relationship labeling in affiliation 

networks’,  In  proceedings  of  the  23rd  International  Conferen  on  MAchine 

Learning, Pittsburgh,.pp 1-21. 
 

Zhao, J., Miao, L., Yang, J., Fang, H., Zhang, Q. & Nie, M. (2015) ‘Prediction of 

links and weights in networks by reliable routes’, Nature Publishing Group. 

Nature Publishing Group, pp. 1–15. 
 

Zignani, M., Quadri, C., Bernardinello, S., Gaito, S. & Rossi, G. P. (2015) ‘Calling  
and texting: social interactions in a multidimensional telecom graph’, Proceedings  
- 10th International Conference on Signal-Image Technology and Internet-Based 
Systems, SITIS 2014, pp. 408–415. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

151 



APPENDICES 

 

Appendix A (Meta-Analysis of SNA-based Algorithm) 
 

Authors Title Method Strength Weakness 
     

Kreb (2002) Mapping Applying Open-source data; Data defectiveness; 
 Networks of centrality metrics unitary relationship Structurally 

 Terrorist Cells  network equivalence 

    attribute aid key 

    players evasion 

Borgatti (2006) Identifying sets of Key player Visual-graphic Tedious in large 

 key players in a problem; positions to key data set; erratic and 

 social network  players; unitary dynamic attributes 

   network in OCGs 

Lampe (2009) Human capital Social network social network inaccessibility to 

 and social capital attribute and attributes accessibility human-capital 

 in criminal participants  attribute 

 networks: personal   

 introduction to the attributes   

 special issue    

Morselli (2010) Assessing Vulnerability and accessibility to social inability to detect 

 vulnerable and strategic network attribute; low-nodal degree 

 strategic positions positions. partly resolved actor; legitimate 

 in a criminal Combined structural equivalent actors 

 network degree and issue  

  betweenness   

Karthika and A comparative Multiple nodes with high poor detection; 

Bose (2011) study of social centrality metric score are unverified 

 networking metrics: degree, vulnerable; detected personality; 

 approaches in betweenness, and key actors; challenges of 

 identifying the closeness  hidden relationship, 

 covert nodes   dynamic behaviour 

    and defective data 

Berzinj et al. Detecting Key combination of integration of unverified 

(2012) Players in different centrality metrics; personality; high- 

 Terrorist centrality focusing on financial profile key actors 

 Networks measures to manager were ignored 

  detect key   

  players in   

  decentralized   

  network   

Calderoni (2012) The structure of Use SNA to Identification of The resilience of 

 drug trafficking investigate the strategic position with mafia to law 

 mafias: the relevancy of criminal leaders enforcement action 

 ‘Ndrangheta and tasks and   

 cocaine hierarchy   

Husslage et al. Leaderless Covert Social network flat organizational Varying network 

(2012) Networks: A attribute and structure; unitary structures of 

 Quantitative correlation network structure; criminals; varying 

 Approach  social network social network 

   attributes attributes 

Campana and Listening to the Phone Access to phone High-profile actor 

Varese (2012) wire: criteria and conversation content; unitary with low phone 

 techniques for the wiretapped, network; dislodge conversation were 

 quantitative SNA analysis FOS less-vulnerable; 

 analysis of phone   structurally- 

 intercepts   equivalent problem 
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Catanese et Forensic analysis Phone calls log; visualization of Inability to handle 

al.(2013) of phone call link analysis and participant in criminal hidden 

 networks centrality metrics activities; hierarchies relationships; 

  incorporated. of community, and detective data 

   key players  

Varese (2013) The structure and Phone call Access to the content Complex data 

 the content of interception; of phone processing, 

 criminal investigating the conversation; Potent failure 

 connections: The organizational obtained hierarchical without intercepting 

 Russian Mafia in structure and structure in phone the content 

 Italy adaptive to conversation of  

  security pressure OCGs.  

Ferrara et al. Detecting Statistical Discovery members Legitimate actors 

(2014) Criminal network analysis, who play vital roles, are evasive 

 Organizations in community hierarchy and  

 mobile phone detection, visual community in  

 networks exploration of criminal organisations  

  mobile phone   

  networks   

Basu (2014) Social Network Social network Open-source data; unconcerned with 

 Analysis: A analysis adopted unitary relationship hidden relationships 

 Methodology for terrorist network  

  network structure   

Butt et al. (2014) Hidden Members Degree centrality Integration of Inaccessibility to 

 and Key Players and multiple database for terrorist data 

 Detection in relationships and monitoring criminal The high nodal 

 Covert Networks transaction activities degree could be 

 Using Multiple networks  fake 

 Heterogeneous    

 Layers    

Bright et al. The use of actor- Combined Effective in Different rating of 

(2015) level attributes metrics: degree connecting resources and 

 and centrality and weighing personalities with biased 

 measures to attributes social network status Maybe biased or 

 identify key   overrating resources 

 actors: a case    

 study of an    

 Australian drug    

 trafficking    

 network    

Bright et al. Networks within using scatterplot Detecting key actors Accessibility to 

(2015) networks: using of degree and in each link; more key multiple relations 

 multiple link betweenness actors identified datasets for OCGS; 

 types to examine centrality; study including legitimate operation of 
 network structure eight links in actors terrorist of hidden 

 and identify key DTO;   

 actors in a drug    

 trafficking    

 operation    

Ozgul (2016) Analysis of comparative key-players in no consideration for 

 topologies and analysis of terrorist groups erratic behaviours; 

 key players in topologies of assumed to be central dynamic in 

 terrorist networks terrorist groups actors irrespective of structural positions; 

  with different historical lineage. highly prone to 

  centrality metrics  false alarm; 

Gunnell (2016) Social Network Combined Detecting vulnerable Arbitrary data; 

 Analysis of an metrics: degree members of street Unorganized data 

 Urban Street and weighing gangs  

 Gang Using attributes   
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Police 

Intelligence Data 

 

Grassi et al. Betweenness to Eight different A high correlation of Bipartite data; 

(2019) assess leaders in types of metric; Accessibility to 

 criminal betweenness Criminal leaders’ criminal meeting 

 networks: new centrality adherent to brokerage attendance 

 evidence using    

 the dual    

 projection    

 approach    

Ismail et al. Detecting Covert Social Network Social network Inaccessibility to 

(2019) Members: Analysis and attributes, detecting terrorist data, 

 Quadrant Quadrant evasive members in profile of 

 approach for Classification of criminal structure participants 

 Classification and Criminal   

 Identification of Attributes   

 Smart Criminals    
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Appendix B (Network Attributes of Actors in Al-Qaeda 9/11 Attack) 
 

Actor Name Actor ID Degree Closeness. Betweenness Eigenvector 

  Centrality Centrality Centrality (   ) Centrality 

  (   ) (   )  (   ) 

Majed Moqed 1 0.0167 0.2449 0.0000 0.0052 

Khalid Al-Mihdhar 2 0.0667 0.2632 0.0232 0.0078 

Hani Hanjour 3 0.1167 0.3226 0.2095 0.0365 

Nawaf Alhazmi 4 0.1500 0.2804 0.1414 0.0120 

Salem Alhazmi 5 0.0167 0.2198 0.0000 0.0017 

Ahmed Alnami 6 0.0500 0.2353 0.0000 0.0053 

Ahmed Alghamdi 7 0.0333 0.2281 0.0014 0.0024 

Saeed Alghamdi 8 0.1000 0.2817 0.0695 0.0120 

Hamza Alghamdi 9 0.1000 0.2804 0.0594 0.0130 

Ahmed Al Haznawi 10 0.0500 0.3141 0.1033 0.0472 

Mohand Alshehri 11 0.0333 0.2655 0.0103 0.0127 

Fayez Ahmed 12 0.0500 0.3046 0.0268 0.0761 

Ziad Jarrah 13 0.1333 0.3750 0.1306 0.3067 

Marwan Al-Shehhi 14 0.2000 0.3797 0.0760 0.3883 

Mohamed Atta 15 0.2500 0.4444 0.5080 0.4388 

Abdul Aziz Al-Omari 16 0.0500 0.3333 0.0430 0.1231 

Waleed Alshehri 17 0.0667 0.2791 0.0707 0.0386 

Wail Alshehri 18 0.0333 0.2308 0.0000 0.0065 

Satam Suqami 19 0.0667 0.2469 0.0377 0.0074 

Raed Hijazi 20 0.0500 0.2308 0.0098 0.0033 

Nabil al-Marabh 21 0.0667 0.2317 0.0139 0.0036 

Mustafa Ahamend al-Hisawi 22 0.0667 0.3409 0.0588 0.1340 

Mamoun Darkazanli 23 0.0500 0.3158 0.0000 0.1602 

Zakariya Essabar 24 0.0833 0.3315 0.0000 0.2526 

Said Bahaji 25 0.1167 0.3352 0.0027 0.2985 

Mounir El Motassadeq 26 0.0667 0.3175 0.0000 0.2089 

Zacarias Moussaoui 27 0.1333 0.3529 0.2201 0.1579 

Ramzi Bin al-Shibh 28 0.1500 0.3659 0.0543 0.3427 

Agus Budiman 29 0.0833 0.3333 0.0240 0.2158 

Ahed Khalil Ibrahim Samir Al- 30 0.0333 0.3125 0.0090 0.0682 

Ani      

Lofti Raissi 31 0.0833 0.375 0.2380 0.1719 

Rayed Mohammed Abdullah 32 0.1000 0.2985 0.0236 0.0381 

Bandar Alhazmi 33 0.0333 0.2459 0.0000 0.0106 

Faisal Al Salmi 34 0.0333 0.2459 0.0000 0.0106 

Osama Awadallah 35 0.0500 0.2214 0.0000 0.0033 

Abdussattar Shaikh 36 0.0500 0.2214 0.0000 0.0033 

Mohamed Abdi 37 0.0167 0.2198 0.0000 0.0017 

Mohamed Belfas 38 0.0333 0.2532 0.0003 0.0404 
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Imad Eddin Baraat Yarkas 39 0.0833 0.3390 0.0409 0.1411 

Tarek Maaroufi 40 0.1000 0.2927 0.0206 0.0638 

Abu Qatada 41 0.1167 0.2941 0.0552 0.0827 

Djamal Benghal 42 0.1500 0.2844 0.1069 0.0644 

Jerome Courtaillier 43 0.0667 0.2703 0.0000 0.0470 

David Courtaillier 44 0.0667 0.2703 0.0000 0.0470 

Ahmen Ressam 45 0.0333 0.2778 0.0082 0.0262 

Abu Walid 46 0.0500 0.2344 0.0000 0.0296 

Jean-Marc Grandvisir 47 0.0167 0.2222 0.0000 0.0092 

Abu Zubeida 48 0.0167 0.2222 0.0000 0.0092 

Nizar Trabelsi 49 0.0167 0.2222 0.0000 0.0092 

Haydar Abu Doha 50 0.0667 0.2778 0.0088 0.0265 

Mehdi Khammoun 51 0.0500 0.2667 0.0006 0.0259 

Mohammed Bensakhria 52 0.0833 0.2778 0.0052 0.0413 

Lased Ben Heni 53 0.0333 0.2643 0.0000 0.0221 

Essid Sami Ben Khemail 54 0.2000 0.3550 0.2568 0.1143 

Seifallah ben Hassine 55 0.0500 0.2752 0.0000 0.0344 

Essoussi Laaroussi 56 0.0500 0.2752 0.0000 0.0344 

Fahid al Shakri 57 0.0167 0.2632 0.0000 0.0163 

Madjid Sahoune 58 0.0333 0.2655 0.0000 0.0200 

Samir Kishk 59 0.0167 0.2632 0.0000 0.0163 

Kamel Daoudi 60 0.1000 0.2804 0.0086 0.0610 
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Appendix C (Typical CDR Contents)  
 
     Dialled Dest. Other        

Target Date Time Duration DIR Number Number Number Status Special Feature Caller IDSwitch Sector Tower Switch Sector Tower 

              

5107308760 10/29/2011 19:45:51 0:16 Outgoing call 7319368 5107319368 5107319368 Answered None San Francisco2 3 183 3 183 

5107308760 10/29/2011 23:32:49 0:37 Outgoing call 9275717 5109275717 5109275717 Answered None San Francisco2 1 94 1 94 

5107308760 10/29/2011 23:33:32 0:36 Outgoing call 9275717 5109275717 5109275717 Answered None San Francisco2 1 94 1 94 

5107308760 10/30/2011 0:43:18 0:02 Incoming call  5107308760 5109275717 Not Answered None 5109275717 San Francisco2 3 94 3 94 

5107308760 10/30/2011 11:55:46 0:18 Incoming call  5107308760 4085616930 Not Answered None 4085616930 San Francisco2 1 94 1 94 

5107308760 10/30/2011 11:56:43 0:28 Outgoing call 4085616930 4085616930 4085616930 Not Answered None San Francisco2 1 94 1 94 

5107308760 10/30/2011 13:18:10 0:24 Outgoing call 4087269200 4087269200 4087269200 Not Answered None San Francisco2 1 94 1 94 

5107308760 10/30/2011 13:20:54 0:08 Incoming call 3.23E+12 5107308760 5104858523 Not Answered Call FWD- No REPLY 4104858523 San Francisco2 1 94 1 94 

5107308760 10/30/2011 13:32:25 0:34 Outgoing call 5104858523 5104858523 5104858523 Answered None San Francisco2 1 94 1 94 

5107308760 10/30/2011 16:54:27 0:08 Incoming call 3.23E+12 5107308760 5104858523 Not Answered Call FWD- No REPLY 5104858523 San Francisco2 3 182 3 182 

5107308760 10/30/2011 17:03:47 0:07 Incoming call 3.23E+12 5107308760 5104858523 Not Answered Call FWD- No REPLY 5104858523 San Francisco2 3 182 3 182 

5107308760 10/30/2011 17:17:26 0:10 Outgoing call 5104858523 5104858523 5104858523 Answered None San Francisco2 3 182 3 182 

5107308760 10/30/2011 17:27:48 0:03 Incoming call 3.23E+12 5107308760 5107319368 Not Answered Call FWD- No REPLY 5107319368 San Francisco2 3 182 3 182 
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5107308760 10/30/2011 21:17:27 0:06 Incoming call 3.23E+12 5107308760 5105863731 Not Answered Call FWD- No REPLY 5105863731 San Francisco2 3 204 3 204 

5107308760 10/30/2011 21:29:12 2:35 Outgoing call 5105853731 5105863731 5105863731 Answered None San Francisco2 3 204 3 204 

5107308760 10/30/2011 22:48:41 1:55 Incoming call  5107308760 5105853731 Answered None 5105863731 San Francisco2 3 204 3 204 

5107308760 10/30/2011 23:27:54 0:04 Incoming call 3.23E+12 5107308760 5107319368 Not Answered Call FWD- No REPLY 5107319368 San Francisco2 3 217 4 495 

5107308760 10/31/2011 0:00:54 0:22 Outgoing call 5107319368 5107319368 5107319368 Answered None San Francisco2 3 53 3 53 

5107308760 10/31/2011 0:01:23 0:54 Outgoing call 5107319368 5107319368 5107319368 Answered None San Francisco2 3 53 3 53 

5107308760 10/31/2011 0:02:28 0:25 Incoming call  5107308760 5107319368 Answered None 5107319368 San Francisco2 2 179 2 179 

5107308760 10/31/2011 0:03:03 2:31 Incoming call  5107305760 5107319368 Answered None 5107319368 San Francisco2 3 53 3 53 

5107308760 10/31/2011 0:11:03 0:04 Incoming call 3.22E+12 5107308760 5107319368 Not Answered Call FWD- No REPLY 5107319368 San Francisco2 2 179 2 179  
 

(Source: Ferrara et al., 2014) 
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Appendix D (Source Codes for BNM Algorithm) 
 

Source Codes for BNM Algorithm 
 

%% Beta-Binomial Distribution on Centrality Measures 
%% Datasets: centrality metrics of 9/11 Terrorist group 
%% By ISMAIL A. Adekunle  
%% Date: Rabiul-Awwal 25th,1439/December 14th 
2017 clear; close all; clc;  
ismail = 

xlsread('Sept11data.xls'); clc;  
Cd = ismail (:2); %degree centrality measures  
Cc = ismail (:3); %closeness centrality measures Cb 

= ismail (:4); %betweenness centrality measures Ce = 

ismail (:5); %eigenvector centrality measures  
Ld = length (Cd); % number of actors’ values in the degree 

centrality Lc = length (Cc); % number of actors’ values in the 

closeness centrality  
Lb = length (Cb); % number of actors’ values in the 

betweenness centrality  
Le = length (Ce); % number of actors’ values in the 

eigenvector centrality  
% Prior parameters 

a = 0.3;  
b = 0.7; 

N = 700; 

% Data  
initial_range = 

0; end_range = 1;  
theta = 

linspace(initial_range,end_range,N); X=1;  
% This section is for computation of: 

P_o = betapdf(theta,a,b); % prior (P_o)  
L_o = nchoosek(N, X)*(theta.^X).*(1-theta).^(N-X); % Likelihood (L_o)  
Post_o = betapdf(theta,a+X,b+N-X); % posterior (Post_o) 

[HPost_o, iPost_o] = max (Post_o); 

figure (4) %Jumad-Al-Awwal18th,1441 

map_post_Ce= zeros (Le,1); 

for c = 1: Le  
endrange_up = Ce(c); %update last part value of theta 

range_update = linspace(initial_range,endrange_up,N); 

posterior_Ce = betapdf(range_update,a+X,b+N-X);  
% plot (theta, posterior_Ce); 

[H,i] = max(posterior_Ce);  
map_post_Ce(c) = H; 

end  
plot(map_post_Ce) %Jumad-Al-Awwal18th,1441  
xlabel('actor id.') %Jumad-Al-Awwal18th,1441 

ylabel('map_e_g_v.') %Jumad-Al-Awwal18th,1441 

 
figure (3) %Jumad-Al-Awwal18th,1441  
map_post_Cb= zeros (Lb,1); 

for c = 1: Lb 

endrange_up = Cb(c); %update last part value of theta  
range_update = linspace(initial_range,endrange_up,N); 

posterior_Cb = betapdf(range_update,a+X,b+N-X);  
% plot (theta, posterior_Cb); 

[H,i] = max(posterior_Cb); 

map_post_Cb(c) = H; 

end 

plot(map_post_Cb) %Jumad-Al-Awwal18th,1441  
xlabel('actor id.') %Jumad-Al-Awwal18th,1441 
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ylabel('map_b_t_w.') %Jumad-Al-Awwal18th,1441 

figure (2) %Jumad-Al-Awwal18th,1441  
map_post_Cc= zeros (Lc,1); %Jumad-Al-

Awwal18th,1441 for c = 1: Lc  
endrange_up = Cc(c); %update last part value of theta 

range_update = linspace(initial_range,endrange_up,N); 

posterior_Cc = betapdf(range_update,a+X,b+N-X);  
% plot (theta, posterior_Cc); 

[H,i] = max(posterior_Cc); 

map_post_Cc(c) = H; 

end 

plot(map_post_Cc) %Jumad-Al-Awwal18th,1441 

xlabel ('actor id.') %Jumad-Al-Awwal18th,1441 

ylabel('map_c_l_s.') %Jumad-Al-Awwal18th,1441 

figure (1) %Jumad-Al-Awwal18th,1441  
map_post_Cd= zeros (Ld,1); 

for c = 1: Ld  
endrange_up = Cd(c); %update last part value of theta 

range_update = linspace(initial_range,endrange_up,N); 

posterior_Cd = betapdf(range_update,a+X,b+N-X);  
% plot (theta, posterior_Cd); 

[H,i] = max(posterior_Cd); 

map_post_Cd(c) = H; 

end 

plot(map_post_Cd)  
xlabel('actor id.') 

ylabel('map_d_g_r.') 

 
%Jumad-Al-Awwal18th,1441  
%Jumad-Al-Awwal18th,1441  
%Jumad-Al-Awwal18th,1441 
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Appendix E (Source Codes for SNA-Quadrant) 
 

%% Matlab code for generating graphs of centrality measure  
%% and Maximun-a-posetriori-map for N17 Attackers 
%% By Engr. ISMAIL A. Adekunle  
% Monday Jumudal-Al-Awwal,15th 1440/21th 
January,2019 %% Acknowledgement: Alhiamdulillah 

clear; close all; clc;  
d911data = xlsread('C:\Users\ISMAIL\Desktop\Conspirators.xls'); 

P_id = d911data (:1);  
dgr_f = d911data (:2); % all row values in column 2 

dgr_a = d911data (1:19,2); % the first 19 rows in column 2  
dgr_c = d911data (20:61,2); % the last row values in the column 

2 cls_f = d911data (:3); % all row values in column 3  
cls_a = d911data (1:19,3); % the first 19 rows in column 3  
cls_c = d911data (20:61,3); % the last row values in the column 

3 btw_f = d911data (:4);  
btw_a = d911data (1:19,4); % the first 19 rows values in column 

4 btw_c = d911data (20:61,4); % the last rows values in the 

column4 egv = d911data (:5); % all row values in column 5  
egv_a = d911data (1:19,5); % the first 19 rows in column 3  
egv_c = d911data (20:61,5); % the last row values in the column 

3 figure (1)  
scatter (btw_a,dgr_a,'*') 

hold on  
scatter (btw_c,dgr_c,'o') 

hold off  
xlabel('Brokerage strategy')% Betweenness strategy lowers 

visibility ylabel('Influence(local)’) % Degree strategy for actors' 

visibility figure (2)  
scatter (cls_a,dgr_a,'*') 

hold on  
scatter (cls_c,dgr_c,'o') 

hold off  
xlabel('Proximity strategy')% Closeness strategy lowers visibility 

ylabel('Influence(local)’) % Degree strategy for actors' 

visibility figure (3)  
scatter (btw_a,egv_a,'*') 

hold on  
scatter (btw_c,egv_c,'o') 

hold off  
xlabel('Brokerage strategy')% Betweenness strategy lowers 

visibility ylabel('Influence(global)’) % Eigenvector strategy for 

actors' visibility  
figure (4)  
scatter (cls_a,egv_a,'*') 

hold on  
scatter (cls_c,egv_c,'o') 

hold off  
xlabel ('Proximity strategy’) % Closeness as a strategy that 

lowers susceptibility  
ylabel('Influence(global)’) % Eigenvector as a strategy for 

actors' visibility 
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Appendix F (Kite Network) 
 

 

Kite network is a relatively small network - a group in karate. Figure 4.35 presents the 

Kite network. It is made up of ten members. Degree centrality of actors in the group 

was extracted and fed as input into both BNM and entropy algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.35: The Kite network 

(Source: Hensen, 2011) 
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