

CONTAINER BASED MULTI-ACCESS EDGE COMPUTING FOR

5G NETWORKS

BY

MOSUDI, Isiaka Olukayode
MENG/SEET/2017/7331

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

AUGUST, 2021

CONTAINER BASED MULTI-ACCESS EDGE COMPUTING FOR

5G NETWORKS

BY

MOSUDI, Isiaka Olukayode

MENG/SEET/2017/7331

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF ENGINEERING IN COMMUNICATION

ENGINEERING

AUGUST, 2021

ii

ABSTRACT

The growth of the telecommunication industry is fast paced with ground-breaking

engineering achievements. Despite this, portable mobile handheld devices have very

low computational, storage and energy carrying capacity occasioned by the needs to

satisfy portability, very small form factor, ergonomics, style and trends. Proposals such

as cloudlets, cyber foraging, mobile cloud computing (MCC), and more recently but

most applicable, multi-access edge computing (MEC) have been proffered. New and

emerging use cases, especially the deployments of 5G will bring up a lot of latency-

sensitive and resource-intensive applications. To address these challenges, this work

introduced the use of secure containerization for MEC applications and location of MEC

host at the 5G centralized unit within the radio access network (RAN) aiding offloading

of computational, storage and analytics requirements close to UE at the fringe of the

network where the data are being generated and results being applied. The major

contribution of this thesis is the use of secured containerization technology to replace

virtual machines, making it possible to use containers for MEC applications, reducing

application overhead while satisfying the isolation of MEC infrastructure as required by

the European Technology Standard Institute (ETSI) to ensure MEC application security.

5G end-to-end transport specifications were evaluated for the vantage location of MEC

server within the radio access network and achieved theoretical values between 4.1ms

and 14.1ms end-to-end latency. These figures satisfy requirements of VR/AR (7-12ms);

tactile Internet (<10ms); Vehicle-to-Vehicle (< 10ms); Manufacturing & Robotic

Control/Safety Systems (1-10ms). The results confirmed that edge computing has lower

user plane latency figures and reduced backhaul traffic with lower application failure

rate. Secured containerised Multi-access computing infrastructures have many

advantages of mobile cloud computing for mobile wireless device computational power

and energy carrying capacity deficiencies to cater asymmetric UE applications.

Applications hosted within the RAN have better support for new and emerging

application requirements in terms of high amount of computational, storage and

analytics capabilities while at low latency figures. Edge deployments will reduce the

pressure on network operators backhaul link saving end-to-end ecosystem from collapse

due to heavy backhaul traffic that might result from billions of 5G UEs. No matter how

fast 5G network will be, MEC will ensure the need not to transport huge data for

processing in the cloud and returning the results to the UE. This will enhance privacy

and security while also conserving bandwidth.

vi

TABLE OF CONTENTS

Contents Page

COVER PAGE i

TITLE PAGE ii

DECLARATION iii

CERTIFICATION iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

CHAPTER ONE 1

1.0 INTRODUCTION 1

1.1 Background to the Study 1

1.2 Statement of the Research Problem 5

1.3 Aim and Objectives of the study 7

1.4 Justification of the study 8

1.5 Scope of the study 8

1.6 Thesis Outline 9

vii

CHAPTER TWO 11

2.0 LITERATURE REVIEW 11

2.1 Fundamentals 11

2.1.1 Cloud Computing 12

2.1.2 Containerization 14

2.1.3 Kata Container 17

2.1.4 Infrastructure as Code (IaC) 18

2.1.5 Multi-access edge computing 22

2.1.6 5G Mobile Telecommunication Systems 25

2.2 Review of Related Works 27

CHAPTER THREE 35

3.0 RESEARCH METHODOLOGY 35

3.1 Transport Network 38

3.2 NG-RAN Decomposition 40

3.3 5G MEC Models 43

3.4 Latency 44

3.5 Experiments 46

3.5.1 Tools 47

3.5.2 Experimental Setup 48

3.5.3 The Load tests 48

viii

CHAPTER FOUR 50

4.0 RESULTS AND DISCUSSION 50

4.1.1 Low Latency Models Developed for MEC Deployment for 5G: 50

4.1.2 Deployment of Secured Containerized Mobile Application for both Edge and

Remote Cloud Servers: 53

4.2 Discussion 59

4.2.1 Evaluation of MEC Models to Determine the Best Fit for 5G Applications: 59

CHAPTER FIVE 65

5.0 CONCLUSION AND RECOMMENDATIONS 65

5.1 Conclusion 65

5.2 Recommendations 66

5.3 Limitations and Future Works 66

5.4 Contribution 67

REFERENCES 68

APPENDIX A (GRAPHS PLOTTER) A1

APPENDIX B (LOAD TEST) B1

APPENDIX C (BASH COMMANDS) C1

APPENDIX D (EXPEREIMENT RESULTS) D1

ix

LIST OF TABLES

Table page

2.1: ITU IMT-2020 Requirements 25

2.2: Classification of Augmenting Techniques 32

2.3 Augmenting Architecture 32

2.4: Summary Literature review 33

3.1: 5G Interface specifications 46

4.1: Experiment Data D1

x

LIST OF FIGURES

Figure Page

2.1: Cloud computing 12

2.2: Containers running in different namespaces 14

2.3: Depiction of containerization 15

2.4: Containers running in isolated VM 18

2.5: Infrastructure as code 20

2.6: Version Control System 21

2.7: Edge Computing 23

2.8: ETSI MEC Framework (ETSI, 2019a) 24

2.9: 5G use cases 25

2.10: 3GPP 5G System Reference Point Architecture 27

2.11:3GPP 4G/LTE EPC reference architecture 31

3.1 Experiment Configuration 37

3.2: Rubik’s cube app on desktop 37

3.3a: Rubik’s cube app on iPhone X (screen 1) 38

3.3b: Rubik’s cube app on iPhone X (screen 2) 38

3.4: 3GPP 5G System Service-Based Architecture 40

3.5: Functional Decomposition of NG RAN 41

3.6a RAN protocol split with the addition of MEC 42

3.6b eCPRI Functional decomposition on RAN layer level 42

3.7: 5G MEC deployment models 43

3.8: 4G Long-Term Evolution/Evolved Packet Core 44

3.9: Experimental setup 49

4.1a: Scenario A 50

 xi

4.1b: Scenario B 51

4.1c: Scenario C 52

4.1d: Scenario D 52

4.2a: Experiment - MCC test scenario 53

4.2b: Experiment - MEC test scenario 53

4.3: Total request rate/sec 55

4.4: Total failed request rate 55

4.5: Application maximum and median response time 56

4.6: Application minimum response time 57

4.7: Average application content download in bytes 57

4.8: 50 Percentile application response time 58

4.9: 95 Percentile of response time 58

4.10: Total request rate/sec 60

4.11: Total failed request rate (30 minutes) 61

4.12: Application maximum and median response time (30 minutes) 61

4.13: Application minimum response time (30 minutes) 62

4.14: 50 Percentile of response time (30 minutes) 63

4.15: 95 Percentile of response time (30 minutes) 63

xii

LIST OF ABBREVIATIONS

Abbreviations

Definition

5GC

5GS

AF

AAU

AMF

API

AR

AUSF

CAV

CCP

CP

CPRI

CUPS

DN

DU

eCPRI

eMBB

EPC

E-UTRAN

Gi LAN

gNB

5G Core Network

5G System

Application Function

Active Antenna Unit

Access and Mobility Management

Function

Application Programming Interface

Augmented Reality

Authentication Server Function

Connected Autonomous Vehicle

Common Compute Platform

Control Plane

Common Public Radio Interface

Control/User Plane Separation

Data Networks

Distributed Unit

Evolved Common Public Radio Interface

Enhanced Mobile Broadband

Evolved Packet Core

Evolved UMTS Terrestrial RAN

GPRS Interface LAN

Next generation Node B (5G base station

name)

xiii

gNB-CU

gNB-DU

HLFS

HTTP/2

I/O

IaC

ITS

JSON

LLFS

MCC

MEC

mMTC

NEF

NF

NG-RAN

NGC

NGFI

NR

NRF

NSSF

PCF

PDCP

QoE

RAN

RF

gNB-Centralised Unit

gNB-Distributed Unit

Higher Layer Functional Split

Hypertext Transfer Protocol Version 2

Input/Output

Infrastructure as Code

Intelligent Transportation Systems

JavaScript Object Notation

Lower Layer Functional Split

Mobile Cloud Computing

Multi-access Edge Computing

Massive Machine Type Communication

Network Exposure Function

Network Function

NextGen RAN, Next Generation RAN

Next Generation Core

Next Generation Fronthaul Iinterface

New Radio

Network Repository Function

Network Slice Selection Function

Policy Control Function

Packet Data Convergence Protocol

Quality of User Experience

Radio Access Network

Radio Frequency

xiv

RLC

RRC

RRM

RRU

SBA

SDAP

SGi

SMF

UDM

UE

UMTS

UPF

uRLLC

VCS

VNF

VR

Radio Link Control

Radio Resource Control

Radio Resource Management

Remote Radio Unit

Service Based Architecture

Service Data Adaptation

Steering Gi

Session Management Function

Unified Data Management

User Equipment

Universal Mobile Telecommunication

System

User Plane Function

Ultra-Reliable and Low Latency

Communication

Version Control System

Virtualized Network Function

Virtual Reality

xv

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

There are several constraints on mobile devices as well as other portable 5G user

equipment (UE) devices. Computational resources, memory limitation, storage, network

and energy carrying capacity are some of the constraints of cellular mobile

communication UEs and these have a significant effect on the type of application

software available and for how long a battery can hold a charge to support such

applications. The major constraints include computational power, charge holding time,

storage and memory limitations, especially for complex processes (Taleb et al., 2017).

There are latency-critical and resource-intensive services which are needed to be

supported by 5G, these include: telepresence, robotics, factory automation, and

intelligent transportation systems, Virtual Reality (VR), Augmented Reality (AR),

medicals, smart grid, serious gaming, education and culture (Parvez et al., 2018). More

so, high definition images and multi-feed super high definition quality live video

streaming demands for mobile users are constantly being escalated over the recent

decade. 5G is projected to provide services that will support communication, computing,

control and content delivery for high-intensity network traffic (Mao et al., 2017).

The deployment of 5G cellular mobile telecommunication standard will herald explosive

evolution of Information and Communication Technology (ICT) innovations for mobile

devices, machine-to-machine, Internet of Things (IoT), emerging vehicle technologies -

V2V and V2X, etc. There will be an enormous increase in the number of mobile devices,

expectedly about 50 billion devices, but this number will be completely dwarfed by the

exponential growth in the volume of data generated by resource-intensive and feature-

A2

rich multimedia applications. These will create hype for mobile data traffic and compute

requirements (Skarpness, 2017).

To resolve challenges posed by these constraints, the computational requirements of

mobile applications were offloaded to be processed on tethered external infrastructures

with adequate resources. These external infrastructures are usually commercial off-the-

shelf or customized standardized IT infrastructures configured to process and return

results for applications. Different interventions have been proposed, including cyber

foraging, cloudlet, multi-access edge computing (MEC) and mobile cloud computing

(MCC) (Mach and Becvar, 2017).

A cloudlet is a resource-rich computer or cluster of computers that is well connected to the

Internet, trusted and is constantly available for use by untethered mobile devices within

close proximity (Satyanarayanan et al., 2009). Cyber foraging is considered as dynamical

augmentations of computing resources of mobile devices and opportunistically exploiting

computing of tethered infrastructure in the nearby environment (Satyanarayanan, 2001). It is

the capability of infrastructure to seamlessly undertake migration of computation from one

node to another (Patil et al., 2016). Cloud computing

(CC) is the abstraction of computing resources e.g. processor, RAM, storage and network

services from separate hardware units while presenting as a pool of reusable on-demand

shared computing infrastructure. This can be provisioned rapidly and released

programmatically or manually involving minimal management effort while creating cost

benefits and flexibility. The rate of cloud adoption is very high, majorly making it an

economically viable option. MCC is the integration of CC to serve cloud-based web apps

over the Internet for smartphones, tablets, and other portable devices. Cloud computing in

mobile cellular networks, like every other technology, though a solution, has come with

its fair share of challenges as cellular mobile communication technologies mature from

2

1G, 2G, 3G to 4G and looks forward to 5G. Ordinarily, cloud computing should provide

enough resources for offloading of computational demands (Mach and Becvar, 2017).

Cloud computing is predominantly application programming interface (API) driven and

economically viable. Cloud infrastructure can be shared across many end users,

developers, mobile network operators and corporations spanning over widely separated

geographical locations, allowing the reduced cost of services compared to traditional

legacy infrastructures. Despite all the potentials of cloud computing, it has been unable

to fulfil mobile application end-to-end latency requirements due to long response times,

due, in turn, to the centralized cloud architecture model resulting into high signal

propagation delay, affecting the end-user quality of experience (QoE) (Taleb et al.,

2017). Other concerns presented by the use of cloud computing include security and

privacy, addressing, interoperability, bandwidth (Díaz et al., 2016), as well as

government policy (National Information Technology Development Agency (NITDA),

2019); (Okafor, 2017).

The advent of the so much anticipated 5G technologies emerging mobile applications such

as Augmented Reality (AR), Virtual Reality (VR) (Alsafi and Westphal, 2016), face/voice

detection and identification for surveillance, authentication and access control, connected

autonomous vehicles (CAV), intelligent transportation systems (ITS) and highway traffic

management systems, ultra-high-definition multi-feed live streaming. These are anticipated

to be among the high resource demanding applications over wireless cellular networks. In

particular, the newly emerging mobile Augmented Reality and Virtual Reality (AR/VR)

applications are anticipated to be among the most demanding applications over cellular

wireless networks (Erol-Kantarci and Sukhmani, 2018).

Field devices such as traffic signals, roadside sensors, face detection and identification,

surveillance networks, location services, Intelligent Transportation Systems (ITS) and 3

highway traffic management systems. are gradually being connected to central

monitoring systems for better traffic management. MEC seeks to address issues and

challenges surrounding billions of field devices generating gigabits of low latency-

sensitive data that require split seconds between data generation, data processing and

eventual results being applied to certain control mechanisms. Advantages of edge

computing include:

A. Access to real-time radio network information that creates opportunities that

can be leveraged by applications (Shahzadi et al., 2017) giving rise to

location-based services opportunities like location-aware advertising, asset

tracking, connected autonomous vehicle, AR, ITS and highways traffic

management systems.

B. Edge computing will improve Quality of User Experience (QoE) by

leveraging on reduced latency and high throughput available when

application service logics are computed on the edge servers within the RAN

C. Reducing data security breach and enhancing privacy by reducing the level

of exposure through manipulation of data close to the source rather than

transmitting via numerous routes to the cloud.

D. Edge computing creates a new and emerging market value chain in mobile

networks thereby opening the network to third parties (Patel et al., 2014),

who can develop and quickly create innovative applications, benefiting all

parties (Huang et al., 2017).

4

1.2 Statement of the Research Problem

The motivation for this research work stems from the claim by Satyanarayanan et al (2009)

that “resource poverty is a fundamental constraint that severely limits the class of

applications that can run on mobile devices.” It was also argued by Satyanarayanan et al.

(2009) that “at any given cost and level of technology, considerations of weight, size,

battery life, ergonomics, and heat dissipation exert a severe penalty on computational

resources such as processor speed, memory size, and disk capacity.” There are challenges of

unacceptable latency figures in 4G deployments but in 5G which has higher traffic, it is

feared that there might be an increase in latency. These have been perennial challenges to

mobile communication UEs but the deployment of 5G is expected to further exacerbate the

problems with the rise of new and emerging feature-rich mobile applications generating

high-intensity network traffic. Besides the challenges posed to mobile UEs, this scenario

will be exerting unprecedented pressure on backhaul and fronthaul networks.

Researches have been carried out to augment for computational resources as well as

energy-carrying capacity constraints in the mobile wireless devices, but the

shortcomings of the earlier proposed solutions include:

A. Unstable Infrastructure:

The inadequate or total loss of stable augmenting infrastructure has been the bane of

cyber foraging techniques to resolve the challenges of resource constraints in

portable mobile UEs (Gordon et al., 2012); (Qing et al., 2013); (Dean and

Ghemawat, 2004); (Huang et al., 2010); (ETSI, 2017). This usually creates a

situation of low bandwidth that results in poor application behaviour. Whereas MEC

is compatible with orchestration, software configuration management, IaC and VCS,

It is also deployable on standard off-the-shelf or customized IT

5

https://docs.google.com/document/d/1cdDNhgBpphXWS8ZhjjRJl4iemHdcs8NA/edit#heading=h.2p2csry
https://docs.google.com/document/d/1cdDNhgBpphXWS8ZhjjRJl4iemHdcs8NA/edit#heading=h.2p2csry

infrastructure making it possible to have vertical and horizontal infrastructure

scalability, the mechanisms required to achieve stable infrastructure.

B. Platform-specific:

Mobile Assistance Using Infrastructure (MAUI) in Cuervo et al. (2010), Code

Offload by Migrating Execution Transparently (COMET) (Gordon et al., 2012) and

Misco - a MapReduce framework for mobile systems in Dou et al. (2010) relied on

Microsoft .Net Framework; the now discontinued, Android Dalvik Virtual Machine

and Python respectively limiting the type of mobile applications making use of the

solutions. MEC can support computer programming language or frameworks

consistent with standard or customized IT platforms that require computational,

memory, storage and power resources (ETSI, 2019).

C. High mobility interruption time or zero mobility of augmenting infrastructure.

High mobility interruption time of 30 milliseconds in 4G LTE whereas cloudlets

(Satyanarayanan et al., 2009) and MAUI in Cuervo et al. (2010) have zero

support for mobility interruption. User mobility is not encouraged by these

augmenting solutions. MEC on 5G will deliver mobility interruption time of zero

millisecond (ITU, 2015); (Taleb et al., 2017).

D. High user plane (UP) and control plane (CP) latency:

High data communication delay between the UE and Internet/cloud for cloudlets

and mobile cloud computing-based strategies in Zhang et al. (2010); Chun et al.

(2011); Kosta et al. (2012); (Gordon et al., 2012). The total UP latency for MEC

deployment in 4G Long Time Evolution Evolved Packet Core (LTE/EPC) is

estimated, with reference to Parvez et al. (2018), as the summation of packet

transmission delay between the UE via LTE, EPC to MEC host connected across

6

the Steering GPRS interface (SGi) for services sourced at MEC. Average

container boot time is 1.87 seconds compared to Virtual Machines (VMs)

average boot time of 94.90 seconds (Zhang et al., 2018), containerized MEC can

offer lower application control plane latency.

E. Inconsistencies between production and staging MEC environments:

Containerized applications have the advantage of portability, running in the

same environment during testing, staging and production deployments.

The issue of resource poverty has been a perennial challenge to the telecommunication

industry. The scale of 5G will be enormous, both in terms of devices and data but the

number of devices will be dwarfed by the volume of data will be generated (Skarpness,

2017). The huge amount of data, obviously, will require analytics as well as transport.

There are already unacceptable latency figures in 4G LTE/EPC deployments but in 5G

which has higher traffic, it is feared that there might be an increase in the latency.

1.3 Aim and Objectives of the study

The aim of this work is to demonstrate use cases for MEC deployments in 5G Networks

by developing models of MEC infrastructure deployments.

The research objectives are to:

i. develop low latency models for MEC deployment for 5G networks through the

evaluation of both 3GPP and non-3GPP components of 5G networks transport

specifications.

ii. develop and deploy secure resource-intensive containerized mobile web

application testbed implemented in Kata Containers (Kata Containers, 2019) for

both edge and remote cloud servers.

7

iii. performance evaluation of the developed MEC models and determination of the

best fit for 5G applications.

1.4 Justification of the study

The drawbacks of previous research works were explored. These include limitations

posed by pre 5G wireless technologies on the maximization in meeting latency

requirements of new and emerging applications consistent with International

Telecommunication Union (ITU) specifications for 5G eMBB and uRLLC use cases.

1.5 Scope of the study

The research focused on only the Multi-access Edge Application part of Mobile Edge Host

within the Multi-access Edge (ME) Host Level of ETSI MEC framework (ETSI, 2019a). This

research work does not include any work on ME systems-level management, ME host-level

management or network-level entities of MEC. This work also proposed the location of

MEC host close to 5G centralized unit (CU), connected directly to packet data convergence

protocol (PDCP). Disposable infrastructures required for mobile applications computation,

storage and analytics deployed at the MEC are available as machine-readable definition files

downloadable from synchronized but distributed repository with tracking and coordination

of files modifications using Git.

In this work, the estimated user plane latency values were benchmarked with values of

known low latency application use case requirements (Sutton, 2018b):

A. Virtual Reality & Augmented Reality: 7-12ms

B. Tactile Internet (Remote Surgery, Remote Diagnosis, Remote Sales): < 10ms

C. Vehicle-to-Vehicle (Co-operative Driving, Platooning, Collision Avoidance):

< 10ms

8

D. Manufacturing & Robotic Control / Safety Systems: 1-10ms

Models for MEC based on infrastructure as code (IaC), containerization and version

control system (VCS) deployment scenario for eMBB and uRLLC use cases were

proposed for end-to-end 5G network, variously and concurrently serving multiple

asymmetric mobile user computational requirements by leveraging on IaC,

containerization and VCS to enable orchestrated provisioning, patching, freezing,

caching, resuming and termination of infrastructure instances. This will enable the MEC

server to continue to programmatically serve different mobile applications as at when

required and free up resources when applications are not being served.

1.6 Thesis Outline

This thesis is composed of five chapters. In Chapter One, the work was introduced,

motivation for the study of Container-Based Multi-access Edge Computing for 5g

Networks, the aim and objectives were enumerated. Definition of terms and keywords,

the research fundamentals, including the statement of the research problem were

explained in this chapter.

The remaining part of this document is organized as follows: Chapter Two provides

review of past research efforts to ameliorate the resources poverty challenges inherent in

portable handheld mobile cellular user equipment. In Chapter Three - Methodology,

both 3GPP and non-3GPP components of 5G networks transport specifications were

evaluated. This chapter also contains the detail and description of the techniques used in

the experiments. Results of the technical evaluation of 5G transport specifications are

specified and discussed in Chapter Four. Results from the experiment comparing the

behaviour of applications deployed at the MEC relative to mobile cloud computing

9

(MCC) deployments were equally presented in Chapter Four. Chapter Five contains the

conclusions arrived as a result of this research work. Included in Chapter 5 are the

research limitations and future works, contributions and recommendations.

10

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Fundamentals

The continuous evolution of the overall end-to-end architecture into 5G requires

technological advancements. The foundation of 5G is open source and the development

of 5G is hinged on new sets of mature open source technology building blocks. These

blocks are being applied in new use cases to provide platforms that will satisfy

requirements of new and emerging information and communication technology

innovations. Extending and distribution of computation, storage and analytics

capabilities, available in the cloud infrastructure, to the RAN at the edge of the network

close to the UE is, more like, a mini data centre at the network edge. Evolving to this

architecture requires some enabling technologies to achieve speed, security, scalability

and at a reduced cost (Haavisto et al., 2019); (Yala et al., 2019); (Dreibholz, 2020).

These “mini data centre” at network edges require virtualization technology that is built

with the capacity to programmatically create and manage secure, lightweight, multi-

tenant containers that provide services at the edge. This is specifically required in MEC

platforms for user application lifecycle management involving various and concurrent

multiple asymmetric mobile user storage, computational and analytic requirements.

These open source technology building blocks include: Version Control System,

Software Configuration Management, Infrastructure as Code (IaC), Containerization

and Cloud Computing (Skarpness, 2017).

11

2.1.1 Cloud computing

Cloud computing is the abstraction of computing resources such as processor, RAM, storage

and network services from separate hardware units while presenting as a pool of reusable on-

demand shared computing infrastructure that can be rapidly programmatically provisioned

and released or manually with minimal management inputs while creating cost benefits and

flexibility. The rate of cloud adoption is very high majorly because of its economically

viable, cloud infrastructure can be shared across many users and corporations over widely

dispersed locations allowing for the reduced cost of services compared to traditional on-

premise legacy infrastructure (Nkhoma and Dang, 2013).

Figure 2.1: Cloud computing (Pritchard, 2010)

Cloud computing is achieved via complex automation system exploring optimization,

orchestration, network storage area, virtualization, a variety of state of the art network

infrastructure and management technologies indicated in Figure 2.1 are sewn together to

create a conglomerate of solutions - networking; compute service; database as a service;

object store; metering; data collection service; orchestration; big data processing

framework provisioning; dashboard; bare metal provisioning service; image service;

identity service; block storage that constitute cloud computing (Openstack, 2019). These

12

services offered by cloud computing are, to a large extent, limitless and available for

mainframe, desktop environment, mobile platform and machine to machine

communication. This has made cloud computing ubiquitous, servicing almost every

sector of human endeavours from military to entertainment, education sector, commerce

and industry, aviation, health, education, manufacturing, transportation, social services,

government, research and development, espionage and intelligence community. It could

be a private cloud setup by an enterprise solely for use by the enterprise, partners within

its enterprise value chain. Cloud deployments solely for use by the third party as “pay as

you use” service is a public cloud. Enterprise operating a private cloud but at one point

or another depends on the use of the public cloud to augment shortfall of resources,

expertise and/or manpower within the enterprise is a form of hybrid cloud deployment.

There are situations whereby unused cloud resources are offloaded to be used outside the

enterprise value chain, often public cloud is equally hybrid cloud.

13

2.1.2 Containerization

Containerization is the process by which an Operating System (OS) kernel allows running of

isolated instances, called containers, within the user-space as depicted in Figure 2.2. A

container is a standard unit of software environment that packages up a set of codes and

Figure 2.2: Containers running in different namespaces (Kata Containers, 2019c)

all its dependencies together as an abstraction at the OS application layer, therefore, making

applications run quickly and more reliably from one computing environment to another

facilitating efficient portability of applications. Multiple containers can run on the same IT

hardware and share the underlying OS kernel, each running as isolated processes in its own

separate userspace. Container images are usually in small sizes, about tens of

megabytes in size, allowing IT hardware handle more applications and require fewer

VMs 14

and Operating systems (Kumar Abhishek, 2020). Containers compared to VMs are more

suitable for MEC for the sake of storage limitation and computing resources optimization

handling more applications (Figure 2.3).

Figure 2.3: Depiction of containerization

Container images are lightweight, standalone, independently executable package of

software that includes everything needed to run an application: code, runtime, system

tools, system libraries and settings. A container image become Containers at runtime,

abstracting an application from its environment and ensuring that it works seamlessly

and uniformly despite differences, for instance between development and staging.

The use of Docker containerization, which is the industry standard for containers, is due to

its portability allowing containers to run anywhere (Docker Inc., 2019). Docker containers

are cross-platform and are capable of running on a variety of computing infrastructures.

MEC resources can be allocated to containers for better isolation, performance and allowing

for easy collaboration and deployment of applications across different mobile environments.

Docker containerization was used in the course of this research effort. Industry standard for

containers require that Docker containers run on Docker Engine as standard containers which

is, so they could be portable anywhere (Erol-

15

Kantarci and Sukhmani, 2018). This allows for software to be decoupled from the

underlying hardware resources, enabling packaged software to executable on multiple

hardware architectures providing several benefits such as rapid provision, instantiation,

and initialization of virtualized instances (Taleb et al., 2017).

Containerization can provide infrastructure vehicles for migration of legacy applications

into the 5G ecosystem. Infrastructure start-up time is short compared with VM; Reduced

overhead cost in terms of compute, memory and storage. There is no need creating

virtualized components like BIOS/UEFI, drives, separate kernels, RAM, storage, etc.;

Heterogeneous Computing - Microservice could be applied to legacy applications like

monolith e-commerce application migrated into several manageable containerized

manageable microservices application units and deployed separately on different

suitable specific compute platforms; field-programmable gate array (FPGA), CPU and

graphics processing unit (GPU) but all unit working in a coordinated manner to achieve

deliverables. MEC resources can be allocated to containers for better isolation,

performance and allowing for easy collaboration and deployment of applications across

different mobile environments (Nvidia, 2018). This will provide platforms for

transformation of legacy monolithic applications into microservice based made

available for use on the go.

Orchestrated containerized MEC will provide efficient infrastructures needed for

migration of monolith legacy applications onto 5G service platform. This enables

breaking down of large applications into microservice deployable on a large number of

interconnected MEC platforms (Alam et al., 2018). In other words, it is the process of

decomposing a huge application into smaller manageable units with services, usually

16

exposed via representational state transfer (REST) application programming interface

(API). The containerization ecosystem has become so mature, presenting a whole lot of

its orchestrators; Docker Swan, Kubernetes (k8s), Marathon, Amazon container engine.

Google container engine (GKE), and Azure service (Piparo et al., 2018); (The Linux

Foundation, n.d.); (Sanchez, 2014); (Google Cloud, 2019); (Hoque et al., 2017);

(Augustyn and Warchał, 2010). Advancements in Linux containers are making available

more secure containers by taking advantage of underlying hardware virtualization

capabilities to deliver security very similar to VM but lightweight and fast providing

both speed and security for MEC platforms. With measures put in place to foil kernel

exploits (blackMORE Ops, 2017) that could be used to compromise containers. Kata

containers (Kata Containers, 2019a); (Kata Containers, 2019c) and firecracker

(Firecracker, n.d.) are two leading open source containerization alternatives that are able

to achieve isolation in containers by running separate dedicated kernel per container

while tinkering with container runtime. The experiments in the research made use of

Kata containers in effort to deploy a testbed.

2.1.3 Kata container

Kata container runs in a separate dedicated kernel (Figure 2.4), providing isolation of

memory, network and I/O and can utilize the underlying hardware-enforced isolation

relying on virtualization VT extensions but maintaining compatibility with industry

standards like Kubernetes CRI interface, OCI container format, as well as legacy

virtualization technologies while consistent standard Linux containers in performance. Kata

is written in Rust programming language and it is based on KVM (Kernel Virtual Machine,

2016) hypervisor with option for QEMU/NEMU. NEMU is actually a stripped-down

version of QEMU by removing emulation not required thereby reducing the attack

17

surface. It is more secure than a traditional container by replacing default container runtime,

runC with Kata-runtime, (Kata Containers, 2019a). Relying on Kata-agent, shim for I/O

while running Kata-runtime instead of runC container runtime as available in Docker. Kata

containers are as light and fast as containers and integrate with the container management

layers—including popular orchestration tools such as Docker swan and k8s —while also

delivering the security capabilities of VMs (Kata Containers, 2019c).

Figure 2.4: Containers running in isolated VM (Kata Containers, 2019c)

2.1.4 Infrastructure as Code (IaC)

Infrastructure as Code, Figure 2.6, is the management of data centres infrastructure life

cycle - provisioning, monitoring, patching and termination, in a descriptive model using

machine-readable descriptive definition files in conjunction with configuration

management tools and source control system rather than manual or interactive

18

configuration mechanisms. Same IaC process can be engaged several times producing

same result as the initial attempt, thus, increasing data centres operators’ productivity

and transparency facilitating for continuous integration, continuous delivery and

continuous deployment. This property of IaC of achieving the same target configuration

by deploying unmodified command or set of commands is referred to as idempotency.

The implication of being applied several times without any difference in the result

beyond the initial application emphasizes consistent, repeatable routines for

provisioning and changing systems and their configurations. It is a key role in achieving

target deliverables rapidly and at scale expected of deployed 5G MEC servicing billions

of mobile devices. To enforce consistency, the target deliverables are represented as

codes and any modifications of target deliverables are performed editing the source file

rather than the target deliverables in the form of Ansible-playbook (Red Hat, Inc., n.d.)

and Dockerfile. Changes to infrastructure are made at the source definition files instead

of the target MEC applications. The changes could then apply automatically system-

wide through a validated process.

19

Figure 2.5: Infrastructure as code (Walker, 2018)

A. Software Configuration Management

Software configuration management, leaning towards the perspective of the

Software Engineering Institute at Carnegie Mellon University, is an umbrella

activity of software engineering practices developed to identify the structure of the

product, their types and components, and making them unique and accessible in

some form; controlling changes to it throughout the life cycle and the release of

product; recording and reporting the status of components and change requests, and

gathering vital statistics about components in the product; validating the

completeness of a product and maintaining product consistency among the

components; managing the construction and building of the product; ensuring the

adequate and exact execution of the organization's procedures, policies, and product

life-cycle model; while controlling the work and interactions between multiple

developers on a product (Bamford and Deibler, 1995).

B. Version Control System (VCS)

It is a component of software configuration management, serving as a file

repository/database (Figure 2.5) used to track changes and management by

automatic backup and restore, synchronization, short-term/ long-term undo,

track 20

changes, track change in file ownership, application sandboxing, branching and

merging (Better Explained, 2019). Git was used in the cause for this work. Git is

a decentralized VCS for tracking files changes and teamwork coordination

allowing for multiple personnel from diverse locations simultaneously working

on the same project.

Figure 2.6: Version Control System

MEC infrastructures life cycles can be orchestrated using an Ansible configuration

management tool. Ansible, owned by Redhat Corporation. Ansible is an open-source

configuration management software which enables deployment and management of a large

set of interconnected infrastructures - bare metals, VMs and containers. Ansible connection

is based on the popular protocol, secure shell (SSH) and with the ability to fall back to

Paramiko (Forcier, n.d.) python library. The choice of Ansible over Chef (Chef Software

Inc., 2019), Puppet (Puppet, 2019) and Saltstack (SaltStack, Inc., 2019) is due to its

scalability, easy installation process and it does not require installation of a specific agent or

agents on target client machines. It is a push-based configuration tool. Ansible playbooks,

written in YAML, are definition files describing set of specified different actions managed

by Ansible. YAML is very close to natural language and easily human-readable making

process of data descriptions of infrastructure very simple (both human-

21

readable and machine-parsable) (Pieplu, 2018). Ansible playbooks are more like

instruction manuals for machines to work with, provisioning services on target

infrastructures. Moreover, YAML based infrastructure description file organization

simplifies the reusability of code.

CP latency is the time between UE idle state and the moment before the start of actual

data packet transmission on the network. Having in mind that CP transition is not the

transmission of a single message in one direction but messaging interchange consisting

a number of messages back and forth to effect state changes. The major factors that

reduce CP latency are a rapid deployment of computing infrastructures, reduced number

of message interchanges and the location of control functions within the end-to-end

network. Obviously, the use of hypertext transfer protocol 2 (HTTP2) (Belshe and Peon,

2015) in 5G will minimize the number of message interchanges. MEC servers are

deployed close to CU or at centralised aggregation site with the CU. Orchestrated

deployment of containers by using definition files downloadable from repositories close

to CU will enable rapid deployment of computing infrastructures.

2.1.5 Multi-access edge computing

Edge computing is a distributed, open IT architecture that made up of decentralised

processing power, enabling mobile computing and Internet of Things (IoT) technologies. In

edge computing, as depicted in Figure 2.7, data is being processed by the UE device, where

data is generated or by a nearby IT infrastructure, rather than being transmitted to a remote

cloud location or data centre (Hewlett Packard Enterprise, n.d.). Multi-access edge

computing, formerly named mobile edge computing, is defined by European

22

Telecommunications Standard Institute (ETSI) as a platform that provides IT and cloud

computing capabilities within the radio access network (RAN) in close proximity to

mobile cellular and non-cellular subscribers- It is network functionality that offers

connected compute and storage resources at the fringe of network providing dramatic

improvement of mobile network UE experience through near wireline latency (Patel et

al., 2014). MEC in 5G could be deployed at the cell sites, next generation NodeB (gNB)

or within the data network (DN). The aim is to deliver compute, storage, and bandwidth

much closer to UEs where data

Figure 2.7: Edge Computing

being generated at network edge environment. The network edge environment is

characterized by potentially high network latency with low and unreliable bandwidth—

alongside distinctive service delivery and application functionality requirements that

cannot be achieved relying on a pool of centralized cloud resources located in remote

data centres. Satyanarayanan M. et al imagined a future in which cloudlet infrastructure

is deployed much like Wi-Fi access points today (Satyanarayanan et al., 2009), here

comes MEC.

23

Figure 2.8: ETSI MEC Framework (ETSI, 2019a)

MEC, as indicated in Figure 2.8, is made up of three (3) software entities grouped into

system level, host level and network-level entities (ETSI, 2019a). The ability of MEC to

render compute, storage and analytics services at the edge while self-managed but fully

integrated with 3GPP and external networks is derived from its functional elements which

include: mobile edge (ME) host, ME platform, ME applications, and ME systems-level

management (ME orchestrator, operation support systems (OSS) and user application

lifecycle management proxy), ME host-level management (ME platform manager and

virtualization infrastructure manager), user equipment application and customer-facing

service portal (European Telecommunications Standards Institute(ETSI), 2019a).

24

2.1.6 5G Mobile Telecommunication Systems

5G is the 5th generation of cellular mobile communications, succeeding the 4G

(LTE/WiMAX), 3G (UMTS) and 2G (GSM) systems. 5G performance targets include

energy saving, cost reduction, higher system capacity, high data rate, reduced latency,

massive device connectivity, with the capacity speeds up to 20 gigabits per second

(Taleb et al., 2017). The mission of 5G is to support the massive explosive evolution of

information and communication technology (ICT) and the Internet. The four main

functions of 5G are support for communication, computing, control and content delivery

(4C) for high-intensity traffic applications like real-time online gaming, AR and VR,

ultra-high-definition video streaming (Mao et al., 2017). These applications are highly

sensitive to latency and this can have an adverse effect on their performance,

significantly degrading with non-uniform delay and throughput.

Figure 2.9: 5G use cases (International Telecommunication Union (ITU), 2015)

It is the proposed ITU IMT-2020 technology framework, Figure 2.9, with requirements to

provision capabilities that will support enhanced mobile broadband (eMBB), massive 25

machine-type communications (mMTC) and ultra-reliable low latency communications

(uRLLC) use cases (International Telecommunication Union (ITU), 2015) & (Mohyeldin,

2016). This paper focus is the delivery of ITU IMT-2020 minimum requirements for

eMBB and uRLLC 5G use cases (Mohyeldin, 2016).

Table 2.1: ITU IMT-2020 Requirements (International
Telecommunication Union (ITU), 2015) and (Mohyeldin, 2016)

 eMBB uRLLC

User plane latency 4 ms 1 ms

 0.5 ms *

Control plane latency 20 ms 20 ms

 10 ms * 10 ms *

Peak data rate 20 Gbit/s - downlink

 10 Gbit/s – uplink

User experience data rate 100 Mbits/s - downlink

(Dense urban environment) 50 Mbits/s – uplink

Mobility interruption time 0 ms 0 ms

*3GPP target

Expectedly, 5G networks will be very fast, flexible, reliable and resilient with a one-way

trip time of requests corresponding to 1ms for uRLLC use case, taking into account the

growing mobile traffic. Successful working of technologies like device-to-device

communications, millimetre wave and small cell densification can help to achieve the

desired parameters for the 5G networks (Erol-Kantarci and Sukhmani, 2018); (Parvez et

al, 2018). Depicted in Figure 2.11 is the 3rd Generation Partnership Project (3GPP) 5G

reference point architecture.

26

Figure 2.10: 3GPP 5G System Reference Point Architecture (ETSI, 2019b).

The fulcrum of 5G is control and user plane separation (CUPS), decoupling packet data

network (PDN) gateway control plane (PGW-C) and PDN gateway user plane (PGW-U)

functions of 4G/LTE evolved packet core (EPC) as part of 3GGP release 14

specifications (European Telecommunications Standards Institute (ETSI), 2018). CUPS

allow for the separation of user plane function (UPF) from the 5GC out into between

RAN and data network (DN) while session management function (SMF) is left within

the 5GC network (European Telecommunications Standards Institute (ETSI), 2019b).

2.2 Review of Related Works

Several research works have been proposed to solve the issues of computational resources

of mobile devices and energy constraints by offloading computational tasks to tethered

infrastructures. Every suggested solution has been geared toward edge computing. Edge

computing is the technology that brings together computing into the radio access network

(RAN), providing computation, storage and analytics with very low latency while saving a

lot of data traffic between network edges and the core network. Enormous network

27

traffic is expected with billions of devices coming with the rollout of 5G, which has

stimulated research into edge computing.

Prominent among the past research efforts is the offloading of computation tasks based on

the .NET framework to overcome the energy limitations of handhelds by leveraging nearby

computing infrastructure, and Mobile Assistance Using Infrastructure (MAUI) (Cuervo et

al., 2010). MAUI proposed a solution that enables energy-responsive offload of mobile

code to the connected infrastructure but could not support multi-threaded applications and

was only applicable to Microsoft .NET Common Language Runtime (CLR) based

applications. Satyanarayanan et al. (2009) proposed hybrid solution making mobile devices

function as thin clients, whereby all significant computation performed by VM in a nearby

“cloudlet”. It gracefully degrading mobile UE to a fall-back mode whereby significant

computation occurring in a distant cloud, or solely its own resources, in the worst case.

(Satyanarayanan et al., 2009). Zhang et al. (2010) proposed a cloud computing model of a

distributed framework that elastically extends application between mobile UE and the

cloud. Huang et al, (2010) proposed a secure service-oriented mobile ad hoc networks

(MANETs) communication framework named MobiCloud providing a platform for cloned

image of UE as a virtualized component. Hyrax was proposed in Marinelli (2009),

overlaying MapReduce (Dean and Ghemawat, 2004) on a cluster of mobile phones to

provide infrastructure for mobile computing. Exploring the now-discontinued Android

Dalvik Virtual Machine, a distributed runtime environment aimed at offloading workload

from smartphones, Gordon et al., (2012) proposed Code Offload by Migrating Execution

Transparently (COMET). In Dou et al. (2010), Misco, also a MapReduce framework was

proposed but for devices with connectivity and supports for python programming language.

Likewise, Cloudlet Aided Cooperative Terminals Service

28

Environment for Mobile Proximity Content Delivery (CACTSE) was proposed in Qing

et al. (2013) by leveraging cooperating terminals to provide mobile internet content

delivery service at the network edges. But this relied on resource-constrained mobile

devices resources availability thereby challenging its scalability. In Chun et al. (2011)

CloneCloud proposed the seamless transformation of mobile device computation into a

distributed execution on cloud virtual machine (VM) and mobile devices computing

resources. Kosta et al. (2012), proposed ThinkAir with capability to dynamically create,

freeze, resume, and destroy VMs in the cloud as the need arises, thereby providing an

efficient way to perform on-demand resource allocations as well as parallelism capable

on-demand resource allocation critical to the management of asymmetric mobile users

computational requirements (Kosta et al. 2012).

However, containerization is a lightweight alternative to full virtualization of VM. Virtual

machines achieve isolation at the machine level and each virtual machine runs its own

operating system, whereas containers are isolated within kernel level using individual

namespaces. Claassen et al. (2016) concluded that containers have an inherent comparative

advantage over VMs because of improved performance and reduced boot-up time which

have a significant effect on control plane (CP) latency. CP latency is the transition time of a

UE to switch from idle state to active state (Parvez et al. 2018). Containerization provides a

lightweight option to virtualization by improving MEC services portability allowing more

mobile user applications to be served by a single MEC Server. Containers have mechanisms

for rapid application packaging and deployment to a large number of interconnected MEC

platforms (Taleb et al., 2017). The choice of VMs over containers was one of several

proposed mechanisms employed to provide such isolation needs by the MEC platform to

concurrently fulfil 3GPP-related security

29

requirements and satisfy concerns related to all the implications of 3GPP security, operator

security policies and local regulatory rules (Patel et al., 2014). In a qualitative comparison

of VMs and containers in Taleb et al. (2017), of all the five indices; control plane latency

(provisioning time), computation cost (light/heavy-weight), user plane (processes

abstraction), scalability (overhead resource consumption), hardware abstraction (scale of

virtualization) and security (isolation MEC applications), containers perform better in all

except for security which actually relied on hardware abstraction to provide namespace

isolation but not enough isolation as available in virtualization technologies. Docker-based

containerization edge computing was introduced in Alam et al. (2018), in which a federated

approach was proposed involving a layered and modular architecture that is running on

cloud, fog, and edge devices representing sensing, mediation, and enterprise layers,

respectively and offers containerized services and microservices. Container-based systems

compared to VM-based systems are more efficient in reducing the overall for applications

execution times; have multiple containers running in parallel as a result of better memory

management (Adufu et al., 2015), for creating a highly dynamic system while simplifying

management and enables distributed deployments in Alam et al. (2018), therefore, more

suitable for MEC for the sake of storage limitation and computing resources optimization,

serving more applications on the same IT infrastructure. Recent advances in

containerization technology has put to pay the security concerns bedevilling the

containerization as a technology to improve the MEC performance in 5G deployments. In

(Kata Containers, 2019c) containers run in separate dedicated kernels, providing isolation as

required in (Patel et al., 2014). Melike Erol-Kantarci and Sukhmani proposed caching

strategies at the edge of evolved packet core (EPC) (Erol-Kantarci and Sukhmani, 2018).

Caching within the RAN, at the CUs within the NG-RAN rather than at the DN or outside

of 3GPP network via GPRS-

30

Interface/Steering Gi (Gi/SGi) LAN will reduce the pressure on the backhaul networks.

Obviously the fronthaul link over the common public radio interface (CPRI) or evolve

CPRI (eCPRI) will perform better since it is optic fibre link between DU and

RRU/AAU whereas backhaul link i.e. between next-generation NodeB (gNB) could be

a satellite, microwave link, or metro ethernet.

For the sake of brevity, the only pre 5G wireless technology reviewed was 4G LTE/EPC

end to end network latency. Considering the 4G LTE architecture the transport network

is divided into three segments; between the UE and E-UTRAN Node B, also known as

Evolved Node B (eNB), eNB to EPC, and EPC to IP peering point.

Figure 2.11: 3GPP 4G/LTE EPC reference architecture (ETSI, 2017)

The total one-way user plane latency considering 3GPP reference architecture (Figure

2.11) for application deployed on 4G/LTE (Parvez et al., 2018),

= Radio + Backhaul + Core + Transport (2.1)

where:

TRadio is the one-way packet propagation delay between UE and E-UTRAN

31

TBackhaul is the one-way packet propagation delay between E-UTRAN and 4G EPC.

TCore is the one-way processing delay with the 4G EPC core network

TTransport is the one-way packet propagation between the EPC and packet data network

(PDN). This might include propagation delay to the Internet if service requested by

the UE is not within the operator network and has to be sourced from the Internet.

The earlier research efforts to compensate for resource constraint in mobile cellular

devices were classified in terms of infrastructural setup and operational techniques as

indicated in Table 2.1. From the literature review we came up with this comparative

analysis of the augmentation infrastructure in Table 2.2.

Table 2.2: Classification of Augmenting Techniques

 Infrastructure Operational techniques

 The research efforts could be classified, in Efforts proposed so far to compensate for resource

 terms of infrastructure setup, into the following constraint in mobile cellular devices involved numerous

 categories: techniques, including:

 Cyber foraging Offloading of computation tasks to nearby

 Cloudlet computing infrastructure.

 Mobile cloud computing (MCC) Distributed execution frameworks.

 Multi-access edge computing (MEC) Mobile thin clients - a client-server arrangement.

 On-demand resource allocation.

 Middleware architecture.

 Mobile device cloning.

 Representational State Transfer.

32

Table 2.3: Augmenting Architecture

 Cyber Cloudlet Mobile Cloud Multi-access Edge

 Foraging Computing Computing

State Soft state only Soft state only Soft and hard state Soft and hard state

Management Self-managed: Self-managed: Requires 24X7 Requires 24X7

 with little to no with little to no professionally operator professionally operator

 professional professional input input

 attention attention

Environment ad hoc “Datacentre in a Equipment room with “Datacentre in a box”

 computing box” within power conditioning and within decentralised

 facility business premises climate control operator site/premises

Ownership Owned by Decentralized Centralized ownership Decentralized/Centralize

 single or a few ownership by local by Google, Digital d ownership by

 groups of users businesses Ocean, Amazon, IBM operator/third party

 Oracle, Yahoo!, etc..

Network LAN latency/ LAN latency/ Internet LAN latency/bandwidth

 bandwidth bandwidth latency/bandwidth

Sharing Numbered Few concurrent 100s-1000s of users at a Flexible capacity

 users at a time users time depending on the

 configuration

UE Mode Offloading/mid Functions as a thin Distributed/Thin API driven based on

 dleware client client/Cloning HTTP2/JSON

Table 2.4: Summary Literature review

Authors Models Methodology Drawbacks

Satyanarayanan et Cloudlet A cluster of computers. High cloud

al. (2009) Nearby mobile devices ingress

 High latency

Marinelli (2009) Hyrax Cloud Execution of MapReduce jobs on a High overhead

 Computing cluster of mobile devices for devices

 No developer

 support

Cuervo et al. (2010) Mobile Assistance Task Partitioning; Joint Scaling of

 Using computation task offloading executions

 Infrastructure decision; Allocation of resources Platform specific

 (MAUI) for mobile computing access point

Dou et al. (2010) Misco Worker - server implementation of Support only

 MapReduce Framework Python

Huang et al. (2010) MobiCloud Secure service-oriented mobile ad High latency

 hoc networks (MANETs) Poor bandwidth

 communication framework utilization

 33

Zhang et al. (2010) Elastic Application Distributed framework that extend High latency

 Model mobile into cloud infrastructure High footprint

Chun et al. (2011) CloneCloud Offline analysis of the different Required

 running condition of process bootstrap for

 binary; every application;

 Built database of precomputed Scalability; No

 partitions; Distributed execution developer support

Kosta, et al. (2012) ThinkAir Parallelizing using multiple VM; High latency

 On demand resource allocation QoS, High

 overhead

Gordon et al. (2012) Code Offload by Distributed runtime environment High execution

 Migrating aimed at offloading from time, High

 Execution smartphones latency

 Transparently Low resource

 (COMET) utilization

Qing et al. (2013) Cloudlet Aided Cooperating terminals for content No developer

 Cooperative delivery service at the network supports

 Terminals Service edge Low resource

 Environment for utilization

 Mobile Proximity

 Content Delivery

 (CACTSE)

Alam et al. (2018) Orchestration of Scalable and modular architecture No Isolation

 Microservices for based on containerization No guarantee of

 IoT Using Docker Container orchestration idempotence;

 and Edge

 Computing

Zhang et al. (2018) A Comparative Containers are more convenient No Isolation

 Study of than VMs, higher CPU and

 Containers and memory utilization, and better

 Virtual Machines scalability

 in Big Data

Environment

34

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

In this chapter, 5G network 3rd Generation Partnership Project (3GPP) and non-3GPP

transport components specifications were evaluated, and models for MEC deployment

scenarios for 5G network were designed. These were carried out to provide the platform

to compare MEC applications end to end transport latency in 5G deployment and 4G

deployments. This research work leveraged on CUPS, lower layer splits, higher layer

splits and 3GPP 5G service-based architecture (SBA) distributed common compute

platform (CCP), which permits the location of virtualized network functions (VNFs) in

different parts of the network to manage different capabilities. MEC hosts could be

located at the centralized unit (CU) connected directly to the packet data convergence

protocol (PDCP). This will affect the estimated total UP latency for MEC deployment in

5G.

The end-to-end transport latency has a significant effect on determining the value of UP

latency, which in combination with control plane latency, determines the effective end-to-

end latency. There was a need for a 5G capable integrated development environment in the

quest to investigate deployment of MEC at the 5G CU, but a simulator was not available for

this purpose. Instead, leaning on Docker containers, Kata-runtime, and Osbuilder - Kata

containers guest OS building scripts, a sandbox application was built to gain insight into the

advantages of computing at the network edge compared to computing at remote cloud

servers. In order to compare MEC deployments versus MCC deployments of resource-

intensive applications, a mobile web application was built, shipped in a secure container

image, saved as a code and pushed to a repository. This combination of

definition files is deployable on Docker engine host in remote cloud servers or edge 35

servers. The chosen target was web application platforms because of its capabilities of

execution on a wide range of devices and mobile environments without modification of

application codebase.

The experimental environment (Figure 3.1) incorporated Ubuntu server, Ubuntu Docker

image and Docker container engine with its default runtime, runC, replaced with Kata-

Runtime. Ubuntu Kata container image was created using Osbuilder. On the strength of

the evaluation the mobile web application was built and shipped in a secure container

image infrastructure as a code (IaC) and pushed it to a repository. Python programming

language was used for application logics, results dataset generation, cleaning and

graphing; Python Flask for web application backend while the frontend was built using

Cascading Style Sheets (CSS), JavaScript and HyperText Markup Language (HTML);

Docker for application shipping; and Locust framework for load testing. The publicly

available Atlassian Bitbucket and Docker Hub repositories were used for web

application code base and container images respectively. The containerized mobile

application was deployed using Docker, but Kata-runtime replaced runC to ensure app

isolation at the kernel level. This ensured the deployment of MEC applications at the

speed of containers while maintaining the security available in virtual machines.

36

Figure 3.1: Experiment Configuration

The test mobile application was a memory and processor-intensive mobile web

application that generated Rubik cubes images and provided breakdown of the cube

details - total “cubelets”, faces cubelets and hidden cubelets. Holding the generated

graphics in memory while rendering it on the end-user devices. This is comparable to

graphics generation and rendering in mobile game applications. Figure 3.2 is a desktop

screen display of the mobile web application while Figure 3.3a and b are iPhone X

rendering of the mobile application.

Figure 3.2: Rubik’s cube app on desktop

37

Figure 3.3a: Rubik’s cube app on iPhone X (screen 1)

Figure 3.3b: Rubik’s cube app on iPhone X (screen 2)

3.1 Transport Network

This focus is on 3GPP 5G service-based architecture (SBA) as presented in Figure 3.4

instead of the standard representation in reference point architecture (Figure 2.10) as

MEC is brought into the RAN. 5G network functions interact directly, if required (ETSI,

2019b) by employing RESTful API principle over hypertext transfer protocol version 2

(HTTP/2) using data formatted in JavaScript Object Notation (JSON) and OpenAPI

interface definition language. 3GPP 5G SBA core network functions (NF) interactions

38

occur over a common computer platform (CCP). CCP, mostly represented as a data bus,

can actually be fully distributed permitting localization of virtualized network functions

(VNFs) in different parts of the network to manage different capabilities.

5G software entities of concern to this research are network repository function (NRF)

and the network exposure function (NEF). NEF allows access to shared data layers for

MEC. It provides support for event exposure, packet flow description (PFD)

management, provisioning information for an external party which can be used for the

UE in 5GS, device triggering. It also provides support for transfer negotiation policies

for the future background data transfer and provides the ability to influence traffic

routing (ETSI, 2019b). NRF offers discovery functions allowing for software entities in

the control plane, for example, can identify others and connect directly whenever there

is a need to interact. It provides support for register, deregister as well as services

updates to NF, NF services and notification to consumers for newly registered NF along

with corresponding NF services. NRF provides capability which allows a particular NF

service consuming component to discover set of NF instances with specific service or a

target NF type. It also enables one NF service to discover specific NF services (ETSI,

2019b) while services available will be indexed via network exposure function (NEF) in

the control plane (CP).

39

Figure 3.4: 3GPP 5G System Service-Based Architecture (ETSI, 2019b)

3.2 NG-RAN Decomposition

Considering the functional decomposition of NG-RAN achieved with gNB-CU - gNB-

DU split connected together over F1 logical interface (Sutton, 2018a); (Shew, 2018);

(ETSI, 2018c). F1 interface is the medium for interconnecting a gNB-CU and a gNB-

DU of a gNB within an NG-RAN, or for interconnecting a gNB-CU and a gNB-DU of

an en-gNB within an E-UTRAN. The F2 interface (eCPRI/CPRI/NGFI) is non-3GPP

specified interface connects gNB-DU with active antenna unit (AAU), radio unit (RU)

or remote radio unit (RRU) when deployed over distance (Ericsson AB, Huawei

Technologies Co. Ltd., NEC Corporation and Nokia, 2019); (Smith et al., 2018); (Knopp

et al., 2017). NG logical interface connects a set of gNB interconnected via Xn logical

interface within an NG-RAN to the 5G core network (5GC). F1, F2 and NG interfaces

constitute midhaul, fronthaul and backhaul networks, respectively.

40

Figure 3.5: Functional Decomposition of NG RAN - Adapted from (Shew, 2018).

Considering eCPRI, this functional decomposition of RAN will permit the location of

MEC server close to the CU sending and receiving user plane packet data traffic over F1

and eCPRI providing high bandwidth capacity at very low latency capable of supporting

eMBB and URLLC use cases (International Telecommunication Union(ITU), 2015);

(Mohyeldin, 2016). Decomposition of RAN permits distance separations between CU,

DU and RRU/AAU while allowing for C (cloud, cooperative and centralized) - RAN

configurations (Murphy, 2015); (Checko, 2016), (Huawei, 2017); (Kitindi, Fu, Jia,

Kabir and Wang, 2017). The functional decomposition of RAN may not be as simple as

depicted in Figure 3.5, but it depends on the level of applicable split options as available

in Figure 3.6a and b, as this will determine the level of coordination capabilities that can

be delivered by a C-RAN.

41

Figure 3.6a: RAN protocol split (Shew, 2018); (3GPP, 2017) with the addition of MEC

Figure 3.6b: eCPRI Functional decomposition on RAN layer level

42

3.3 5G MEC Models

Higher layer functional split (HLFS) option 2 for the midhaul and lower layer functional

split (LLFS) option 7 for fronthaul will permit four RAN deployment scenarios

(Ericsson AB, Huawei Technologies Co. Ltd., NEC Corporation and Nokia, 2019) and

as a result four MEC deployment scenarios:

1. Independent RRU, DU and CU/MEC locations;

2. DU and CU/MEC co-located with distance separated RRU;

3. RRU and DU co-located with distance separated CU/MEC;

4. RRU, DU and CU/MEC integration within a single co-location.

Figure 3.7: 5G MEC deployment models

43

3.4 Latency

Recall Equation 2.1
= Radio + Backhaul + Core + Transport

Nothing is lost but everything is gained by modifying Equation 2.1 for LTE/EPC

(Figure 3.8) producing Equation 3.1

Figure 3.8: 4G Long-Term Evolution/Evolved Packet Core

= LTE + EPC + Transport
(3.1)

where:

TLTE is the one-way packet propagation delay between UE and eNB, including packet

processing time within UE and eNB.

TEPC is the one-way packet propagation delay between eNB and EPC, including

processing delay with the core network.

TTransport is the one-way packet propagation between the EPC and packet data

network (PDN). This might include propagation delay to the Internet if service

requested by the UE is not within the operator network and has to be sourced from

the Internet.

Latency values will vary from one MEC deployment scenario, as presented above, to

another and quantifying all the parameters is challenging due to differences in

44

performance of equipment along the end to end 5G network; from DU to CU, and all the

way to MEC host. However, the assumed 1-way latency range between 5 and 8ms

between CU and DU and in essence, 8ms network latency between CU and DU eases

the co-location of the CU with MEC.

The total one-way user plane latency becomes:

= NR + DU + CU + Transport (3.2)

where:

TNR is the one-way packet propagation new radio (NR) delay between UE and DU,

including packet processing time within the UE and DU.

TDU is the one-way packet propagation delay between DU and CU, including

processing delay with the CU.

TCU is the one-way packet propagation delay between CU and 5GC is, including

processing delay within the 5GC.

TTransport is the one-way packet propagation between the 5GC and data network (DN).

This might include propagation delay to the Internet if service requested by the UE

is not within the operator network and has to be sourced from the Internet.

Deployment of MEC in all the four scenarios in the model above provided the option

direct connection between MEC and the CU. The total one-way user plane latency

becomes:

= NR+ DU+ CU (3.3)

The efforts to simulate 5G network transport latency to determine UP latency is being

challenged by the fact that 5G next-generation (NG) core and RAN technologies are, to a

large extent, still on white papers but enough specifications have been defined and written

45

about it. Therefore, 3GPP and non-3GPP specifications were the major sources of data

for the research evaluation of UP latency for the proposed MEC deployment. The

transport specifications for 5G interfaces were analysed and presented in Table 3.1.

Using Equation 3.3, the transport specifications were applied on the four proposed

network models in Figure 3.7 to arrive at the latency values presented in the results

section of this thesis.

Table 3.1: 5G Interface specifications (European Telecommunications Standards

Institute (ETSI), 2018c)

Network Reach distance Latency (1-way) Capacity requirements

New radio (NR) 4 ms eMBB

 2 ms URLLC

Fronthaul (eCPRI) 1 ~ 20 km < 100 μs 10Gb/s-825Gb/s

Midhaul (F1) 20 ~ 40 km 1.5 ~10 ms 25Gb/s-800Gb/s

Backhaul (NG) 5-80km CU: 10Gb/s-25Gb/s

 (Aggregation)
CN: 100+Gb/s

 20~300km

 (Core)

3.5 Experiments

The goals of these experiments are to evaluate the increased mobile application

responsive and overall Quality of User experience by the use of containerized

application infrastructures deployed at the network edge in terms of latency. In an

attempt to achieve the above stated mature open source technology tools were used to

deploy new use cases for 5G networks.

46

3.5.1 Tools

The tools include:

1. Ubuntu server

2. Wi-Fi access point

3. Layer 3 network switch

4. Docker Container - community edition (Docker-CE)

5. Kata Container

6. Kata Runtime

7. Shims

8. Goland

9. Debootstrap

10. Python

11. Git

12. Osbuilder

13. Locust

Ubuntu 18.04.3 LTS server was installed on an HP ProLiant DL320e Gen8 v2 server,

updated and upgraded to the most recently available updates. The followings were also

installed were: Git, Wget, Curl, Snapd, Vim, Golang and Debootstrap. All these provided

the mechanism to compare the estimated user plane latency values with those of known low

latency use case requirements: VR/AR (7-12ms); tactile Internet (<10ms); Vehicle-to-

Vehicle (< 10ms); Manufacturing & Robotic Control / Safety Systems (1-10ms).

Containerized web application was deployed for both cloud computing and network

edge (Figure 3.9) scenarios. Load tests were conducted against defined performance

metrics providing tons of results, which were further analysed and presented in graphs

for easy comparative evaluations to validate the advantages of MEC over MCC.

Deployment at 47

network edges was made possible due to 5G network functional decomposition as well

as Control Plane and User Plane Separation in same. Simulations were conducted for

deployment labs for on-demand containerized applications based on IaC and version

control systems. Using Locust, the application for the two deployments - edge and

cloud, were programmatically load tested with requests to generate and render random

size of “N by N by N”, with N ranges between three (3) and fourteen (14)

3.5.2 Experimental setup

The experiment setup processes included installation of tools and dependencies, initial

container image build procedures and web application packaging procedures. Versions

of application image for app deployment, code versions and shipping of the built images

to repository for future use and the application container deployment were created. All

of the processes were performed via BASH terminal, command language interpreter for

the GNU operating systems. The setup involved running of the Linux commands in

Appendix C.

3.5.3 The load tests

In the tests, scenario were created to provide the mechanism to compare the estimated

user plane latency values with those of known low latency use case requirements:

VR/AR (7-12ms); tactile Internet(<10ms); Vehicle-to-Vehicle (< 10ms); Manufacturing

& Robotic Control / Safety Systems(1-10ms).

Using Locust, an open source event-based user load testing tool framework, a total of

3900 user requests by 30 unique users was simulated at the rate of 3 user requests per

second (Appendix B). Rendering Rubik’s cubes of random sizes between three and

fourteen while also in between, rendering other views of the mobile application.

48

Simulating a real-world scenario, where often, users are idle, figuring out what next to do

with an application, the idling time was set at random values between 90 and 140 seconds.

Figure 3.9: Experimental setup

The whole of the user behaviours was described in Python code and the experiments for

each scenario lasted for roughly 120 minutes. Data sets from the experiment were

retrieved in comma-separated values (CSV) file format. The relevant results from the

experiments included the request rate, request failure rate, application download size,

and minimum/maximum/median response time.

49

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1.1 Low latency models developed for MEC deployment for 5G:

There were two sets of results being considered in this research work. The first set are the

results retrieved from the application of 5G transport interface specifications on the four

proposed MEC deployment models. Evaluating Equation 3.3 for eMBB for the proposed

four deployment scenarios (Figure 3.7) by applying 5G specification values in Table 3.1:

(i) SCENARIO A

Scenario A features dual-functional splits in the RAN. The RRU/AAU at the cell site, DU at

the aggregation site while CU and MEC deployed at the edge site (Figure 4.1a). Every

interface interconnecting all 5G functional split contributed to the UP latency, optimally this

prototype deployment produced an estimated round-trip time (RTT) value of 11.2ms.

= NR+ DU+ CU (3.3)

Figure 4.1a: Scenario A

Minimum

T =4000 + 100 + 1500 μsec

= 5600 μsec

= 5.6 x 10
-3

 s

50

Maximum

T =4000 + 100 +10000 μsec

= 14100 μsec

= 14.1 x 10
-3

 s

(ii) SCENARIO B

Considering scenario B, this is a centralized RAN MEC deployment without F1

interface but employed only the lower layer functional split having DU, CU and MEC

co-located at the edge site while RRU/AAU connected via eCPRI interface is deployed

at a remote cell site (Figure 4.1b). Optimally, the RTT is 8.2ms.

Figure 4.1b: Scenario B

T =4000 + 100 μsec

= 4100 μs

= 4.1 x 10
-3

 s

(iii) SCENARIO C

Scenario C features only 3GPP upper layer single functional split between DU deployed

with RRU at the cell site and CU with MEC at the edge site (Figure 4.1c) with optimal

RTT 11ms.

51

Figure 4.1c: Scenario C
Minimum

T =4000 + 1500 μs

= 5500 μs

= 5.5 x 10
-3

 s

Maximum

T =4000 +10000 μs

= 14000 μs

= 14 x 10
-3

 s

(iv) SCENARIO D

Scenario D is a monolithic RAN. This setup is most applicable to 5G MEC deployment

for microcells, picocells and femtocells (Figure 4.1d) with RRT of 8ms.

= NR+ DU+ CU (3.3)

Figure 4.1d: Scenario D
T =4000 μs

= 4000 μs

= 4 x 10
-3

 s

52

4.1.2 Deployment of secured containerized mobile application for both edge and

remote cloud servers:

The second set of results were retrieved from the experimental load test of the secured

containerized mobile web application deployed on MCC and MEC as depicted in Figure

4.2a and Figure 4.2b respectively.

Figure 4.2a: Experiment - MCC test scenario

Figure 4.2b: Experiment - MEC test scenario

53

The results from the experiments included the total requests per second (req/s) made to

the application deployed, request time stamps, the number of requests per second,

requests failure per second (req/s), minimum, median and maximum application

response time, average application data download size, 50 percentiles and 95 percentile

application response time among other result parameters. All these for both edge site

and cloud application deployments. Each time, the experiments lasted for about 2 hours.

The results from the experiment span 3955 rows by 22 columns (Appendix D). It was

observed that the application response time and the amount of downloaded application

data follow the same pattern corresponding to the size of the Rubik’s cube being

rendered. Likewise, failures were more prevalent with the mobile cloud computing

deployments compared with relatively stable edge computing deployments.

The rate of requests for both the edge site and cloud deployments were plotted using the

procedures presented in Appendix A. The intention to simulate a random Rubik’s cube

size between values of three and fourteen did pay off, the request rate for both edge and

cloud deployments were about the same for both experiments as indicated in Figure 4.3.

This justified a fair comparison of both deployments.

54

Figure 4.3: Total request rate/sec

This is followed by the request failure rate for both deployments. Figure 4.4 shows that

failures were more prevalent in the cloud deployments. Application maximum and

median response time in seconds for both edge and cloud deployments were presented

in Figure 4.5.

Figure 4.4: Total failed request rate

55

Figure 4.5: Application maximum and median response time

The minimum application response time in milliseconds during the experiment is

presented in Figure 4.6 for both cloud and edge deployments. The average application

data download for both deployments are presented in Figure 4.7. The same application

version was deployed for both scenarios and with the convergence in the application

request rates for both edge and cloud deployments as shown in Figure 4.3, these had a

significant effect on the amount of application data downloaded for both scenarios

during the experiments.

56

Figure 4.6: Application minimum response time

Figure 4.7: Average application content download in bytes

The application average data download also converged also validating fair comparison

because both deployments experienced about equal amount of data download

throughout the experiments

57

Figure 4.8: 50 Percentile application response time

The application response for half of the experiment duration, 50 percentile, second quartile

or median response time is plotted in Figure 4.8. The general application response time over

a period of two hours for 50 percentiles. The application response time for less than 95

percent of time span of the experiment is presented in Figure 4.8 and Figure 4.9

Figure 4.9: 95 Percentile of response time

58

4.2 Discussion

4.2.1 Evaluation of MEC models to determine the best fit for 5G applications:

The RTT values from the four MEC deployment prototypes are all within the latency

requirements for Virtual Reality and Augmented Reality of 7-12ms, Tactile Internet less

than 10ms, Vehicle-to-Vehicle less than 10ms and Manufacturing and Robotic

Control/Safety Systems: 1-10ms. The prototype Scenario B and D completely fall within the

mentioned applications latency requirements. Discussing the results extracted from the

experiments, it is believed that new and emerging 5G mobile applications will run for short

durations and this perfectly fit into containerization technologies, containers are built to run

mostly for a short period of time. This fact together with the attendant save in compute

resources are part of reasons for the choice of containers over VM. Analysis of deployments

behaviours was considered for a period of thirty (30) minutes. Therefore, the parameters

were closely observed and evaluated over a period of 30 minutes.

A close observation of the load test results shows that the total request rate for both edge

site and cloud deployments showed similar characteristics in the number of requests,

therefore, the experiment had a good ground to establish comparisons for the two

scenarios as shown in Figure 4.10. This was corroborated by the average application

59

Figure 4.10: Total request rate/sec

data download for the two deployments scenarios as shown in Figure 4.7. Considering a

production deployment scenario with several hundred or thousands geographically

dispersed UEs connected to mobile applications hosted at a remote cloud data centre or

within the operator DN, this will create high bandwidth traffic and exert serious penalty

on the operator backhaul network. Whereas, in the proposed edge site deployment

scenario UEs will take the advantage of running MEC applications hosted at the

network edge, deployed at the CU thereby removing the issue of heavy traffic bottle

neck on the backhaul networks.

Both median and maximum application response time were considered for both edge site

and cloud deployments as indicated in Figure 4.12. It was observed the maximum latency

figure for cloud deployment was too high for smooth running of mobile applications. There

were initial failures reported for both edge and cloud deployment while the applications just

starting up, but the initial failure finally disappeared. But there were evident application

high failure rates for cloud deployments compared with the edge site

deployments as indicated in Figure 4.11. This will have adverse effects on adoption of

60

new and emerging latency sensitive applications. The maximum edge response time for

edge deployment was a little above 60 seconds compared to about 160 seconds for cloud

deployments in Figure 4.12. These latency figures are really unacceptable for but it is

believed that deployment on a real 5G network with adequate MEC server resources can

normalize the edge figures to acceptable values

Figure 4.11: Total failed request rate (30 minutes)

Figure 4.12: Application maximum and median response time (30 minutes)

61

The comparison of minimum application response time, Figure 4.13, confirmed the

proposal for containerized applications deployment at the edge for 5G networks. The

response time fell within acceptable latency requirements for new and emerging

applications, comparing this with cloud deployment minimum values of around 500

milliseconds.

Figure .4.13: Application minimum response time (30 minutes)

Another set of relevant results were the 50th and 95th percentiles in Figure 4.14 and

Figure 4.15 respectively. For about 50% of the application response time within 30

minutes the red colour of cloud response time dominates high figures as seen in the 30

62

Figure 4.14: 50 Percentile of response time (30 minutes)

minutes graph. Of high interest is the 95th percentile which was used to evaluate the

95% regular and sustained application response time within 30 minutes (Figure 4.13).

Clearly, edge deployment response time are more visible looking around low latency

figures unlike the cloud deployment response time that dominates the graph skyline

indicating consistent unacceptable high latency values

Figure 4.15: 95 Percentile of response time (30 minutes)

63

The fact that containers are secure and deployable for MEC infrastructures will increase

the ability of enterprise developers by improving collaboration to quickly deliver

scalable and reliable applications and services at pace required of 5G rollout while not

jeopardizing the security of the end-to-end network. Containers provide the required

DevOps ecosystem for developers and engineers to work across the entire application

lifecycle, from designs, development, staging, to deployment operations for

development and operations teams.

64

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Secured containerised Multi-access computing infrastructures have many advantages of

mobile cloud computing for mobile wireless device computational power and energy

carrying capacity deficiencies to cater asymmetric UE applications. Applications hosted

within the RAN have better support for new and emerging application requirements. These

requirements are in terms of high amount of computational, storage and analytics capabilities

while at low latency figures. Secured containerization using Kata containers provide most of

the essential features for multi-access edge computing infrastructures. This makes it suitable

for resource-intensive mobile applications speed and isolation requirements to guarantee

safety within the mobile ecosystem expected with massive deployment of 5G UEs. Secure

containers will guarantee fast deployment of a huge number of applications due to its

orchestration and automation capabilities. Considering the fact that no matter how fast 5G

network will be, MEC will ensure the need not to transport huge data for processing in the

cloud and returning the results to the UE, enhancing privacy and security concerns while also

conserving bandwidth. There was still need for improvement on Kata containers to reduce

performance overhead, especially for disk Input/output bound operations to significantly

reduce application response time.

MEC for 5G Networks based on IaC, containerization and source control system

providing very low user plane latency while at small footprint will enable high density

utilization. This will provide the necessary mechanism to support communication,

computing, control and content delivery for high throughput and highly latency sensitive

5G applications with consideration for mobile UE efficient energy management.

65

5.2 Recommendations

There is still a need for improvements on Kata Containers to reduce performance

overhead, especially for disk Input/output bound operations to significantly reduce

application response time. It is recommended that the experiment should include

input/output performance test of Kata containers compared with runC runtime-based

Docker containers to confirm the fears entertained of higher performance overhead in

Kata containers.

5.3 Limitations and Future Works

One of the main limitations of the solution proposed in this thesis is not considering the

integration of 5G virtualized network functions with the containerization technology.

Despite the fact that 5G network functions are RESTful API compliant and communicate

only over HTTP/2 using JSON while these features are also supported by containers. The

experiment was not able to handle more than 3 requests per second by 30 unique users

without significant failures for both cloud and edge test cases. Part of the reasons was the

memory limitation on the physical server used for the edge scenario due to the high

financial cost of memory upgrade whereas the financial cost of increasing the cloud server

RAM capacity was marginal but there was a need to have the same resource configuration

for both cloud and edge test cases to establish fair comparisons.

A future work could consider evaluation and improvement on input/output performance

of kata containers relative to Docker containers without sacrificing the security

advantages and also key into the HTTP/2 and JSON features that are also available in

containerization to improve application response time that are consistent with new and

emerging applications

66

5.4 Contributions

To the best of knowledge, every suggested solution has been geared toward edge

computing. This research work proposed a stable augmentation infrastructure for mobile

applications by making available a high amount of compute, storage and analytic resources

within the RAN close to the end users thereby reducing the user plane latency while

removing the challenges of platform-specific ecosystems due to the adoption of secured

containerization technology. A stable augmentation infrastructure for mobile applications

was presented. A paper titled “Multi-Access Edge Computing Deployments for 5G

Networks” was presented at the 3rd International Engineering Conference (Mosudi et al.,

2019), Federal University of Technology, Minna, Nigeria. A full journal paper titled “A

Performance Comparison of Docker and Kata Containers for Edge Computing” is currently

being prepared for submission. These demonstrate the importance of Container Based

Multi-access Edge Computing in meeting 5G enhanced mobile broadband (eMBB) and

ultra-reliable and low latency communication (uRLLC) requirements

The test bed provided the opportunity to perform real world scenario load testing using

Locust (Heyman, et al., n.d). The experiments results showed that deployment at the edge

produced low latency figures close to the requirements of emerging 5G applications. Low

latency figures will enhance the end-user quality of experience (QoE). Edge deployments

will reduce the pressure on network operators backhaul link saving end-to-end ecosystem

from collapse due to heavy backhaul traffic that might result from billions of 5G UEs.

67

REFERENCES

3GPP. (2017). Technical Specification Group Radio Access Network; Study on new
radio access technology: Radio access architecture and interfaces.

Adufu, T., Choi, J., & Kim, Y. (2015). Is container-based technology a winner for
high performance scientific applications? 2015 17th Asia-Pacific Network

Operations and Management Symposium (APNOMS), IEEE 2016, ISBN
978-4-88552-304-5,507-510.

Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N., & Chen, Y. (2018).

Orchestration of Microservices for IoT Using Docker and Edge Computing.

IEEE Communications Magazine, 56(9), 118–123.

Alsafi, R., & Westphal, C. (2016). Challenges in Networking to Support Augmented

Reality and Virtual Reality. Retrieved October 30, 2019, from
https://www.academia.edu/37963383/Challenges_in_Networking_to_Suppo

rt_Augmented_Reality_and_Virtual_Reality

Augustyn, D. R., & Warchał, Ł. (2010). Cloud Service Solving N-Body Problem
Based on Windows Azure Platform. Computer Networks Communications
in Computer and Information Science, 84–95.

Bamford, R., & Deibler, W. J. (1995). Configuration management and 19 ISO 9001.
Retrieved May 19, 2019, from http://www.ssqc.com/do25v6new.pdf

Belshe, M., & Peon, R. (2015). Hypertext Transfer Protocol Version 2 (HTTP/2).
Retrieved May 19, 2019, from https://www.rfc-editor.org/info/rfc7540

Better Explained. (2019). A Visual Guide to Version Control. Retrieved May 19, 2019,

from https://betterexplained.com/articles/a-visual-guide-to-version-control/

blackMORE Ops. (2017). "Find Linux Exploits by Kernel version. Retrieved July 3,
2019, from https://www.blackmoreops.com/2017/01/17/find-linux-exploits-
by-kernel-version//

Canonical. (n.d.). Ubuntu Server - for scale out workloads. Retrieved January 30,
2020, from https://ubuntu.com/server

Checko, A. (2016). Cloud Radio Access Network architecture. Towards 5G mobile
networks. Retrieved March 30, 2019, from
https://orbit.dtu.dk/en/publications/cloud-radio-access-network-architecture-

towards-5g-mobile-network

Chef Software Inc. (2019). Continuous Automation for the Continuous Enterprise.
Retrieved May 20, 2019, from https://www.chef.io/why-chef/

68

https://betterexplained.com/articles/a-visual-guide-to-version-control/

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). CloneCloud.
Proceedings of the Sixth Conference on Computer Systems - EuroSys 11,
301–314.

Claassen, J., Koning, R., & Grosso, P. (2016). Linux containers networking:
Performance and scalability of kernel modules. NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium, 713–171.

Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra, R.,
& Bahl, P. (2010). Maui. Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services - MobiSys 10, 49–62.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large
clusters. Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation, 6, 137–147.

Díaz, M., Martín, C., & Rubio, B. (2016). State-of-the-art, challenges, and open
issues in the integration of Internet of things and cloud computing. Journal
of Network and Computer Applications, 67, 99–117.

Docker Inc. (2019). What is a Container? Retrieved May 19, 2019, from
https://www.docker.com/resources/what-container

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., & Tuulos, V. H. (2010).
Misco. Proceedings of the 3rd International Conference on Pervasive
Technologies Related to Assistive Environments - PETRA 10, 1–8.

Dreibholz, T. (2020). Flexible 4G/5G Testbed Setup for Mobile Edge Computing
Using OpenAirInterface and Open Source MANO. In AINA Workshops
(pp. 1143-1153).

Ericsson AB, Huawei Technologies Co. Ltd., NEC Corporation, & Nokia. (2019).
eCPRI Specification V2 - Common Public Radio Interface. Retrieved May
26, 2019, from
http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf

Erol-Kantarci, M., & Sukhmani, S. (2018). Caching and Computing at the Edge for

Mobile Augmented Reality and Virtual Reality (AR/VR) in 5G. Ad Hoc
Networks Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, 169–177.

European Telecommunications Standards Institute (ETSI). (2017). TS 123 401 -
V14.3.0 - LTE; General Packet Radio Service (GPRS) enhancements for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access. -
ETSI. Retrieved June 12, 2019, from
https://www.etsi.org/deliver/etsi_ts/123400_123499/123401/14.03.00_60/ts
_123401v140300p.pdf

69

European Telecommunications Standards Institute (ETSI). (2018a). TR 121 914 -
V14.0.0 - Digital cellular telecommunications system (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS); LTE; 5G. - ETSI.
Retrieved June 12, 2019, from
https://www.etsi.org/deliver/etsi_tr/121900_121999/121914/14.00.00_60/tr_
121914v140000p.pdf

European Telecommunications Standards Institute (ETSI). (2018b). TS 129 500 -
V15.0.0 - 5G; 5G System; Technical Realization of Service Based

Architecture. - ETSI. Retrieved May 16, 2019, from
https://www.etsi.org/deliver/etsi_ts/129500_129599/129500/15.00.00_60/ts
_129500v150000p.pdf

European Telecommunications Standards Institute (ETSI). (2018c). TS 138 473 -
V15.2.1 - 5G; NG-RAN; F1 Application Protocol (F1AP). - ETSI.

European Telecommunications Standards Institute (ETSI). (2019a). ETSI GS MEC

003 V2.0. Retrieved June 12, 2019, from
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_ME
C003v020101p.pdf

European Telecommunications Standards Institute (ETSI). (2019b). TS 123 501 -
V15.5.0 - 5G; System Architecture for the 5G System. - ETSI. Retrieved

April 16, 2019, from
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.02.01_60/ts
_138473v150201p.pdf

Firecracker. (n.d.). How It Works. Retrieved June 12, 2019, from https://firecracker-
microvm.github.io/

Forcier, J. (n.d.). Welcome to Paramiko! Retrieved September 3, 2019, from
http://www.paramiko.org/

Google Cloud. (2019) Google Kubernetes Engine Go to console(GKE). Retrieved
June 12, 2019, from https://cloud.google.com/kubernetes-engine/

Gordon, M. S., Jamshidi, A. D., Mahlke, S., Mao, M. Z., & Chen, X. (2012).

COMET: Code Offload by Migrating Execution Transparently. Proceedings
of the 10th USENIX Conference on Operating Systems Design and

Implementation October 2012, OSDI'12, 93–106.

Haavisto, J., Arif, M., Lovén, L., Leppänen, T., & Riekki, J. (2019). Open-source

RANs in Practice: an Over-the-air Deployment for 5G MEC. In 2019
European Conference on Networks and Communications (EuCNC) (pp.

495-500). IEEE.

Hewlett Packard Enterprise. (n.d.). What is Edge Computing? – Enterprise IT
Definitions. Retrieved September 3, 2019, from
https://www.hpe.com/dk/en/what-is/edge-computing.html

70

Heyman, J., Byström, C., Hamrén, J., & Heyman, H. (n.d.). What is Locust? —
Locust 0.14.4 documentation. Retrieved November 4, 2019, from
https://docs.locust.io/en/stable/what-is-locust.html

Hoque, S., Brito, M. S. D., Willner, A., Keil, O., & Magedanz, T. (2017). Towards
Container Orchestration in Fog Computing Infrastructures. 2017 IEEE 41st

Annual Computer Software and Applications Conference (COMPSAC),
294– 299.

Huang, A., Nikaein, N., Stenbock, T., Ksentini, A., & Bonnet, C. (2017). Low
latency MEC framework for SDN-based LTE/LTE-A networks. 2017 IEEE
International Conference on Communications (ICC).

Huang, D., Zhang, X., Kang, M., & Luo, J. (2010). MobiCloud: Building Secure Cloud

Framework for Mobile Computing and Communication. 2010 Fifth IEEE

International Symposium on Service Oriented System Engineering, 27–34.

Huawei technologies co, H. H. (2017, December). Front-haul networking for 5G: An
analysis of technologies and standardization.

ITU. (2015). IMT Vision – Framework and overall objectives of the ...

ITU. (2017, November). Minimum requirements related to technical performance for
IMT-2020 radio interface(s). Retrieved January 16, 2019, from
https://www.itu.int/pub/R-REP-M.2410

Kata Containers. (2019). About Kata Containers: The speed of containers, the
security of VMs. Retrieved May 17, 2019, from https://katacontainers.io/

Kata Containers. (2019). Kata containers OSbuilder. Retrieved November 3, 2019,
from https://github.com/kata-containers/osbuilder

Kata Containers. (2019). Learn: An overview of the Kata Containers project.
Retrieved May 17, 2019, from https://katacontainers.io/learn/

Kernel Virtual Machine. (2016). KVM. Retrieved May 5, 2019, from
https://www.linux-kvm.org/page/Main_Page

Kitindi, E. J., Fu, S., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless Network
Virtualization With SDN and C-RAN for 5G Networks: Requirements,

Opportunities, and Challenges. IEEE Access, 5, 19099–19115.

Knopp, R., Nikaein, N., Bonnet, C., Kaltenberger, F., Ksentini, A., & Gupta, R.

(2017). Prototyping of Next Generation Fronthaul Interfaces (NGFI) using
OpenAirInterface.

71

Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading. 2012 Proceedings IEEE INFOCOM, 945–953.

Kumar Abhishek, M. (2020). High Performance Computing using Containers in
Cloud. International Journal of Advanced Trends in Computer Science and
Engineering, 9(4), 5686–5690.
https://doi.org/10.30534/ijatcse/2020/220942020

Mach, P., & Becvar, Z. (2017). Mobile Edge Computing: A Survey on Architecture
and Computation Offloading. IEEE Communications Surveys & Tutorials,
19(3), 1628–1656.

Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A Survey on
Mobile Edge Computing: The Communication Perspective. IEEE
Communications Surveys & Tutorials, 19(4), 2322–2358.

Marinelli, E. E. (2009). Hyrax: Cloud Computing on Mobile Devices using
MapReduce.

Mohyeldin, E. (2016). Minimum Technical Performance Requirements for IMT-2020
... Retrieved January 16, 2019, from https://www.itu.int/en/ITU-R/study-
groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements for IMT-
2020_Rev.pdf

Mosudi, I., Zubair, S., Abolarinwa, J. (2019). Multi-Access Edge Computing
Deployments for 5G Networks. 3rd International Engineering Conference
(IEC 2019), Federal University of Technology, Minna.

Murphy, K. (2015). Centralized RAN and Fronthaul - ISEMAG. Retrieved March 30,

2019, from https://www.isemag.com/wp-content/uploads/2016/01/C-

RAN_and_Fronthaul_White_Paper.pdf

National Information Technology Development Agency (NITDA). (2019). Nigeria
Cloud Computing Policy Nigeria Cloud Computing Policy Release V1.2.

Nkhoma, M. Z., & Dang, D. P. T. (2013). CONTRIBUTING FACTORS OF

CLOUD COMPUTING ADOPTION: A TECHNOLOGY-
ORGANISATION-ENVIRONMENT FRAMEWORK APPROACH.

International Journal of Information Systems and Engineering, 1(1), 30–41.

Nvidia. (2018). NVIDIA/nvidia-docker. Retrieved May 16, 2019, from
https://www.nvidia.com/object/docker-container.html

Okafor, I. (2017). Legal Implications Of Offshore Cloud Computing: Data

Sovereignty. Retrieved October 2019, from
https://www.mondaq.com/Nigeria/Technology/561772/Legal-Implications-
Of-Offshore-Cloud-Computing-Data-Sovereignty

72

Openstack. (2019). OpenStack Services. Retrieved October 3, 2019, from
https://www.openstack.org/software/sample-configs#web-applications

Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. (2018). A Survey on
Low Latency Towards 5G: RAN, Core Network and Caching Solutions.
IEEE Communications Surveys & Tutorials, 20(4), 3098–3130.

Patel, M., Hu, Y., Hédé, P., Joubert, J., Thornton, C., Naughton, B., … Klas, G. (2014).

Mobile-Edge Computing – Introductory Technical White Paper - ETSI.

Patil, P., Hakiri, A., & Gokhale, A. (2016). Cyber Foraging and Offloading
Framework for Internet of Things. 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC).

Pieplu, R. (2018). Ground Control Segment automated deployment and configuration
with ANSIBLE and GIT. 15th International Conference on Space
Operations.

Piparo, D., Tejedor, E., Mato, P., Mascetti, L., Moscicki, J., & Lamanna, M. (2018).
SWAN: A service for interactive analysis in the cloud. Future Generation
Computer Systems, 78, 1071–1078.

Pritchard (2010). What is cloud computing? (n.d.). Retrieved January 12, 2019, from
https://www.itpro.co.uk/627952/what-is-cloud-computing

Puppet. (2019). Powerful infrastructure automation and delivery: Puppet. Retrieved
March 20, 2019, from https://puppet.com/products/why-puppet

Qing, W., Zheng, H., Ming, W., & Haifeng, L. (2013). CACTSE: Cloudlet aided
cooperative terminals service environment for mobile proximity content
delivery. China Communications, 10(6), 47–59.

Red Hat, Inc. (n.d.). Working With Playbooks¶. Retrieved September 3, 2019, from
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

SaltStack, Inc. (2019). SaltStack Documentation. Retrieved May 20, 2019, from
https://docs.saltstack.com/en/latest/

Sanchez, C. (2014). Scaling Docker with Kubernetes. Retrieved June 12, 2019, from
https://www.infoq.com/articles/scaling-docker-with-kubernetes/

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE
Personal Communications, 8(4), pg10–17.

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The Case for VM-
Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4),
14– 23.

73

Shahzadi, S., Iqbal, M., Dagiuklas, T., & Qayyum, Z. U. (2017). Multi-access edge
computing: open issues, challenges and future perspectives. Journal of
Cloud Computing, 6(1).

Shew, S. (Ed.). (2018). ITU-T Technical Report. Retrieved May 16, 2019, from

https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2018-PDF-E.pdf

Skarpness, M. (2017). Keynote: Beyond the Cloud: Edge Computing - Mark
Skarpness ... Retrieved December 18, 2019, from
https://www.youtube.com/watch?v=mCDXnls6pQk

Smith, P., Erfanian, J., Goyette, D., Gilson, M., MacKenzie, R., Sutton, A., …
Soghomaonian, M. (2018). NGMN Overview on 5G RAN Functional
Decomposition.

Sutton, A. (2018a). 5G Network Architecture. The ITP (Institute of
Telecommunications Professionals) Journal, 12(1), 9–15. Retrieved from

http://www.engagingwithcommunications.com/publications/ITP_Papers/5G
_network_architecture/ITP_Journal_Vol12_Part1_Pages9-

15_5G_Network_Architecture.pdf

Sutton, A. (2018b). 5G Network Architecture, Design and Optimisation. Retrieved
January 2019, from https://tv.theiet.org/?videoid=11548

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network

Edge Cloud Architecture and Orchestration. IEEE Communications Surveys
& Tutorials, 19(3), 1657–1681.

The Linux Foundation. (n.d.). Production-Grade Container Orchestration. Retrieved
June 12, 2019, from https://kubernetes.io/

Walker, T. E. (2018). Productivity with continuous integration & delivery. Retrieved
November 3, 2019, from
http://files.informatandm.com/uploads/2018/10/Introducing_the_CI.CD_Wo
rkflows_in_the_Cloud_TaraWalker.pdf

Yala, L., Iordache, M., Bousselmi, A., & Imadali, S. (2019). 5G Mobile Network
Orchestration and Management Using Open-Source. In 2019 IEEE 2nd 5G
World Forum (5GWF) (pp. 421-426). IEEE.

Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, (2018). “A Comparative Study
of Containers and Virtual Machines in Big Data Environment,” 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), 2018.

Zhang, X., Jeong, S., Kunjithapatham, A., & Gibbs, S. (2010). Towards an Elastic
Application Model for Augmenting Computing Capabilities of Mobile
Platforms. Lecture Notes of the Institute for Computer Sciences, Social

74

Informatics and Telecommunications Engineering Mobile Wireless
Middleware, Operating Systems, and Applications, 161–174.

75

APPENDIX A

#plot.py
#This was used to plot all our graphs to manage the presentation of
#the CSV dataset from our results

import pandas as pd

#import matplotlib.pyplot as plt

import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as ply

from datetime import datetime

dt =
pd.read_csv('graphcsv2/edge_cloud_log_03_01_2020_stats_history.csv')

dt['Timestamp_edge'] = pd.to_datetime(dt['Timestamp_edge'], unit='s')

dt['Timestamp_cloud']= pd.to_datetime(dt['Timestamp_cloud'],unit='s')

#Selecting and manipulating columns of interest

timestamp_edge
total_requests_edge
failures_edge
total_requests_rate_edge
failed_requests_rate_edge
med_response_time_edge
min_response_time_edge
max_response_time_edge
average_content_Size_edge
fifty_response_time_edge
ninety_5_response_time_edge

= dt['Timestamp_edge']
= dt['# requests_edge']
= dt['# failures_edge']
= dt['Requests/s_edge']
= dt['Requests Failed/s_edge']

= dt['Median response time_edge']
= dt['Min response time_edge']
= dt['Max response time_edge']

= dt['Average Content Size_edge']
= dt['50%_edge']
= dt['95%_edge']

timestamp_cloud
total_request_cloud
failures_cloud
total_requests_rate_cloud
failed_requests_rate_cloud
med_response_time_cloud
min_response_time_cloud
max_response_time_cloud
average_content_Size_cloud
fifty_response_time_cloud
ninety_5_response_time_cloud

= dt['Timestamp_cloud']
= dt['# requests_cloud']
= dt['# failures_cloud']
= dt['Requests/s_cloud']
= dt['Requests Failed/s_cloud']

= dt['Median response time_cloud']
= dt['Min response time_cloud']
= dt['Max response time_cloud']

= dt['Average Content Size_cloud']
= dt['50%_cloud']
= dt['95%_cloud']

A1

trace_a1 = go.Scatter(x = timestamp_edge, y =

total_requests_rate_edge, name = 'Edge Site')

trace_a2 = go.Scatter(x = timestamp_cloud, y =

total_requests_rate_cloud, name = 'Cloud')

layout_a = dict (
 font = dict(family = 'Times New Roman',

 size = 24

) ,

 title = dict(text = 'Total Requests per

 second(req/s)',

 #xanchor = 'center',

 x = 0.5,

 yanchor = 'top',

 font = dict(

 size = 34)

),

 xaxis = dict(title = "Timestamp"),

 yaxis = dict(title = 'Requests/s'),

 xaxis_rangeslider_visible=True

)

trace_b1 = go.Scatter(x = timestamp_edge, y =

med_response_time_edge/1000, name = 'Edge Site Median Response Time')

trace_b2 = go.Scatter(x = timestamp_cloud, y =

med_response_time_cloud/1000, name = 'Cloud Median Response Time')

trace_b3 = go.Scatter(x = timestamp_edge, y =

max_response_time_edge/1000, name = 'Edge Site Maximum Response Time')

trace_b4 = go.Scatter(x = timestamp_cloud, y =

max_response_time_cloud/1000, name = 'Cloud Maximum Response Time')

layout_b

=

dict (
font = dict(family = 'Times New Roman',
size = 24
) ,

title = dict(text = 'Application Response
Time',
#xanchor = 'center',
x = 0.5,
yanchor = 'top',
font = dict(
size = 34)
),
xaxis = dict(title = "Timestamp"),

yaxis = dict(title = 'Time(seconds)'),

xaxis_rangeslider_visible=True
)

A2

trace_c1 = go.Scatter(x = timestamp_edge, y =

failed_requests_rate_edge, name = 'Edge Site')

trace_c2 = go.Scatter(x = timestamp_cloud, y =

failed_requests_rate_cloud, name = 'Cloud')

layout_c = dict (
 font = dict(family = 'Times New Roman',

 size = 24

) ,

 title = dict(text = 'Failed Request per

 second(req/s)',

 #xanchor = 'center',

 x = 0.5,

 yanchor = 'top',

 font = dict(

 size = 34)

),

 xaxis = dict(title = "Timestamp"),

 yaxis = dict(title = 'Requests/s'),

 xaxis_rangeslider_visible=True

)

trace_d1 = go.Scatter(x = timestamp_edge, y =

min_response_time_edge, name = 'Edge Site Minimum Response Time')

trace_d2 = go.Scatter(x = timestamp_cloud, y =

min_response_time_cloud, name = 'Cloud Minimum Response Time')

#trace_d3 = go.Scatter(x = timestamp_edge, y =

med_response_time_edge, name = 'Edge Site Median Response Time')

#trace_d4 = go.Scatter(x = timestamp_cloud, y =

med_response_time_cloud, name = 'Cloud Median Response Time')

layout_d = dict (
 font = dict(family = 'Times New Roman',

 size = 24

) ,

 title = dict(text = 'Application Minimum Response

 Time',

 #xanchor = 'center',

 x = 0.5,

 yanchor = 'top',

 font = dict(

 size = 34

)

),

 xaxis = dict(title = "Timestamp"),

 yaxis = dict(title = 'Time(milliseconds)'),
xaxis_rangeslider_visible=True

)

A3

APPENDIX B

#locustfile.py

#These were used to define user behaviour to load test the deployed web applications

#and for the generation of CSV result dataset for further analysis #

#Cloud locustfile

#locust --csv=locust_log_cloud --host /67.172.223.157 --no-web -c 30 -r

3 from locust import HttpLocust, TaskSet, task, between import random

from random import randrange

#import test_random_integer

#Importing Logging

import logging

import os.path

from datetime import datetime

#Define target host

#HOST = "http://167.172.223.157"

#PORT = ":9082/"

#Creating log filename

locust_current_time=datetime.now()

logfilename = str(locust_current_time) + '.log'

logfile =

os.path.join('/home/mosudi/Documents/mio_drive/mengloadtest/locust_log_d

i

r/',

logfilename)

print(logfile)

logging.basicConfig(filename="logfile.log", level=logging.INFO) #,

format='%(asctime)s %(levelname)s %(name)s %(threadName)s

: %(message)s')

#logging.basicConfig(filename=logfile, level=logging.DEBUG)

B1

class UserBehaviour(TaskSet):

def on_start(self):

""" on_start is called when a Locust start before any task is

scheduled """

#http://167.172.223.157:9082/

self.client.get("http://167.172.223.157:9082/"

) pass

@task(3)

def index(self):

#self.client.get("/")

n = randrange(3, 14)

print(n)

self.client.post("http://167.172.223.157:9082/", {"n": n })

pass

@task(2)

def contact(self):

self.client.get("http://167.172.223.157:9082/contact")

pass

@task(1)

def about(self):

self.client.get("http://167.172.223.157:9082/about")

pass

class WebsiteUser(HttpLocust):

task_set = UserBehaviour

wait_time = between(90, 140)

"""class WebsiteUser(HttpLocust):

task_set = UserBehaviour

wait_time = lambda self: random.expovariate(1)*1000"""

B2

#Edge locustfile

#locust --csv=locust_log_edge --host 192.168.5.155 --no-web -c 30 -r

3 from locust import HttpLocust, TaskSet, task, between import random

from random import randrange

#import test_random_integer

#Importing Logging

import logging

import os.path

from datetime import datetime

#Define target host

#HOST = "http://192.168.5.155"

#PORT = ":9082/"

#Creating log filename

locust_current_time=datetime.now()

logfilename = str(locust_current_time) + '.log'

logfile =

os.path.join('/home/mosudi/Documents/mio_drive/mengloadtest/locust_log_d

i

r/',

logfilename)

print(logfile)

logging.basicConfig(filename="logfile.log", level=logging.INFO) #,

format='%(asctime)s %(levelname)s %(name)s %(threadName)s

: %(message)s')

#logging.basicConfig(filename=logfile, level=logging.DEBUG)

B3

class UserBehaviour(TaskSet):

def on_start(self):

""" on_start is called when a Locust start before any task is

scheduled """

#self.client.get("http:/167.172.223.157:9082/")

self.client.get("http://192.168.5.155:9082/"

) pass

@task(3)

def index(self):

#self.client.get("/")

n = randrange(3, 14)

print(n)

#self.client.post("http://167.172.223.157:9082/", {"n": n })

self.client.post("http://192.168.5.155:9082/", {"n": n })

pass

@task(2)

def contact(self):

#self.client.get("http://167.172.223.157:9082/contact")

self.client.get("http://192.168.5.155:9082/contact")

pass

@task(1)

def about(self):

#self.client.get("http://167.172.223.157:9082/about")

self.client.get("http://192.168.5.155:9082/about")

pass

class WebsiteUser(HttpLocust):

task_set = UserBehaviour

wait_time = between(90, 140)

"""class WebsiteUser(HttpLocust):

task_set = UserBehaviour

wait_time = lambda self: random.expovariate(1)*1000"""

B4

APPENDIX C

Bash Commands
#Install requirements

sudo apt-get update

sudo apt-get upgrade -y

sudo apt-get install -y debootstrap curl git wget snapd vi

#Installing Go

sudo snap install go --classic

#Installing kata-runtime, kata-proxy and kata-shim

ARCH=$(arch)

BRANCH="${BRANCH:-master}"

sudo sh -c "echo 'deb

http://download.opensuse.org/repositories/home:/katacontainers:/releases:/${ARCH}:/${BRAN
CH}/xUbuntu_$(lsb_release -rs)/ /' > /etc/apt/sources.list.d/kata-containers.list"

curl -sL

http://download.opensuse.org/repositories/home:/katacontainers:/releases:/${ARCH}:/${BRAN

CH}/xUbuntu_$(lsb_release -rs)/Release.key | sudo apt-key add - sudo -E apt-get update

sudo -E apt-get -y install kata-runtime kata-proxy kata-shim

#Installing Docker CE

sudo -E apt-get -y install apt-transport-https ca-certificates software-properties-common

curl -sL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

arch=$(dpkg --print-architecture)

sudo -E add-apt-repository "deb [arch=${arch}] https://download.docker.com/linux/ubuntu

$(lsb_release -cs) stable"

sudo -E apt-get update

sudo -E apt-get -y install docker-ce

sudo usermod -aG docker ${USER}

#Image build procedures

git clone https://github.com/imosudi/osbuilder.git

Creating Rootfs with systemd as init

export USE_DOCKER=true

Building guest O/S rootfs based on Ubuntu

sudo image-builder/image_builder.sh -r "${PWD}/rootfs-builder/rootfs-bionic/"

C1

Building Ubuntu Docker image based rootfs created above

sudo -E PATH=$PATH make USE_DOCKER=true rootfs

#Application packaging procedures #Clone Mobile web application from git

repo git clone https://imosudi@bitbucket.org/imosudi/rubiks3.git

#Prepare Ubuntu Docker image for app

deployment docker run -it ubuntu-rootfs-osbuilder

/bin/bash 2baf2236122d# apt update && apt

upgrade -y 2baf2236122d# apt install python3-pip

#Create image for app deployment

docker commit 2baf2236122d imosudi/ubuntu-rootfs-osbuilder:v10.0

#Edit application image Dockerfile

cd rubiks3/

#Dockerfile

FROM imosudi/ubuntu-rootfs-osbuilder:v10.0

#Dockerfile Author / Maintainer

MAINTAINER mosudi.pg7331@st.futminna.edu.ng

|

|

|

ENV PORT 9082

CMD ["/usr/bin/python3", "app.py"]

#Building a versioned Docker application container

docker build -t imosudi/rubiks3ubuntufs-kataruntime:v1.5 .

#Ship the built images to repository for future use

docker push imosudi/ubuntu-rootfs-osbuilder:v10.0

docker push imosudi/rubiks3ubuntufs-kataruntime:v1.5

#Deploy application

docker run -it -p 9082:9082 imosudi/rubiks3ubuntufs-kataruntime:v1.5

#Web application available via Docker host IP address

http://HOST-IP-ADDRESS:9082

C2

APPENDIX D

Table 4.1: Experiment Data

Timestamp_edge Timestamp_cloud # requests_edge # requests_cloud ... 50%_edge 50%_cloud 95%_edge 95%_cloud

0 2020-01-03 11:28:04 2020-01-03 11:28:01 0.0 0 ... NaN NaN NaN NaN

1 2020-01-03 11:28:06 2020-01-03 11:28:03 2.0 0 ... 2100.0 NaN 2100.0 NaN

2 2020-01-03 11:28:08 2020-01-03 11:28:05 8.0 0 ... 2100.0 NaN 3000.0 NaN

3 2020-01-03 11:28:10 2020-01-03 11:28:07 12.0 3 ... 2500.0 5300.0 4600.0 5600.0

4 2020-01-03 11:28:12 2020-01-03 11:28:09 13.0 5 ... 2500.0 5600.0 4900.0 6700.0

5 2020-01-03 11:28:14 2020-01-03 11:28:11 16.0 8 ... 3000.0 6400.0 8100.0 8500.0

6 2020-01-03 11:28:16 2020-01-03 11:28:13 21.0 10 ... 4100.0 6400.0 8200.0 9500.0

7 2020-01-03 11:28:18 2020-01-03 11:28:15 24.0 13 ... 7300.0 6700.0 9100.0 11000.0

8 2020-01-03 11:28:20 2020-01-03 11:28:17 29.0 17 ... 7600.0 8200.0 11000.0 13000.0

9 2020-01-03 11:28:22 2020-01-03 11:28:19 29.0 19 ... 7900.0 9500.0 11000.0 15000.0

10 2020-01-03 11:28:24 2020-01-03 11:28:21 30.0 21 ... 8700.0 11000.0 15000.0 16000.0

11 2020-01-03 11:28:26 2020-01-03 11:28:23 35.0 22 ... 10000.0 13000.0 16000.0 18000.0

12 2020-01-03 11:28:28 2020-01-03 11:28:25 39.0 25 ... 15000.0 15000.0 16000.0 19000.0

13 2020-01-03 11:28:30 2020-01-03 11:28:27 41.0 27 ... 15000.0 15000.0 18000.0 19000.0

14 2020-01-03 11:28:32 2020-01-03 11:28:29 47.0 32 ... 16000.0 18000.0 24000.0 21000.0

15 2020-01-03 11:28:34 2020-01-03 11:28:31 49.0 33 ... 16000.0 18000.0 24000.0 22000.0

16 2020-01-03 11:28:36 2020-01-03 11:28:33 49.0 34 ... 16000.0 19000.0 24000.0 25000.0

17 2020-01-03 11:28:38 2020-01-03 11:28:35 49.0 35 ... 18000.0 20000.0 24000.0 25000.0

18 2020-01-03 11:28:40 2020-01-03 11:28:37 49.0 37 ... 14000.0 21000.0 24000.0 31000.0

19 2020-01-03 11:28:42 2020-01-03 11:28:39 50.0 39 0... 11000.0 27000.0 19000.0 31000.0

20 2020-01-03 11:28:44 2020-01-03 11:28:41 52.0 440 ... 14000.0 29000.0 35000.0 32000.0

21 2020-01-03 11:28:46 2020-01-03 11:28:43 52.0 45 ... 15000.0 30000.0 35000.0 32000.0

22 2020-01-03 11:28:48 2020-01-03 11:28:45 52.0 47 ... 15000.0 30000.0 35000.0 32000.0

23 2020-01-03 11:28:50 2020-01-03 11:28:47 54.0 47 ... 34000.0 30000.0 38000.0 32000.0

24 2020-01-03 11:28:52 2020-01-03 11:28:49 54.0 47 ... 35000.0 30000.0 38000.0 32000.0

25 2020-01-03 11:28:54 2020-01-03 11:28:51 54.0 47 ... 35000.0 4100.0 38000.0 32000.0

26 2020-01-03 11:28:56 2020-01-03 11:28:53 54.0 48 ... 38000.0 4100.0 38000.0 22000.0

D1

27 2020-01-03 11:28:58 2020-01-03 11:28:55 54.0 49 ... 34000.0 22000.0 34000.0 44000.0

28 2020-01-03 11:29:00 2020-01-03 11:28:57 55.0 49 ... 34000.0 22000.0 34000.0 44000.0

29 2020-01-03 11:29:02 2020-01-03 11:28:59 56.0 49 ... 34000.0 44000.0 36000.0 44000.0

...

3925 2020-01-03 13:39:37 2020-01-03 13:39:19 1939.0 1743 ... 61000.0 12000.0 94000.0 12000.0

3926 2020-01-03 13:39:39 2020-01-03 13:39:21 1939.0 1743 ... 61000.0 12000.0 94000.0 12000.0

3927 2020-01-03 13:39:41 2020-01-03 13:39:23 1940.0 1747 ... 26000.0 39000.0 94000.0 93000.0

3928 2020-01-03 13:39:43 2020-01-03 13:39:25 1940.0 1747 ... 26000.0 39000.0 94000.0 93000.0

3929 2020-01-03 13:39:45 2020-01-03 13:39:27 1941.0 1748 ... 3600.0 39000.0 94000.0 93000.0

3930 2020-01-03 13:39:47 2020-01-03 13:39:29 1942.0 1748 ... 3600.0 39000.0 94000.0 93000.0

3931 2020-01-03 13:39:49 2020-01-03 13:39:31 1944.0 1748 ... 3600.0 39000.0 60000.0 93000.0

3932 2020-01-03 13:39:51 2020-01-03 13:39:33 1945.0 1748 ... 7700.0 49000.0 62000.0 93000.0

3933 2020-01-03 13:39:53 2020-01-03 13:39:35 1945.0 1748 ... 7700.0 16000.0 62000.0 16000.0

3934 2020-01-03 13:39:55 2020-01-03 13:39:37 1946.0 1748 ... 7700.0 16000.0 62000.0 16000.0

3935 2020-01-03 13:39:57 2020-01-03 13:39:39 1946.0 1749 ... 7700.0 16000.0 62000.0 16000.0

3936 2020-01-03 13:39:59 2020-01-03 13:39:41 1946.0 1750 ... 7700.0 9800.0 62000.0 16000.0

3937 2020-01-03 13:40:01 2020-01-03 13:39:43 1948.0 1750 ... 120.0 9800.0 62000.0 9800.0

3938 2020-01-03 13:40:03 2020-01-03 13:39:45 1949.0 1750 ... 120.0 9800.0 12000.0 9800.0

3939 2020-01-03 13:40:05 2020-01-03 13:39:47 1949.0 1750 ... 120.0 9800.0 12000.0 9800.0

3940 2020-01-03 13:40:07 2020-01-03 13:39:49 1951.0 1752 ... 120.0 5200.0 20000.0 9800.0

3941 2020-01-03 13:40:09 2020-01-03 13:39:51 1951.0 1752 ... 120.0 1200.0 20000.0 5200.0

3942 2020-01-03 13:40:11 2020-01-03 13:39:53 1953.0 1752 ... 17.0 1200.0 20000.0 5200.0

3943 2020-01-03 13:40:13 2020-01-03 13:39:55 1954.0 1752 ... 37.0 5200.0 20000.0 5200.0

3944 2020-01-03 13:40:15 2020-01-03 13:39:57 1954.0 1752 ... 17.0 5200.0 20000.0 5200.0

3945 2020-01-03 13:40:17 2020-01-03 13:39:59 1954.0 1752 ... 17.0 1200.0 37.0 1200.0

3946 2020-01-03 13:40:19 2020-01-03 13:40:01 1954.0 1752 ... 17.0 1200.0 37.0 1200.0

3947 NaT 2020-01-03 13:40:03 NaN 1753 ... NaN 6500.0 NaN 6500.0

3948 NaT 2020-01-03 13:40:05 NaN 1753 ... NaN 6500.0 NaN 6500.0

3949 NaT 2020-01-03 13:40:07 NaN 1754 ... NaN 45000.0 NaN 45000.0

3950 NaT 2020-01-03 13:40:09 NaN 1754 ... NaN 45000.0 NaN 45000.0

D2

3951 NaT 2020-01-03 13:40:11 NaN 1754 ... NaN 45000.0 NaN 45000.0

3952 NaT 2020-01-03 13:40:13 NaN 1754 ... NaN 45000.0 NaN 45000.0

3953 NaT 2020-01-03 13:40:15 NaN 1755 ... NaN 45000.0 NaN 45000.0

3954 NaT 2020-01-03 13:40:17 NaN 1756 ... NaN 24000.0 NaN 45000.0

[3955 rows x 22 columns]

D3

