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ABSTRACT 

 

The growth of the telecommunication industry is fast paced with ground-breaking 

engineering achievements. Despite this, portable mobile handheld devices have very 

low computational, storage and energy carrying capacity occasioned by the needs to 

satisfy portability, very small form factor, ergonomics, style and trends. Proposals such 

as cloudlets, cyber foraging, mobile cloud computing (MCC), and more recently but 

most applicable, multi-access edge computing (MEC) have been proffered. New and 

emerging use cases, especially the deployments of 5G will bring up a lot of latency-

sensitive and resource-intensive applications. To address these challenges, this work 

introduced the use of secure containerization for MEC applications and location of MEC 

host at the 5G centralized unit within the radio access network (RAN) aiding offloading 

of computational, storage and analytics requirements close to UE at the fringe of the 

network where the data are being generated and results being applied. The major 

contribution of this thesis is the use of secured containerization technology to replace 

virtual machines, making it possible to use containers for MEC applications, reducing 

application overhead while satisfying the isolation of MEC infrastructure as required by 

the European Technology Standard Institute (ETSI) to ensure MEC application security. 

5G end-to-end transport specifications were evaluated for the vantage location of MEC 

server within the radio access network and achieved theoretical values between 4.1ms 

and 14.1ms end-to-end latency. These figures satisfy requirements of VR/AR (7-12ms); 

tactile Internet (<10ms); Vehicle-to-Vehicle (< 10ms); Manufacturing & Robotic 

Control/Safety Systems (1-10ms). The results confirmed that edge computing has lower 

user plane latency figures and reduced backhaul traffic with lower application failure 

rate. Secured containerised Multi-access computing infrastructures have many 

advantages of mobile cloud computing for mobile wireless device computational power 

and energy carrying capacity deficiencies to cater asymmetric UE applications. 

Applications hosted within the RAN have better support for new and emerging 

application requirements in terms of high amount of computational, storage and 

analytics capabilities while at low latency figures. Edge deployments will reduce the 

pressure on network operators backhaul link saving end-to-end ecosystem from collapse 

due to heavy backhaul traffic that might result from billions of 5G UEs. No matter how 

fast 5G network will be, MEC will ensure the need not to transport huge data for 

processing in the cloud and returning the results to the UE. This will enhance privacy 

and security while also conserving bandwidth. 
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CHAPTER ONE 

 

1.0 INTRODUCTION 

 

1.1 Background to the Study 
 

 

There are several constraints on mobile devices as well as other portable 5G user 

equipment (UE) devices. Computational resources, memory limitation, storage, network 

and energy carrying capacity are some of the constraints of cellular mobile 

communication UEs and these have a significant effect on the type of application 

software available and for how long a battery can hold a charge to support such 

applications. The major constraints include computational power, charge holding time, 

storage and memory limitations, especially for complex processes (Taleb et al., 2017). 

There are latency-critical and resource-intensive services which are needed to be 

supported by 5G, these include: telepresence, robotics, factory automation, and 

intelligent transportation systems, Virtual Reality (VR), Augmented Reality (AR), 

medicals, smart grid, serious gaming, education and culture (Parvez et al., 2018). More 

so, high definition images and multi-feed super high definition quality live video 

streaming demands for mobile users are constantly being escalated over the recent 

decade. 5G is projected to provide services that will support communication, computing, 

control and content delivery for high-intensity network traffic (Mao et al., 2017). 

 

The deployment of 5G cellular mobile telecommunication standard will herald explosive 

evolution of Information and Communication Technology (ICT) innovations for mobile 

devices, machine-to-machine, Internet of Things (IoT), emerging vehicle technologies - 

V2V and V2X, etc. There will be an enormous increase in the number of mobile devices, 

expectedly about 50 billion devices, but this number will be completely dwarfed by the 

exponential growth in the volume of data generated by resource-intensive and feature- 
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rich multimedia applications. These will create hype for mobile data traffic and compute 

requirements (Skarpness, 2017). 

 

To resolve challenges posed by these constraints, the computational requirements of 

mobile applications were offloaded to be processed on tethered external infrastructures 

with adequate resources. These external infrastructures are usually commercial off-the-

shelf or customized standardized IT infrastructures configured to process and return 

results for applications. Different interventions have been proposed, including cyber 

foraging, cloudlet, multi-access edge computing (MEC) and mobile cloud computing 

(MCC) (Mach and Becvar, 2017). 

 

A cloudlet is a resource-rich computer or cluster of computers that is well connected to the 

Internet, trusted and is constantly available for use by untethered mobile devices within 

close proximity (Satyanarayanan et al., 2009). Cyber foraging is considered as dynamical 

augmentations of computing resources of mobile devices and opportunistically exploiting 

computing of tethered infrastructure in the nearby environment (Satyanarayanan, 2001). It is 

the capability of infrastructure to seamlessly undertake migration of computation from one 

node to another (Patil et al., 2016). Cloud computing 

 
(CC) is the abstraction of computing resources e.g. processor, RAM, storage and network 

services from separate hardware units while presenting as a pool of reusable on-demand 

shared computing infrastructure. This can be provisioned rapidly and released 

programmatically or manually involving minimal management effort while creating cost 

benefits and flexibility. The rate of cloud adoption is very high, majorly making it an 

economically viable option. MCC is the integration of CC to serve cloud-based web apps 

over the Internet for smartphones, tablets, and other portable devices. Cloud computing in 

mobile cellular networks, like every other technology, though a solution, has come with 

 
its fair share of challenges as cellular mobile communication technologies mature from 
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1G, 2G, 3G to 4G and looks forward to 5G. Ordinarily, cloud computing should provide 

enough resources for offloading of computational demands (Mach and Becvar, 2017). 

Cloud computing is predominantly application programming interface (API) driven and 

economically viable. Cloud infrastructure can be shared across many end users, 

developers, mobile network operators and corporations spanning over widely separated 

geographical locations, allowing the reduced cost of services compared to traditional 

legacy infrastructures. Despite all the potentials of cloud computing, it has been unable 

to fulfil mobile application end-to-end latency requirements due to long response times, 

due, in turn, to the centralized cloud architecture model resulting into high signal 

propagation delay, affecting the end-user quality of experience (QoE) (Taleb et al., 

2017). Other concerns presented by the use of cloud computing include security and 

privacy, addressing, interoperability, bandwidth (Díaz et al., 2016), as well as 

government policy (National Information Technology Development Agency (NITDA), 

2019); (Okafor, 2017). 

 

The advent of the so much anticipated 5G technologies emerging mobile applications such 

as Augmented Reality (AR), Virtual Reality (VR) (Alsafi and Westphal, 2016), face/voice 

detection and identification for surveillance, authentication and access control, connected 

autonomous vehicles (CAV), intelligent transportation systems (ITS) and highway traffic 

management systems, ultra-high-definition multi-feed live streaming. These are anticipated 

to be among the high resource demanding applications over wireless cellular networks. In 

particular, the newly emerging mobile Augmented Reality and Virtual Reality (AR/VR) 

applications are anticipated to be among the most demanding applications over cellular 

wireless networks (Erol-Kantarci and Sukhmani, 2018). 

 

Field devices such as traffic signals, roadside sensors, face detection and identification, 
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highway traffic management systems. are gradually being connected to central 

monitoring systems for better traffic management. MEC seeks to address issues and 

challenges surrounding billions of field devices generating gigabits of low latency-

sensitive data that require split seconds between data generation, data processing and 

eventual results being applied to certain control mechanisms. Advantages of edge 

computing include: 

 

A. Access to real-time radio network information that creates opportunities that 

can be leveraged by applications (Shahzadi et al., 2017) giving rise to 

location-based services opportunities like location-aware advertising, asset 

tracking, connected autonomous vehicle, AR, ITS and highways traffic 

management systems. 

 
B. Edge computing will improve Quality of User Experience (QoE) by 

leveraging on reduced latency and high throughput available when 

application service logics are computed on the edge servers within the RAN 

 
C. Reducing data security breach and enhancing privacy by reducing the level 

of exposure through manipulation of data close to the source rather than 

transmitting via numerous routes to the cloud. 

 
D. Edge computing creates a new and emerging market value chain in mobile 

networks thereby opening the network to third parties (Patel et al., 2014), 

who can develop and quickly create innovative applications, benefiting all 

parties (Huang et al., 2017). 
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1.2 Statement of the Research Problem 

 

The motivation for this research work stems from the claim by Satyanarayanan et al (2009) 

that “resource poverty is a fundamental constraint that severely limits the class of 

applications that can run on mobile devices.” It was also argued by Satyanarayanan et al. 

(2009) that “at any given cost and level of technology, considerations of weight, size, 

battery life, ergonomics, and heat dissipation exert a severe penalty on computational 

resources such as processor speed, memory size, and disk capacity.” There are challenges of 

unacceptable latency figures in 4G deployments but in 5G which has higher traffic, it is 

feared that there might be an increase in latency. These have been perennial challenges to 

mobile communication UEs but the deployment of 5G is expected to further exacerbate the 

problems with the rise of new and emerging feature-rich mobile applications generating 

high-intensity network traffic. Besides the challenges posed to mobile UEs, this scenario 

will be exerting unprecedented pressure on backhaul and fronthaul networks. 

 

 

Researches have been carried out to augment for computational resources as well as 

energy-carrying capacity constraints in the mobile wireless devices, but the 

shortcomings of the earlier proposed solutions include: 

 

A. Unstable Infrastructure: 
 

The inadequate or total loss of stable augmenting infrastructure has been the bane of 

cyber foraging techniques to resolve the challenges of resource constraints in 

portable mobile UEs (Gordon et al., 2012); (Qing et al., 2013); (Dean and 

Ghemawat, 2004); (Huang et al., 2010); (ETSI, 2017). This usually creates a 

situation of low bandwidth that results in poor application behaviour. Whereas MEC 

is compatible with orchestration, software configuration management, IaC and VCS, 

It is also deployable on standard off-the-shelf or customized IT 

 

5 

https://docs.google.com/document/d/1cdDNhgBpphXWS8ZhjjRJl4iemHdcs8NA/edit#heading=h.2p2csry
https://docs.google.com/document/d/1cdDNhgBpphXWS8ZhjjRJl4iemHdcs8NA/edit#heading=h.2p2csry


infrastructure making it possible to have vertical and horizontal infrastructure 

scalability, the mechanisms required to achieve stable infrastructure. 

 

B. Platform-specific: 
 

Mobile Assistance Using Infrastructure (MAUI) in Cuervo et al. (2010), Code 

Offload by Migrating Execution Transparently (COMET) (Gordon et al., 2012) and 

Misco - a MapReduce framework for mobile systems in Dou et al. (2010) relied on 

Microsoft .Net Framework; the now discontinued, Android Dalvik Virtual Machine 

and Python respectively limiting the type of mobile applications making use of the 

solutions. MEC can support computer programming language or frameworks 

consistent with standard or customized IT platforms that require computational, 

memory, storage and power resources (ETSI, 2019). 

 
C. High mobility interruption time or zero mobility of augmenting infrastructure. 

High mobility interruption time of 30 milliseconds in 4G LTE whereas cloudlets 

(Satyanarayanan et al., 2009) and MAUI in Cuervo et al. (2010) have zero 

support for mobility interruption. User mobility is not encouraged by these 

augmenting solutions. MEC on 5G will deliver mobility interruption time of zero 

millisecond (ITU, 2015); (Taleb et al., 2017). 

 
D. High user plane (UP) and control plane (CP) latency: 

 

High data communication delay between the UE and Internet/cloud for cloudlets 

and mobile cloud computing-based strategies in Zhang et al. (2010); Chun et al. 

(2011); Kosta et al. (2012); (Gordon et al., 2012). The total UP latency for MEC 

deployment in 4G Long Time Evolution Evolved Packet Core (LTE/EPC) is 

estimated, with reference to Parvez et al. (2018), as the summation of packet 

transmission delay between the UE via LTE, EPC to MEC host connected across 
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the Steering GPRS interface (SGi) for services sourced at MEC. Average 

container boot time is 1.87 seconds compared to Virtual Machines (VMs) 

average boot time of 94.90 seconds (Zhang et al., 2018), containerized MEC can 

offer lower application control plane latency. 

 

E. Inconsistencies between production and staging MEC environments: 

Containerized applications have the advantage of portability, running in the 

same environment during testing, staging and production deployments. 

 

The issue of resource poverty has been a perennial challenge to the telecommunication 

industry. The scale of 5G will be enormous, both in terms of devices and data but the 

number of devices will be dwarfed by the volume of data will be generated (Skarpness, 

2017). The huge amount of data, obviously, will require analytics as well as transport. 

There are already unacceptable latency figures in 4G LTE/EPC deployments but in 5G 

which has higher traffic, it is feared that there might be an increase in the latency. 

 

 

1.3 Aim and Objectives of the study 

 

The aim of this work is to demonstrate use cases for MEC deployments in 5G Networks 

by developing models of MEC infrastructure deployments. 

 

 

The research objectives are to: 

 

i. develop low latency models for MEC deployment for 5G networks through the 

evaluation of both 3GPP and non-3GPP components of 5G networks transport 

specifications. 

 
ii. develop and deploy secure resource-intensive containerized mobile web 

application testbed implemented in Kata Containers (Kata Containers, 2019) for 

 
both edge and remote cloud servers. 
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iii. performance evaluation of the developed MEC models and determination of the 

best fit for 5G applications. 

 

 

1.4 Justification of the study 

 

The drawbacks of previous research works were explored. These include limitations 

posed by pre 5G wireless technologies on the maximization in meeting latency 

requirements of new and emerging applications consistent with International 

Telecommunication Union (ITU) specifications for 5G eMBB and uRLLC use cases. 

 

 

1.5 Scope of the study 
 

The research focused on only the Multi-access Edge Application part of Mobile Edge Host 

within the Multi-access Edge (ME) Host Level of ETSI MEC framework (ETSI, 2019a). This 

research work does not include any work on ME systems-level management, ME host-level 

management or network-level entities of MEC. This work also proposed the location of 

MEC host close to 5G centralized unit (CU), connected directly to packet data convergence 

protocol (PDCP). Disposable infrastructures required for mobile applications computation, 

storage and analytics deployed at the MEC are available as machine-readable definition files 

downloadable from synchronized but distributed repository with tracking and coordination 

of files modifications using Git. 

 

 

In this work, the estimated user plane latency values were benchmarked with values of 

known low latency application use case requirements (Sutton, 2018b): 

 
A. Virtual Reality & Augmented Reality: 7-12ms 

 
B. Tactile Internet (Remote Surgery, Remote Diagnosis, Remote Sales): < 10ms 

 
C. Vehicle-to-Vehicle (Co-operative Driving, Platooning, Collision Avoidance): 

 

< 10ms 
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D.  Manufacturing & Robotic Control / Safety Systems: 1-10ms 

 

Models for MEC based on infrastructure as code (IaC), containerization and version 

control system (VCS) deployment scenario for eMBB and uRLLC use cases were 

proposed for end-to-end 5G network, variously and concurrently serving multiple 

asymmetric mobile user computational requirements by leveraging on IaC, 

containerization and VCS to enable orchestrated provisioning, patching, freezing, 

caching, resuming and termination of infrastructure instances. This will enable the MEC 

server to continue to programmatically serve different mobile applications as at when 

required and free up resources when applications are not being served. 

 
 

 

1.6 Thesis Outline 
 

 

This thesis is composed of five chapters. In Chapter One, the work was introduced, 

motivation for the study of Container-Based Multi-access Edge Computing for 5g 

Networks, the aim and objectives were enumerated. Definition of terms and keywords, 

the research fundamentals, including the statement of the research problem were 

explained in this chapter. 

 

The remaining part of this document is organized as follows: Chapter Two provides 

review of past research efforts to ameliorate the resources poverty challenges inherent in 

portable handheld mobile cellular user equipment. In Chapter Three - Methodology, 

both 3GPP and non-3GPP components of 5G networks transport specifications were 

evaluated. This chapter also contains the detail and description of the techniques used in 

the experiments. Results of the technical evaluation of 5G transport specifications are 

specified and discussed in Chapter Four. Results from the experiment comparing the 

behaviour of applications deployed at the MEC relative to mobile cloud computing 
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(MCC) deployments were equally presented in Chapter Four. Chapter Five contains the 

conclusions arrived as a result of this research work. Included in Chapter 5 are the 

research limitations and future works, contributions and recommendations. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 
 

 

2.1 Fundamentals 

 

The continuous evolution of the overall end-to-end architecture into 5G requires 

technological advancements. The foundation of 5G is open source and the development 

of 5G is hinged on new sets of mature open source technology building blocks. These 

blocks are being applied in new use cases to provide platforms that will satisfy 

requirements of new and emerging information and communication technology 

innovations. Extending and distribution of computation, storage and analytics 

capabilities, available in the cloud infrastructure, to the RAN at the edge of the network 

close to the UE is, more like, a mini data centre at the network edge. Evolving to this 

architecture requires some enabling technologies to achieve speed, security, scalability 

and at a reduced cost (Haavisto et al., 2019); (Yala et al., 2019); (Dreibholz, 2020). 

 

 

These “mini data centre” at network edges require virtualization technology that is built 

with the capacity to programmatically create and manage secure, lightweight, multi-

tenant containers that provide services at the edge. This is specifically required in MEC 

platforms for user application lifecycle management involving various and concurrent 

multiple asymmetric mobile user storage, computational and analytic requirements. 

These open source technology building blocks include: Version Control System, 

Software Configuration Management, Infrastructure as Code (IaC), Containerization 

and Cloud Computing (Skarpness, 2017). 
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2.1.1 Cloud computing 

 

Cloud computing is the abstraction of computing resources such as processor, RAM, storage 

and network services from separate hardware units while presenting as a pool of reusable on-

demand shared computing infrastructure that can be rapidly programmatically provisioned 

and released or manually with minimal management inputs while creating cost benefits and 

flexibility. The rate of cloud adoption is very high majorly because of its economically 

viable, cloud infrastructure can be shared across many users and corporations over widely 

dispersed locations allowing for the reduced cost of services compared to traditional on-

premise legacy infrastructure (Nkhoma and Dang, 2013). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1: Cloud computing (Pritchard, 2010) 

 

Cloud computing is achieved via complex automation system exploring optimization, 

orchestration, network storage area, virtualization, a variety of state of the art network 

infrastructure and management technologies indicated in Figure 2.1 are sewn together to 

create a conglomerate of solutions - networking; compute service; database as a service; 

object store; metering; data collection service; orchestration; big data processing 

framework provisioning; dashboard; bare metal provisioning service; image service; 

identity service; block storage that constitute cloud computing (Openstack, 2019). These 
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services offered by cloud computing are, to a large extent, limitless and available for 

mainframe, desktop environment, mobile platform and machine to machine 

communication. This has made cloud computing ubiquitous, servicing almost every 

sector of human endeavours from military to entertainment, education sector, commerce 

and industry, aviation, health, education, manufacturing, transportation, social services, 

government, research and development, espionage and intelligence community. It could 

be a private cloud setup by an enterprise solely for use by the enterprise, partners within 

its enterprise value chain. Cloud deployments solely for use by the third party as “pay as 

you use” service is a public cloud. Enterprise operating a private cloud but at one point 

or another depends on the use of the public cloud to augment shortfall of resources, 

expertise and/or manpower within the enterprise is a form of hybrid cloud deployment. 

There are situations whereby unused cloud resources are offloaded to be used outside the 

enterprise value chain, often public cloud is equally hybrid cloud. 
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2.1.2 Containerization 

 

Containerization is the process by which an Operating System (OS) kernel allows running of 

isolated instances, called containers, within the user-space as depicted in Figure 2.2. A 

container is a standard unit of software environment that packages up a set of codes and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2:  Containers running in different namespaces (Kata Containers, 2019c) 

 

all its dependencies together as an abstraction at the OS application layer, therefore, making 

applications run quickly and more reliably from one computing environment to another 

facilitating efficient portability of applications. Multiple containers can run on the same IT 

hardware and share the underlying OS kernel, each running as isolated processes in its own 

separate userspace. Container images are usually in small sizes, about tens of 

 
megabytes in size, allowing IT hardware handle more applications and require fewer 

VMs 14 



and Operating systems (Kumar Abhishek, 2020). Containers compared to VMs are more 

suitable for MEC for the sake of storage limitation and computing resources optimization 

handling more applications (Figure 2.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Depiction of containerization 
 
 
 

Container images are lightweight, standalone, independently executable package of 

software that includes everything needed to run an application: code, runtime, system 

tools, system libraries and settings. A container image become Containers at runtime, 

abstracting an application from its environment and ensuring that it works seamlessly 

and uniformly despite differences, for instance between development and staging. 

 
 

The use of Docker containerization, which is the industry standard for containers, is due to 

its portability allowing containers to run anywhere (Docker Inc., 2019). Docker containers 

are cross-platform and are capable of running on a variety of computing infrastructures. 

MEC resources can be allocated to containers for better isolation, performance and allowing 

for easy collaboration and deployment of applications across different mobile environments. 

Docker containerization was used in the course of this research effort. Industry standard for 

containers require that Docker containers run on Docker Engine as standard containers which 

is, so they could be portable anywhere (Erol- 
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Kantarci and Sukhmani, 2018). This allows for software to be decoupled from the 

underlying hardware resources, enabling packaged software to executable on multiple 

hardware architectures providing several benefits such as rapid provision, instantiation, 

and initialization of virtualized instances (Taleb et al., 2017). 

 

 

Containerization can provide infrastructure vehicles for migration of legacy applications 

into the 5G ecosystem. Infrastructure start-up time is short compared with VM; Reduced 

overhead cost in terms of compute, memory and storage. There is no need creating 

virtualized components like BIOS/UEFI, drives, separate kernels, RAM, storage, etc.; 

Heterogeneous Computing - Microservice could be applied to legacy applications like 

monolith e-commerce application migrated into several manageable containerized 

manageable microservices application units and deployed separately on different 

suitable specific compute platforms; field-programmable gate array (FPGA), CPU and 

graphics processing unit (GPU) but all unit working in a coordinated manner to achieve 

deliverables. MEC resources can be allocated to containers for better isolation, 

performance and allowing for easy collaboration and deployment of applications across 

different mobile environments (Nvidia, 2018). This will provide platforms for 

transformation of legacy monolithic applications into microservice based made 

available for use on the go. 

 

 

Orchestrated containerized MEC will provide efficient infrastructures needed for 

migration of monolith legacy applications onto 5G service platform. This enables 

breaking down of large applications into microservice deployable on a large number of 

interconnected MEC platforms (Alam et al., 2018). In other words, it is the process of 

decomposing a huge application into smaller manageable units with services, usually 

 

16 



exposed via representational state transfer (REST) application programming interface 

(API). The containerization ecosystem has become so mature, presenting a whole lot of 

its orchestrators; Docker Swan, Kubernetes (k8s), Marathon, Amazon container engine. 

Google container engine (GKE), and Azure service (Piparo et al., 2018); (The Linux 

Foundation, n.d.); (Sanchez, 2014); (Google Cloud, 2019); (Hoque et al., 2017); 

(Augustyn and Warchał, 2010). Advancements in Linux containers are making available 

more secure containers by taking advantage of underlying hardware virtualization 

capabilities to deliver security very similar to VM but lightweight and fast providing 

both speed and security for MEC platforms. With measures put in place to foil kernel 

exploits (blackMORE Ops, 2017) that could be used to compromise containers. Kata 

containers (Kata Containers, 2019a); (Kata Containers, 2019c) and firecracker 

(Firecracker, n.d.) are two leading open source containerization alternatives that are able 

to achieve isolation in containers by running separate dedicated kernel per container 

while tinkering with container runtime. The experiments in the research made use of 

Kata containers in effort to deploy a testbed. 

 

 

2.1.3 Kata container 

 

Kata container runs in a separate dedicated kernel (Figure 2.4), providing isolation of 

memory, network and I/O and can utilize the underlying hardware-enforced isolation 

relying on virtualization VT extensions but maintaining compatibility with industry 

standards like Kubernetes CRI interface, OCI container format, as well as legacy 

virtualization technologies while consistent standard Linux containers in performance. Kata 

is written in Rust programming language and it is based on KVM (Kernel Virtual Machine, 

2016) hypervisor with option for QEMU/NEMU. NEMU is actually a stripped-down 

version of QEMU by removing emulation not required thereby reducing the attack 
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surface. It is more secure than a traditional container by replacing default container runtime, 

runC with Kata-runtime, (Kata Containers, 2019a). Relying on Kata-agent, shim for I/O 

while running Kata-runtime instead of runC container runtime as available in Docker. Kata 

containers are as light and fast as containers and integrate with the container management 

layers—including popular orchestration tools such as Docker swan and k8s —while also 

delivering the security capabilities of VMs (Kata Containers, 2019c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4:  Containers running in isolated VM (Kata Containers, 2019c) 
 

 

2.1.4 Infrastructure as Code (IaC) 
 

Infrastructure as Code, Figure 2.6, is the management of data centres infrastructure life 

cycle - provisioning, monitoring, patching and termination, in a descriptive model using 

machine-readable descriptive definition files in conjunction with configuration 

management tools and source control system rather than manual or interactive 
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configuration mechanisms. Same IaC process can be engaged several times producing 

same result as the initial attempt, thus, increasing data centres operators’ productivity 

and transparency facilitating for continuous integration, continuous delivery and 

continuous deployment. This property of IaC of achieving the same target configuration 

by deploying unmodified command or set of commands is referred to as idempotency. 

The implication of being applied several times without any difference in the result 

beyond the initial application emphasizes consistent, repeatable routines for 

provisioning and changing systems and their configurations. It is a key role in achieving 

target deliverables rapidly and at scale expected of deployed 5G MEC servicing billions 

of mobile devices. To enforce consistency, the target deliverables are represented as 

codes and any modifications of target deliverables are performed editing the source file 

rather than the target deliverables in the form of Ansible-playbook (Red Hat, Inc., n.d.) 

and Dockerfile. Changes to infrastructure are made at the source definition files instead 

of the target MEC applications. The changes could then apply automatically system-

wide through a validated process. 
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Figure 2.5: Infrastructure as code (Walker, 2018) 
 

A. Software Configuration Management 
 

Software configuration management, leaning towards the perspective of the 

Software Engineering Institute at Carnegie Mellon University, is an umbrella 

activity of software engineering practices developed to identify the structure of the 

product, their types and components, and making them unique and accessible in 

some form; controlling changes to it throughout the life cycle and the release of 

product; recording and reporting the status of components and change requests, and 

gathering vital statistics about components in the product; validating the 

completeness of a product and maintaining product consistency among the 

components; managing the construction and building of the product; ensuring the 

adequate and exact execution of the organization's procedures, policies, and product 

life-cycle model; while controlling the work and interactions between multiple 

developers on a product (Bamford and Deibler, 1995). 

B. Version Control System (VCS) 
 

It is a component of software configuration management, serving as a file 

repository/database (Figure 2.5) used to track changes and management by 

 
automatic backup and restore, synchronization, short-term/ long-term undo, 
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changes, track change in file ownership, application sandboxing, branching and 

merging (Better Explained, 2019). Git was used in the cause for this work. Git is 

a decentralized VCS for tracking files changes and teamwork coordination 

allowing for multiple personnel from diverse locations simultaneously working 

on the same project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6: Version Control System 
 

 

MEC infrastructures life cycles can be orchestrated using an Ansible configuration 

management tool. Ansible, owned by Redhat Corporation. Ansible is an open-source 

configuration management software which enables deployment and management of a large 

set of interconnected infrastructures - bare metals, VMs and containers. Ansible connection 

is based on the popular protocol, secure shell (SSH) and with the ability to fall back to 

Paramiko (Forcier, n.d.) python library. The choice of Ansible over Chef (Chef Software 

Inc., 2019), Puppet (Puppet, 2019) and Saltstack (SaltStack, Inc., 2019) is due to its 

scalability, easy installation process and it does not require installation of a specific agent or 

agents on target client machines. It is a push-based configuration tool. Ansible playbooks, 

written in YAML, are definition files describing set of specified different actions managed 

by Ansible. YAML is very close to natural language and easily human-readable making 

process of data descriptions of infrastructure very simple (both human- 
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readable and machine-parsable) (Pieplu, 2018). Ansible playbooks are more like 

instruction manuals for machines to work with, provisioning services on target 

infrastructures. Moreover, YAML based infrastructure description file organization 

simplifies the reusability of code. 

 

 

CP latency is the time between UE idle state and the moment before the start of actual 

data packet transmission on the network. Having in mind that CP transition is not the 

transmission of a single message in one direction but messaging interchange consisting 

a number of messages back and forth to effect state changes. The major factors that 

reduce CP latency are a rapid deployment of computing infrastructures, reduced number 

of message interchanges and the location of control functions within the end-to-end 

network. Obviously, the use of hypertext transfer protocol 2 (HTTP2) (Belshe and Peon, 

2015) in 5G will minimize the number of message interchanges. MEC servers are 

deployed close to CU or at centralised aggregation site with the CU. Orchestrated 

deployment of containers by using definition files downloadable from repositories close 

to CU will enable rapid deployment of computing infrastructures. 

 

 

2.1.5 Multi-access edge computing 

 

Edge computing is a distributed, open IT architecture that made up of decentralised 

processing power, enabling mobile computing and Internet of Things (IoT) technologies. In 

edge computing, as depicted in Figure 2.7, data is being processed by the UE device, where 

data is generated or by a nearby IT infrastructure, rather than being transmitted to a remote 

cloud location or data centre (Hewlett Packard Enterprise, n.d.). Multi-access edge 

computing, formerly named mobile edge computing, is defined by European 
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Telecommunications Standard Institute (ETSI) as a platform that provides IT and cloud 

computing capabilities within the radio access network (RAN) in close proximity to 

mobile cellular and non-cellular subscribers- It is network functionality that offers 

connected compute and storage resources at the fringe of network providing dramatic 

improvement of mobile network UE experience through near wireline latency (Patel et 

al., 2014). MEC in 5G could be deployed at the cell sites, next generation NodeB (gNB) 

or within the data network (DN). The aim is to deliver compute, storage, and bandwidth 

much closer to UEs where data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.7: Edge Computing 

 

being generated at network edge environment. The network edge environment is 

characterized by potentially high network latency with low and unreliable bandwidth— 

alongside distinctive service delivery and application functionality requirements that 

cannot be achieved relying on a pool of centralized cloud resources located in remote 

data centres. Satyanarayanan M. et al imagined a future in which cloudlet infrastructure 

is deployed much like Wi-Fi access points today (Satyanarayanan et al., 2009), here 

comes MEC. 
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Figure 2.8: ETSI MEC Framework (ETSI, 2019a) 

 

MEC, as indicated in Figure 2.8, is made up of three (3) software entities grouped into 

system level, host level and network-level entities (ETSI, 2019a). The ability of MEC to 

render compute, storage and analytics services at the edge while self-managed but fully 

integrated with 3GPP and external networks is derived from its functional elements which 

include: mobile edge (ME) host, ME platform, ME applications, and ME systems-level 

management (ME orchestrator, operation support systems (OSS) and user application 

lifecycle management proxy), ME host-level management (ME platform manager and 

virtualization infrastructure manager), user equipment application and customer-facing 

service portal (European Telecommunications Standards Institute(ETSI), 2019a). 
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2.1.6 5G Mobile Telecommunication Systems 

 

5G is the 5th generation of cellular mobile communications, succeeding the 4G 

(LTE/WiMAX), 3G (UMTS) and 2G (GSM) systems. 5G performance targets include 

energy saving, cost reduction, higher system capacity, high data rate, reduced latency, 

massive device connectivity, with the capacity speeds up to 20 gigabits per second 

(Taleb et al., 2017). The mission of 5G is to support the massive explosive evolution of 

information and communication technology (ICT) and the Internet. The four main 

functions of 5G are support for communication, computing, control and content delivery 

(4C) for high-intensity traffic applications like real-time online gaming, AR and VR, 

ultra-high-definition video streaming (Mao et al., 2017). These applications are highly 

sensitive to latency and this can have an adverse effect on their performance, 

significantly degrading with non-uniform delay and throughput. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.9: 5G use cases (International Telecommunication Union (ITU), 2015) 
 
 

 

It is the proposed ITU IMT-2020 technology framework, Figure 2.9, with requirements to 

 

provision capabilities that will support enhanced mobile broadband (eMBB), massive 25 



machine-type communications (mMTC) and ultra-reliable low latency communications 

 

(uRLLC) use cases (International Telecommunication Union (ITU), 2015) & (Mohyeldin, 

 

2016). This paper focus is the delivery of ITU IMT-2020 minimum requirements for 

 

eMBB and uRLLC 5G use cases (Mohyeldin, 2016). 

 

Table 2.1: ITU IMT-2020 Requirements (International 
Telecommunication Union (ITU), 2015) and (Mohyeldin, 2016) 

 

 eMBB uRLLC 

   

User plane latency 4 ms 1 ms 

   0.5 ms * 

Control plane latency 20 ms 20 ms 

 10 ms * 10 ms * 

Peak data rate 20 Gbit/s - downlink  

 10 Gbit/s – uplink  

User experience data rate 100 Mbits/s - downlink  

(Dense urban environment) 50 Mbits/s – uplink  

Mobility interruption time 0 ms 0 ms  

 

*3GPP target 

 

Expectedly, 5G networks will be very fast, flexible, reliable and resilient with a one-way 

 

trip time of requests corresponding to 1ms for uRLLC use case, taking into account the 

 

growing mobile traffic. Successful working of technologies like device-to-device 

 

communications, millimetre wave and small cell densification can help to achieve the 

 

desired parameters for the 5G networks (Erol-Kantarci and Sukhmani, 2018); (Parvez et 

 

al, 2018). Depicted in Figure 2.11 is the 3rd Generation Partnership Project (3GPP) 5G 

 

reference point architecture. 
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Figure 2.10: 3GPP 5G System Reference Point Architecture (ETSI, 2019b). 
 

 

The fulcrum of 5G is control and user plane separation (CUPS), decoupling packet data 

network (PDN) gateway control plane (PGW-C) and PDN gateway user plane (PGW-U) 

functions of 4G/LTE evolved packet core (EPC) as part of 3GGP release 14 

specifications (European Telecommunications Standards Institute (ETSI), 2018). CUPS 

allow for the separation of user plane function (UPF) from the 5GC out into between 

RAN and data network (DN) while session management function (SMF) is left within 

the 5GC network (European Telecommunications Standards Institute (ETSI), 2019b). 

 
 

 

2.2 Review of Related Works 

 

Several research works have been proposed to solve the issues of computational resources 

of mobile devices and energy constraints by offloading computational tasks to tethered 

infrastructures. Every suggested solution has been geared toward edge computing. Edge 

computing is the technology that brings together computing into the radio access network 

(RAN), providing computation, storage and analytics with very low latency while saving a 

lot of data traffic between network edges and the core network. Enormous network 
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traffic is expected with billions of devices coming with the rollout of 5G, which has 

stimulated research into edge computing. 

 

 

Prominent among the past research efforts is the offloading of computation tasks based on 

the .NET framework to overcome the energy limitations of handhelds by leveraging nearby 

computing infrastructure, and Mobile Assistance Using Infrastructure (MAUI) (Cuervo et 

al., 2010). MAUI proposed a solution that enables energy-responsive offload of mobile 

code to the connected infrastructure but could not support multi-threaded applications and 

was only applicable to Microsoft .NET Common Language Runtime (CLR) based 

applications. Satyanarayanan et al. (2009) proposed hybrid solution making mobile devices 

function as thin clients, whereby all significant computation performed by VM in a nearby 

“cloudlet”. It gracefully degrading mobile UE to a fall-back mode whereby significant 

computation occurring in a distant cloud, or solely its own resources, in the worst case. 

(Satyanarayanan et al., 2009). Zhang et al. (2010) proposed a cloud computing model of a 

distributed framework that elastically extends application between mobile UE and the 

cloud. Huang et al, (2010) proposed a secure service-oriented mobile ad hoc networks 

(MANETs) communication framework named MobiCloud providing a platform for cloned 

image of UE as a virtualized component. Hyrax was proposed in Marinelli (2009), 

overlaying MapReduce (Dean and Ghemawat, 2004) on a cluster of mobile phones to 

provide infrastructure for mobile computing. Exploring the now-discontinued Android 

Dalvik Virtual Machine, a distributed runtime environment aimed at offloading workload 

from smartphones, Gordon et al., (2012) proposed Code Offload by Migrating Execution 

Transparently (COMET). In Dou et al. (2010), Misco, also a MapReduce framework was 

proposed but for devices with connectivity and supports for python programming language. 

Likewise, Cloudlet Aided Cooperative Terminals Service 
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Environment for Mobile Proximity Content Delivery (CACTSE) was proposed in Qing 

et al. (2013) by leveraging cooperating terminals to provide mobile internet content 

delivery service at the network edges. But this relied on resource-constrained mobile 

devices resources availability thereby challenging its scalability. In Chun et al. (2011) 

CloneCloud proposed the seamless transformation of mobile device computation into a 

distributed execution on cloud virtual machine (VM) and mobile devices computing 

resources. Kosta et al. (2012), proposed ThinkAir with capability to dynamically create, 

freeze, resume, and destroy VMs in the cloud as the need arises, thereby providing an 

efficient way to perform on-demand resource allocations as well as parallelism capable 

on-demand resource allocation critical to the management of asymmetric mobile users 

computational requirements (Kosta et al. 2012). 

 

 

However, containerization is a lightweight alternative to full virtualization of VM. Virtual 

machines achieve isolation at the machine level and each virtual machine runs its own 

operating system, whereas containers are isolated within kernel level using individual 

namespaces. Claassen et al. (2016) concluded that containers have an inherent comparative 

advantage over VMs because of improved performance and reduced boot-up time which 

have a significant effect on control plane (CP) latency. CP latency is the transition time of a 

UE to switch from idle state to active state (Parvez et al. 2018). Containerization provides a 

lightweight option to virtualization by improving MEC services portability allowing more 

mobile user applications to be served by a single MEC Server. Containers have mechanisms 

for rapid application packaging and deployment to a large number of interconnected MEC 

platforms (Taleb et al., 2017). The choice of VMs over containers was one of several 

proposed mechanisms employed to provide such isolation needs by the MEC platform to 

concurrently fulfil 3GPP-related security 
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requirements and satisfy concerns related to all the implications of 3GPP security, operator 

security policies and local regulatory rules (Patel et al., 2014). In a qualitative comparison 

of VMs and containers in Taleb et al. (2017), of all the five indices; control plane latency 

(provisioning time), computation cost (light/heavy-weight), user plane (processes 

abstraction), scalability (overhead resource consumption), hardware abstraction (scale of 

virtualization) and security (isolation MEC applications), containers perform better in all 

except for security which actually relied on hardware abstraction to provide namespace 

isolation but not enough isolation as available in virtualization technologies. Docker-based 

containerization edge computing was introduced in Alam et al. (2018), in which a federated 

approach was proposed involving a layered and modular architecture that is running on 

cloud, fog, and edge devices representing sensing, mediation, and enterprise layers, 

respectively and offers containerized services and microservices. Container-based systems 

compared to VM-based systems are more efficient in reducing the overall for applications 

execution times; have multiple containers running in parallel as a result of better memory 

management (Adufu et al., 2015), for creating a highly dynamic system while simplifying 

management and enables distributed deployments in Alam et al. (2018), therefore, more 

suitable for MEC for the sake of storage limitation and computing resources optimization, 

serving more applications on the same IT infrastructure. Recent advances in 

containerization technology has put to pay the security concerns bedevilling the 

containerization as a technology to improve the MEC performance in 5G deployments. In 

(Kata Containers, 2019c) containers run in separate dedicated kernels, providing isolation as 

required in (Patel et al., 2014). Melike Erol-Kantarci and Sukhmani proposed caching 

strategies at the edge of evolved packet core (EPC) (Erol-Kantarci and Sukhmani, 2018). 

Caching within the RAN, at the CUs within the NG-RAN rather than at the DN or outside 

of 3GPP network via GPRS- 
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Interface/Steering Gi (Gi/SGi) LAN will reduce the pressure on the backhaul networks. 

Obviously the fronthaul link over the common public radio interface (CPRI) or evolve 

CPRI (eCPRI) will perform better since it is optic fibre link between DU and 

RRU/AAU whereas backhaul link i.e. between next-generation NodeB (gNB) could be 

a satellite, microwave link, or metro ethernet. 

 

 

For the sake of brevity, the only pre 5G wireless technology reviewed was 4G LTE/EPC 

end to end network latency. Considering the 4G LTE architecture the transport network 

is divided into three segments; between the UE and E-UTRAN Node B, also known as 

Evolved Node B (eNB), eNB to EPC, and EPC to IP peering point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11: 3GPP 4G/LTE EPC reference architecture (ETSI, 2017) 

 

The total one-way user plane latency considering 3GPP reference architecture (Figure 

2.11) for application deployed on 4G/LTE (Parvez et al., 2018), 

= Radio + Backhaul + Core + Transport (2.1) 

 

where: 
 

TRadio is the one-way packet propagation delay between UE and E-UTRAN 
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TBackhaul is the one-way packet propagation delay between E-UTRAN and 4G EPC. 
 

TCore is the one-way processing delay with the 4G EPC core network 

 

TTransport is the one-way packet propagation between the EPC and packet data network 

 

(PDN). This might include propagation delay to the Internet if service requested by 

the UE is not within the operator network and has to be sourced from the Internet. 

 
 
 

The earlier research efforts to compensate for resource constraint in mobile cellular 

devices were classified in terms of infrastructural setup and operational techniques as 

indicated in Table 2.1. From the literature review we came up with this comparative 

analysis of the augmentation infrastructure in Table 2.2. 

 

 

Table 2.2: Classification of Augmenting Techniques 
 

 Infrastructure Operational techniques 
   

 The  research  efforts  could  be  classified,  in Efforts  proposed  so  far  to  compensate  for  resource 

 terms of infrastructure setup, into the following constraint in mobile cellular devices involved numerous 

 categories: techniques, including: 

 Cyber foraging Offloading   of   computation   tasks   to   nearby 

 Cloudlet computing infrastructure. 

 Mobile cloud computing (MCC) Distributed execution frameworks. 

 Multi-access edge computing (MEC) Mobile thin clients - a client-server arrangement. 

  On-demand resource allocation. 

  Middleware architecture. 

  Mobile device cloning. 

  Representational State Transfer. 
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Table 2.3: Augmenting Architecture  
 

 Cyber Cloudlet  Mobile Cloud Multi-access Edge 

 Foraging     Computing   Computing  
       

State Soft state only Soft state only  Soft and hard state Soft and hard state  

Management Self-managed: Self-managed:  Requires   24X7 Requires   24X7 

 with little to no with little to no professionally operator professionally operator 

 professional professional   input    input     

 attention attention            

Environment ad hoc “Datacentre in a Equipment room with “Datacentre in  a box” 

 computing box”  within power conditioning and within decentralised 

 facility  business premises climate control   operator site/premises 

Ownership Owned by Decentralized  Centralized ownership Decentralized/Centralize 

 single or a few ownership by local by    Google, Digital d ownership by 

 groups of users businesses   Ocean,  Amazon, IBM operator/third party  

       Oracle, Yahoo!, etc..      

Network LAN latency/ LAN latency/ Internet    LAN latency/bandwidth 

 bandwidth bandwidth   latency/bandwidth       

Sharing Numbered Few concurrent 100s-1000s of users at a Flexible  capacity 

 users at a time users    time    depending  on the 

           configuration   

UE Mode Offloading/mid Functions as a thin Distributed/Thin  API driven based  on 

 dleware  client    client/Cloning   HTTP2/JSON   
                

 
 
 

 

Table 2.4: Summary Literature review  
 

Authors Models  Methodology    Drawbacks 
       

Satyanarayanan   et Cloudlet  A cluster of computers.  High cloud 

al. (2009)   Nearby mobile devices  ingress  

        High latency 

Marinelli (2009) Hyrax Cloud Execution of MapReduce jobs on a High overhead 

 Computing cluster of mobile devices for devices 

        No developer 

        support  

Cuervo et al. (2010) Mobile Assistance Task Partitioning; Joint Scaling of 

 Using  computation task  offloading executions 

 Infrastructure decision; Allocation of resources Platform specific 

 (MAUI)  for mobile computing access point   

Dou et al. (2010) Misco  Worker - server implementation of Support only 

   MapReduce Framework  Python  

Huang et al. (2010) MobiCloud Secure service-oriented mobile ad High latency 

   hoc networks (MANETs) Poor   bandwidth 

   communication framework utilization 
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Zhang et al. (2010) Elastic Application Distributed framework that extend High latency  

 Model   mobile into cloud infrastructure High footprint  

Chun et al. (2011) CloneCloud  Offline analysis of the different Required  

     running condition of process  bootstrap for 

     binary;     every application; 

     Built  database of precomputed Scalability; No 

     partitions; Distributed execution developer support 

Kosta, et al. (2012) ThinkAir   Parallelizing using multiple VM; High latency  

     On demand resource allocation QoS, High 

          overhead  

Gordon et al. (2012) Code Offload  by Distributed  runtime environment High execution 

 Migrating  aimed at offloading from time, High 

 Execution  smartphones    latency   

 Transparently       Low resource 

 (COMET)       utilization  

Qing et al. (2013) Cloudlet Aided Cooperating terminals for content No developer 

 Cooperative  delivery  service  at  the  network supports  

 Terminals  Service edge     Low resource 

 Environment for      utilization  

 Mobile Proximity         

 Content Delivery         

 (CACTSE)          

Alam et al. (2018) Orchestration of Scalable and modular architecture No Isolation  

 Microservices for based on containerization  No  guarantee of 

 IoT Using Docker Container orchestration  idempotence;  

 and   Edge         

 Computing          

Zhang et al. (2018) A Comparative Containers  are more  convenient No Isolation  

 Study   of than   VMs,   higher   CPU   and    

 Containers and memory utilization, and better    

 Virtual Machines scalability       

 in Big Data         
 

Environment  
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CHAPTER THREE 

 

3.0 RESEARCH METHODOLOGY 
 
 
 

In this chapter, 5G network 3rd Generation Partnership Project (3GPP) and non-3GPP 

transport components specifications were evaluated, and models for MEC deployment 

scenarios for 5G network were designed. These were carried out to provide the platform 

to compare MEC applications end to end transport latency in 5G deployment and 4G 

deployments. This research work leveraged on CUPS, lower layer splits, higher layer 

splits and 3GPP 5G service-based architecture (SBA) distributed common compute 

platform (CCP), which permits the location of virtualized network functions (VNFs) in 

different parts of the network to manage different capabilities. MEC hosts could be 

located at the centralized unit (CU) connected directly to the packet data convergence 

protocol (PDCP). This will affect the estimated total UP latency for MEC deployment in 

5G. 

 

 

The end-to-end transport latency has a significant effect on determining the value of UP 

latency, which in combination with control plane latency, determines the effective end-to-

end latency. There was a need for a 5G capable integrated development environment in the 

quest to investigate deployment of MEC at the 5G CU, but a simulator was not available for 

this purpose. Instead, leaning on Docker containers, Kata-runtime, and Osbuilder - Kata 

containers guest OS building scripts, a sandbox application was built to gain insight into the 

advantages of computing at the network edge compared to computing at remote cloud 

servers. In order to compare MEC deployments versus MCC deployments of resource-

intensive applications, a mobile web application was built, shipped in a secure container 

image, saved as a code and pushed to a repository. This combination of 
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servers. The chosen target was web application platforms because of its capabilities of 

execution on a wide range of devices and mobile environments without modification of 

application codebase. 

 

 

The experimental environment (Figure 3.1) incorporated Ubuntu server, Ubuntu Docker 

image and Docker container engine with its default runtime, runC, replaced with Kata-

Runtime. Ubuntu Kata container image was created using Osbuilder. On the strength of 

the evaluation the mobile web application was built and shipped in a secure container 

image infrastructure as a code (IaC) and pushed it to a repository. Python programming 

language was used for application logics, results dataset generation, cleaning and 

graphing; Python Flask for web application backend while the frontend was built using 

Cascading Style Sheets (CSS), JavaScript and HyperText Markup Language (HTML); 

Docker for application shipping; and Locust framework for load testing. The publicly 

available Atlassian Bitbucket and Docker Hub repositories were used for web 

application code base and container images respectively. The containerized mobile 

application was deployed using Docker, but Kata-runtime replaced runC to ensure app 

isolation at the kernel level. This ensured the deployment of MEC applications at the 

speed of containers while maintaining the security available in virtual machines. 
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Figure 3.1: Experiment Configuration 
 

 

The test mobile application was a memory and processor-intensive mobile web 

application that generated Rubik cubes images and provided breakdown of the cube 

details - total “cubelets”, faces cubelets and hidden cubelets. Holding the generated 

graphics in memory while rendering it on the end-user devices. This is comparable to 

graphics generation and rendering in mobile game applications. Figure 3.2 is a desktop 

screen display of the mobile web application while Figure 3.3a and b are iPhone X 

rendering of the mobile application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.2: Rubik’s cube app on desktop 
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Figure 3.3a: Rubik’s cube app on iPhone X (screen 1)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3b: Rubik’s cube app on iPhone X (screen 2) 
 

 

3.1 Transport Network 

 

This focus is on 3GPP 5G service-based architecture (SBA) as presented in Figure 3.4 

instead of the standard representation in reference point architecture (Figure 2.10) as 

MEC is brought into the RAN. 5G network functions interact directly, if required (ETSI, 

2019b) by employing RESTful API principle over hypertext transfer protocol version 2 

(HTTP/2) using data formatted in JavaScript Object Notation (JSON) and OpenAPI 

 
interface definition language. 3GPP 5G SBA core network functions (NF) interactions 
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occur over a common computer platform (CCP). CCP, mostly represented as a data bus, 

can actually be fully distributed permitting localization of virtualized network functions 

(VNFs) in different parts of the network to manage different capabilities. 

 

 

5G software entities of concern to this research are network repository function (NRF) 

and the network exposure function (NEF). NEF allows access to shared data layers for 

MEC. It provides support for event exposure, packet flow description (PFD) 

management, provisioning information for an external party which can be used for the 

UE in 5GS, device triggering. It also provides support for transfer negotiation policies 

for the future background data transfer and provides the ability to influence traffic 

routing (ETSI, 2019b). NRF offers discovery functions allowing for software entities in 

the control plane, for example, can identify others and connect directly whenever there 

is a need to interact. It provides support for register, deregister as well as services 

updates to NF, NF services and notification to consumers for newly registered NF along 

with corresponding NF services. NRF provides capability which allows a particular NF 

service consuming component to discover set of NF instances with specific service or a 

target NF type. It also enables one NF service to discover specific NF services (ETSI, 

2019b) while services available will be indexed via network exposure function (NEF) in 

the control plane (CP). 
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Figure 3.4: 3GPP 5G System Service-Based Architecture (ETSI, 2019b) 
 

 

3.2 NG-RAN Decomposition 

 

Considering the functional decomposition of NG-RAN achieved with gNB-CU - gNB-

DU split connected together over F1 logical interface (Sutton, 2018a); (Shew, 2018); 

(ETSI, 2018c). F1 interface is the medium for interconnecting a gNB-CU and a gNB-

DU of a gNB within an NG-RAN, or for interconnecting a gNB-CU and a gNB-DU of 

an en-gNB within an E-UTRAN. The F2 interface (eCPRI/CPRI/NGFI) is non-3GPP 

specified interface connects gNB-DU with active antenna unit (AAU), radio unit (RU) 

or remote radio unit (RRU) when deployed over distance (Ericsson AB, Huawei 

Technologies Co. Ltd., NEC Corporation and Nokia, 2019); (Smith et al., 2018); (Knopp 

et al., 2017). NG logical interface connects a set of gNB interconnected via Xn logical 

interface within an NG-RAN to the 5G core network (5GC). F1, F2 and NG interfaces 

constitute midhaul, fronthaul and backhaul networks, respectively. 
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Figure 3.5: Functional Decomposition of NG RAN - Adapted from (Shew, 2018). 
 

 

Considering eCPRI, this functional decomposition of RAN will permit the location of 

MEC server close to the CU sending and receiving user plane packet data traffic over F1 

and eCPRI providing high bandwidth capacity at very low latency capable of supporting 

eMBB and URLLC use cases (International Telecommunication Union(ITU), 2015); 

(Mohyeldin, 2016). Decomposition of RAN permits distance separations between CU, 

DU and RRU/AAU while allowing for C (cloud, cooperative and centralized) - RAN 

configurations (Murphy, 2015); (Checko, 2016), (Huawei, 2017); (Kitindi, Fu, Jia, 

Kabir and Wang, 2017). The functional decomposition of RAN may not be as simple as 

depicted in Figure 3.5, but it depends on the level of applicable split options as available 

in Figure 3.6a and b, as this will determine the level of coordination capabilities that can 

be delivered by a C-RAN. 
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Figure 3.6a: RAN protocol split (Shew, 2018); (3GPP, 2017) with the addition of MEC  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.6b: eCPRI Functional decomposition on RAN layer level 
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3.3 5G MEC Models 

 

Higher layer functional split (HLFS) option 2 for the midhaul and lower layer functional 

split (LLFS) option 7 for fronthaul will permit four RAN deployment scenarios 

(Ericsson AB, Huawei Technologies Co. Ltd., NEC Corporation and Nokia, 2019) and 

as a result four MEC deployment scenarios: 

 
1. Independent RRU, DU and CU/MEC locations; 

 
2. DU and CU/MEC co-located with distance separated RRU; 

 
3. RRU and DU co-located with distance separated CU/MEC; 

 
4. RRU, DU and CU/MEC integration within a single co-location.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7: 5G MEC deployment models 
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3.4 Latency 

 

Recall Equation 2.1 
=  Radio   + Backhaul + Core + Transport 

 
 
 

Nothing is lost but everything is gained by modifying Equation 2.1 for LTE/EPC 

(Figure 3.8) producing Equation 3.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.8: 4G Long-Term Evolution/Evolved Packet Core 

=  LTE   +  EPC   +   Transport 
(3.1)  

where: 
 

TLTE is the one-way packet propagation delay between UE and eNB, including packet 

 

processing time within UE and eNB. 
 

TEPC  is the one-way packet propagation delay between eNB and EPC, including 

 

processing delay with the core network. 
 

TTransport is the one-way packet propagation between the EPC and packet data 

 

network (PDN). This might include propagation delay to the Internet if service 

requested by the UE is not within the operator network and has to be sourced from 

the Internet. 

 
Latency values will vary from one MEC deployment scenario, as presented above, to 

another and quantifying all the parameters is challenging due to differences in 
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performance of equipment along the end to end 5G network; from DU to CU, and all the 

way to MEC host. However, the assumed 1-way latency range between 5 and 8ms 

between CU and DU and in essence, 8ms network latency between CU and DU eases 

the co-location of the CU with MEC. 

 
The total one-way user plane latency becomes: 

=  NR   +  DU   +  CU   +   Transport (3.2) 
 

 

where: 
 

TNR is the one-way packet propagation new radio (NR) delay between UE and DU, 

 

including packet processing time within the UE and DU. 
 

TDU  is  the  one-way  packet  propagation  delay  between  DU  and  CU,  including 

 

processing delay with the CU. 
 

TCU  is the one-way packet propagation delay between CU and 5GC is, including 

 

processing delay within the 5GC. 
 

TTransport is the one-way packet propagation between the 5GC and data network (DN). 

 

This might include propagation delay to the Internet if service requested by the UE 

is not within the operator network and has to be sourced from the Internet. 

 
Deployment of MEC in all the four scenarios in the model above provided the option 

direct connection between MEC and the CU. The total one-way user plane latency 

becomes: 

= NR+ DU+ CU (3.3) 
 
 
 

The efforts to simulate 5G network transport latency to determine UP latency is being 

challenged by the fact that 5G next-generation (NG) core and RAN technologies are, to a 

large extent, still on white papers but enough specifications have been defined and written 
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about it. Therefore, 3GPP and non-3GPP specifications were the major sources of data 

for the research evaluation of UP latency for the proposed MEC deployment. The 

transport specifications for 5G interfaces were analysed and presented in Table 3.1. 

Using Equation 3.3, the transport specifications were applied on the four proposed 

network models in Figure 3.7 to arrive at the latency values presented in the results 

section of this thesis. 

 
Table 3.1: 5G Interface specifications (European Telecommunications Standards 

Institute (ETSI), 2018c) 
  

Network Reach distance Latency (1-way) Capacity requirements 

    

New radio (NR)  4 ms eMBB  

  2 ms URLLC  

Fronthaul (eCPRI) 1 ~ 20 km < 100 μs 10Gb/s-825Gb/s 

Midhaul (F1) 20 ~ 40 km 1.5 ~10 ms 25Gb/s-800Gb/s 

Backhaul (NG) 5-80km  CU: 10Gb/s-25Gb/s 

 (Aggregation)  
CN: 100+Gb/s    

 20~300km   

 (Core)   
    

 

 

3.5 Experiments 

 

The goals of these experiments are to evaluate the increased mobile application 

responsive and overall Quality of User experience by the use of containerized 

application infrastructures deployed at the network edge in terms of latency. In an 

attempt to achieve the above stated mature open source technology tools were used to 

deploy new use cases for 5G networks. 
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3.5.1 Tools 

 

The tools include: 

 

1. Ubuntu server 

 
2. Wi-Fi access point 

 
3. Layer 3 network switch 

 
4. Docker Container - community edition (Docker-CE) 

 
5. Kata Container 

 
6. Kata Runtime 

 
7. Shims 

 
8. Goland 

 
9. Debootstrap 

 
10. Python 

 
11. Git 

 
12. Osbuilder 

 
13. Locust 

 

Ubuntu 18.04.3 LTS server was installed on an HP ProLiant DL320e Gen8 v2 server, 

updated and upgraded to the most recently available updates. The followings were also 

installed were: Git, Wget, Curl, Snapd, Vim, Golang and Debootstrap. All these provided 

the mechanism to compare the estimated user plane latency values with those of known low 

latency use case requirements: VR/AR (7-12ms); tactile Internet (<10ms); Vehicle-to-

Vehicle (< 10ms); Manufacturing & Robotic Control / Safety Systems (1-10ms). 

 

Containerized web application was deployed for both cloud computing and network 

edge (Figure 3.9) scenarios. Load tests were conducted against defined performance 

metrics providing tons of results, which were further analysed and presented in graphs 

for easy comparative evaluations to validate the advantages of MEC over MCC. 
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network edges was made possible due to 5G network functional decomposition as well 

as Control Plane and User Plane Separation in same. Simulations were conducted for 

deployment labs for on-demand containerized applications based on IaC and version 

control systems. Using Locust, the application for the two deployments - edge and 

cloud, were programmatically load tested with requests to generate and render random 

size of “N by N by N”, with N ranges between three (3) and fourteen (14) 

 

 

3.5.2 Experimental setup 

 

The experiment setup processes included installation of tools and dependencies, initial 

container image build procedures and web application packaging procedures. Versions 

of application image for app deployment, code versions and shipping of the built images 

to repository for future use and the application container deployment were created. All 

of the processes were performed via BASH terminal, command language interpreter for 

the GNU operating systems. The setup involved running of the Linux commands in 

Appendix C. 

 

 

3.5.3 The load tests 

 

In the tests, scenario were created to provide the mechanism to compare the estimated 

user plane latency values with those of known low latency use case requirements: 

VR/AR (7-12ms); tactile Internet(<10ms); Vehicle-to-Vehicle (< 10ms); Manufacturing 

& Robotic Control / Safety Systems(1-10ms). 

 
 

Using Locust, an open source event-based user load testing tool framework, a total of 

3900 user requests by 30 unique users was simulated at the rate of 3 user requests per 

second (Appendix B). Rendering Rubik’s cubes of random sizes between three and 

fourteen  while  also  in  between,  rendering  other  views  of  the  mobile  application. 
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Simulating a real-world scenario, where often, users are idle, figuring out what next to do 

with an application, the idling time was set at random values between 90 and 140 seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.9: Experimental setup 
 

 

The whole of the user behaviours was described in Python code and the experiments for 

each scenario lasted for roughly 120 minutes. Data sets from the experiment were 

retrieved in comma-separated values (CSV) file format. The relevant results from the 

experiments included the request rate, request failure rate, application download size, 

and minimum/maximum/median response time. 
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CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

 

4.1.1 Low latency models developed for MEC deployment for 5G: 

 

There were two sets of results being considered in this research work. The first set are the 

results retrieved from the application of 5G transport interface specifications on the four 

proposed MEC deployment models. Evaluating Equation 3.3 for eMBB for the proposed 

four deployment scenarios (Figure 3.7) by applying 5G specification values in Table 3.1: 

 

(i) SCENARIO A 

 

Scenario A features dual-functional splits in the RAN. The RRU/AAU at the cell site, DU at 

the aggregation site while CU and MEC deployed at the edge site (Figure 4.1a). Every 

interface interconnecting all 5G functional split contributed to the UP latency, optimally this 

prototype deployment produced an estimated round-trip time (RTT) value of 11.2ms. 

= NR+ DU+ CU (3.3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1a: Scenario A 
 

 

Minimum 
 

T =4000 + 100 + 1500 μsec 

 

= 5600 μsec 

 

= 5.6 x 10
-3

 s 
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Maximum 
 

T =4000 + 100 +10000 μsec 
 

= 14100 μsec 
 

= 14.1 x 10
-3

 s 
 
 
 
 

(ii) SCENARIO B 

 

Considering scenario B, this is a centralized RAN MEC deployment without F1 

interface but employed only the lower layer functional split having DU, CU and MEC 

co-located at the edge site while RRU/AAU connected via eCPRI interface is deployed 

at a remote cell site (Figure 4.1b). Optimally, the RTT is 8.2ms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1b: Scenario B 
 

 

T =4000 + 100 μsec 
 

= 4100 μs 
 

= 4.1 x 10
-3

 s 
 
 
 

(iii) SCENARIO C 

 

Scenario C features only 3GPP upper layer single functional split between DU deployed 

with RRU at the cell site and CU with MEC at the edge site (Figure 4.1c) with optimal 

RTT 11ms. 
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Figure 4.1c: Scenario C  
Minimum 

 

T =4000 + 1500 μs 
 

= 5500 μs 
 

= 5.5 x 10
-3

 s 
 

Maximum 
 

T =4000 +10000 μs 
 

= 14000 μs 
 

= 14 x 10
-3

 s 
 

(iv) SCENARIO D 

 

Scenario D is a monolithic RAN. This setup is most applicable to 5G MEC deployment 

 

for microcells, picocells and femtocells (Figure 4.1d) with RRT of 8ms. 

= NR+ DU+ CU (3.3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1d: Scenario D  
T =4000 μs 

 
= 4000 μs 

 

= 4 x 10
-3

 s 
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4.1.2 Deployment of secured containerized mobile application for both edge and 

 

remote cloud servers: 

 

The second set of results were retrieved from the experimental load test of the secured 

containerized mobile web application deployed on MCC and MEC as depicted in Figure 

4.2a and Figure 4.2b respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2a: Experiment - MCC test scenario  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2b: Experiment - MEC test scenario 
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The results from the experiments included the total requests per second (req/s) made to 

the application deployed, request time stamps, the number of requests per second, 

requests failure per second (req/s), minimum, median and maximum application 

response time, average application data download size, 50 percentiles and 95 percentile 

application response time among other result parameters. All these for both edge site 

and cloud application deployments. Each time, the experiments lasted for about 2 hours. 

The results from the experiment span 3955 rows by 22 columns (Appendix D). It was 

observed that the application response time and the amount of downloaded application 

data follow the same pattern corresponding to the size of the Rubik’s cube being 

rendered. Likewise, failures were more prevalent with the mobile cloud computing 

deployments compared with relatively stable edge computing deployments. 

 

 

The rate of requests for both the edge site and cloud deployments were plotted using the 

procedures presented in Appendix A. The intention to simulate a random Rubik’s cube 

size between values of three and fourteen did pay off, the request rate for both edge and 

cloud deployments were about the same for both experiments as indicated in Figure 4.3. 

This justified a fair comparison of both deployments. 
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Figure 4.3: Total request rate/sec 
 
 

 

This is followed by the request failure rate for both deployments. Figure 4.4 shows that 

failures were more prevalent in the cloud deployments. Application maximum and 

median response time in seconds for both edge and cloud deployments were presented 

in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4: Total failed request rate 
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Figure 4.5: Application maximum and median response time 
 
 

 

The minimum application response time in milliseconds during the experiment is 

presented in Figure 4.6 for both cloud and edge deployments. The average application 

data download for both deployments are presented in Figure 4.7. The same application 

version was deployed for both scenarios and with the convergence in the application 

request rates for both edge and cloud deployments as shown in Figure 4.3, these had a 

significant effect on the amount of application data downloaded for both scenarios 

during the experiments. 
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Figure 4.6: Application minimum response time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7: Average application content download in bytes 
 
 

The application average data download also converged also validating fair comparison 

because both deployments experienced about equal amount of data download 

throughout the experiments 
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Figure 4.8: 50 Percentile application response time 
 
 

 

The application response for half of the experiment duration, 50 percentile, second quartile 

or median response time is plotted in Figure 4.8. The general application response time over 

a period of two hours for 50 percentiles. The application response time for less than 95 

percent of time span of the experiment is presented in Figure 4.8 and Figure 4.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.9: 95 Percentile of response time 
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4.2 Discussion 
 
 

 

4.2.1 Evaluation of MEC models to determine the best fit for 5G applications: 

 

The RTT values from the four MEC deployment prototypes are all within the latency 

requirements for Virtual Reality and Augmented Reality of 7-12ms, Tactile Internet less 

than 10ms, Vehicle-to-Vehicle less than 10ms and Manufacturing and Robotic 

Control/Safety Systems: 1-10ms. The prototype Scenario B and D completely fall within the 

mentioned applications latency requirements. Discussing the results extracted from the 

experiments, it is believed that new and emerging 5G mobile applications will run for short 

durations and this perfectly fit into containerization technologies, containers are built to run 

mostly for a short period of time. This fact together with the attendant save in compute 

resources are part of reasons for the choice of containers over VM. Analysis of deployments 

behaviours was considered for a period of thirty (30) minutes. Therefore, the parameters 

were closely observed and evaluated over a period of 30 minutes. 

 

 

A close observation of the load test results shows that the total request rate for both edge 

site and cloud deployments showed similar characteristics in the number of requests, 

therefore, the experiment had a good ground to establish comparisons for the two 

scenarios as shown in Figure 4.10. This was corroborated by the average application 
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Figure 4.10: Total request rate/sec 
 
 

 

data download for the two deployments scenarios as shown in Figure 4.7. Considering a 

production deployment scenario with several hundred or thousands geographically 

dispersed UEs connected to mobile applications hosted at a remote cloud data centre or 

within the operator DN, this will create high bandwidth traffic and exert serious penalty 

on the operator backhaul network. Whereas, in the proposed edge site deployment 

scenario UEs will take the advantage of running MEC applications hosted at the 

network edge, deployed at the CU thereby removing the issue of heavy traffic bottle 

neck on the backhaul networks. 

 

 

Both median and maximum application response time were considered for both edge site 

and cloud deployments as indicated in Figure 4.12. It was observed the maximum latency 

figure for cloud deployment was too high for smooth running of mobile applications. There 

were initial failures reported for both edge and cloud deployment while the applications just 

starting up, but the initial failure finally disappeared. But there were evident application 

high failure rates for cloud deployments compared with the edge site 

 
deployments as indicated in Figure 4.11. This will have adverse effects on adoption of 
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new and emerging latency sensitive applications. The maximum edge response time for 

edge deployment was a little above 60 seconds compared to about 160 seconds for cloud 

deployments in Figure 4.12. These latency figures are really unacceptable for but it is 

believed that deployment on a real 5G network with adequate MEC server resources can 

normalize the edge figures to acceptable values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.11: Total failed request rate (30 minutes)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.12: Application maximum and median response time (30 minutes) 
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The comparison of minimum application response time, Figure 4.13, confirmed the 

proposal for containerized applications deployment at the edge for 5G networks. The 

response time fell within acceptable latency requirements for new and emerging 

applications, comparing this with cloud deployment minimum values of around 500 

milliseconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure .4.13: Application minimum response time (30 minutes) 
 

 

Another set of relevant results were the 50th and 95th percentiles in Figure 4.14 and 

Figure 4.15 respectively. For about 50% of the application response time within 30 

minutes the red colour of cloud response time dominates high figures as seen in the 30 
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Figure 4.14: 50 Percentile of response time (30 minutes) 

 

minutes graph. Of high interest is the 95th percentile which was used to evaluate the 

95% regular and sustained application response time within 30 minutes (Figure 4.13). 

Clearly, edge deployment response time are more visible looking around low latency 

figures unlike the cloud deployment response time that dominates the graph skyline 

indicating consistent unacceptable high latency values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.15: 95 Percentile of response time (30 minutes) 
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The fact that containers are secure and deployable for MEC infrastructures will increase 

the ability of enterprise developers by improving collaboration to quickly deliver 

scalable and reliable applications and services at pace required of 5G rollout while not 

jeopardizing the security of the end-to-end network. Containers provide the required 

DevOps ecosystem for developers and engineers to work across the entire application 

lifecycle, from designs, development, staging, to deployment operations for 

development and operations teams. 
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CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

Secured containerised Multi-access computing infrastructures have many advantages of 

mobile cloud computing for mobile wireless device computational power and energy 

carrying capacity deficiencies to cater asymmetric UE applications. Applications hosted 

within the RAN have better support for new and emerging application requirements. These 

requirements are in terms of high amount of computational, storage and analytics capabilities 

while at low latency figures. Secured containerization using Kata containers provide most of 

the essential features for multi-access edge computing infrastructures. This makes it suitable 

for resource-intensive mobile applications speed and isolation requirements to guarantee 

safety within the mobile ecosystem expected with massive deployment of 5G UEs. Secure 

containers will guarantee fast deployment of a huge number of applications due to its 

orchestration and automation capabilities. Considering the fact that no matter how fast 5G 

network will be, MEC will ensure the need not to transport huge data for processing in the 

cloud and returning the results to the UE, enhancing privacy and security concerns while also 

conserving bandwidth. There was still need for improvement on Kata containers to reduce 

performance overhead, especially for disk Input/output bound operations to significantly 

reduce application response time. 

 

 

MEC for 5G Networks based on IaC, containerization and source control system 

providing very low user plane latency while at small footprint will enable high density 

utilization. This will provide the necessary mechanism to support communication, 

computing, control and content delivery for high throughput and highly latency sensitive 

5G applications with consideration for mobile UE efficient energy management. 
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5.2 Recommendations 

 

There is still a need for improvements on Kata Containers to reduce performance 

overhead, especially for disk Input/output bound operations to significantly reduce 

application response time. It is recommended that the experiment should include 

input/output performance test of Kata containers compared with runC runtime-based 

Docker containers to confirm the fears entertained of higher performance overhead in 

Kata containers. 

 

 

5.3 Limitations and Future Works 

 

One of the main limitations of the solution proposed in this thesis is not considering the 

integration of 5G virtualized network functions with the containerization technology. 

Despite the fact that 5G network functions are RESTful API compliant and communicate 

only over HTTP/2 using JSON while these features are also supported by containers. The 

experiment was not able to handle more than 3 requests per second by 30 unique users 

without significant failures for both cloud and edge test cases. Part of the reasons was the 

memory limitation on the physical server used for the edge scenario due to the high 

financial cost of memory upgrade whereas the financial cost of increasing the cloud server 

RAM capacity was marginal but there was a need to have the same resource configuration 

for both cloud and edge test cases to establish fair comparisons. 

 

 

A future work could consider evaluation and improvement on input/output performance 

of kata containers relative to Docker containers without sacrificing the security 

advantages and also key into the HTTP/2 and JSON features that are also available in 

containerization to improve application response time that are consistent with new and 

emerging applications 
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5.4 Contributions 
 

 

To the best of knowledge, every suggested solution has been geared toward edge 

computing. This research work proposed a stable augmentation infrastructure for mobile 

applications by making available a high amount of compute, storage and analytic resources 

within the RAN close to the end users thereby reducing the user plane latency while 

removing the challenges of platform-specific ecosystems due to the adoption of secured 

containerization technology. A stable augmentation infrastructure for mobile applications 

was presented. A paper titled “Multi-Access Edge Computing Deployments for 5G 

Networks” was presented at the 3rd International Engineering Conference (Mosudi et al., 

2019), Federal University of Technology, Minna, Nigeria. A full journal paper titled “A 

Performance Comparison of Docker and Kata Containers for Edge Computing” is currently 

being prepared for submission. These demonstrate the importance of Container Based 

Multi-access Edge Computing in meeting 5G enhanced mobile broadband (eMBB) and 

ultra-reliable and low latency communication (uRLLC) requirements 

 

The test bed provided the opportunity to perform real world scenario load testing using 

Locust (Heyman, et al., n.d). The experiments results showed that deployment at the edge 

produced low latency figures close to the requirements of emerging 5G applications. Low 

latency figures will enhance the end-user quality of experience (QoE). Edge deployments 

will reduce the pressure on network operators backhaul link saving end-to-end ecosystem 

from collapse due to heavy backhaul traffic that might result from billions of 5G UEs. 
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APPENDIX A 
 

#plot.py  
#This was used to plot all our graphs to manage the presentation of  
#the CSV dataset from our results  
# 

 

import pandas as pd 

 

#import matplotlib.pyplot as plt 

 

import plotly.express as px  
import plotly.graph_objs as go  
import plotly.offline as ply 

 

from datetime import datetime 

 

dt =  
pd.read_csv('graphcsv2/edge_cloud_log_03_01_2020_stats_history.csv') 

 
dt['Timestamp_edge'] = pd.to_datetime(dt['Timestamp_edge'], unit='s') 

 
dt['Timestamp_cloud']= pd.to_datetime(dt['Timestamp_cloud'],unit='s') 

 

#Selecting and manipulating columns of interest 

 

timestamp_edge  
total_requests_edge  
failures_edge  
total_requests_rate_edge  
failed_requests_rate_edge  
med_response_time_edge  
min_response_time_edge  
max_response_time_edge  
average_content_Size_edge  
fifty_response_time_edge  
ninety_5_response_time_edge 

 

= dt['Timestamp_edge']  
= dt['# requests_edge']  
= dt['# failures_edge']  
= dt['Requests/s_edge']  
= dt['Requests Failed/s_edge'] 
 
= dt['Median response time_edge']  
= dt['Min response time_edge']  
= dt['Max response time_edge'] 
 
= dt['Average Content Size_edge']  
= dt['50%_edge']  
= dt['95%_edge'] 

 

timestamp_cloud  
total_request_cloud  
failures_cloud  
total_requests_rate_cloud  
failed_requests_rate_cloud  
med_response_time_cloud  
min_response_time_cloud  
max_response_time_cloud  
average_content_Size_cloud  
fifty_response_time_cloud  
ninety_5_response_time_cloud 

 

= dt['Timestamp_cloud']  
= dt['# requests_cloud']  
= dt['# failures_cloud']  
= dt['Requests/s_cloud']  
= dt['Requests Failed/s_cloud'] 
 
= dt['Median response time_cloud']  
= dt['Min response time_cloud']  
= dt['Max response time_cloud'] 
 
= dt['Average Content Size_cloud']  
= dt['50%_cloud']  
= dt['95%_cloud'] 

 
 
 
 
 
 

 

A1 



trace_a1 = go.Scatter(x = timestamp_edge, y = 

total_requests_rate_edge, name = 'Edge Site')  

trace_a2 = go.Scatter(x = timestamp_cloud, y = 

total_requests_rate_cloud, name = 'Cloud')  

layout_a = dict  (   
  font = dict(family = 'Times New Roman', 

    size = 24  

    ) ,  

 title = dict(text = 'Total Requests per  

 second(req/s)',    

 #xanchor = 'center',  

 x = 0.5,    

 yanchor = 'top',   

 font = dict(    

 size = 34)    

 ),     

 xaxis = dict(title = "Timestamp"),  

 yaxis = dict(title = 'Requests/s'),  

 xaxis_rangeslider_visible=True  

 )     

trace_b1 = go.Scatter(x = timestamp_edge, y = 

med_response_time_edge/1000, name = 'Edge Site Median Response Time') 

trace_b2 = go.Scatter(x = timestamp_cloud, y = 

med_response_time_cloud/1000, name = 'Cloud Median Response Time') 

trace_b3 = go.Scatter(x = timestamp_edge, y = 
 

max_response_time_edge/1000, name = 'Edge Site Maximum Response Time') 
 

trace_b4 = go.Scatter(x = timestamp_cloud, y = 

max_response_time_cloud/1000, name = 'Cloud Maximum Response Time') 

 
layout_b 

 
= 

 
dict (  
font = dict(family = 'Times New Roman',  
size = 24  
) , 
 
title = dict(text = 'Application Response  
Time',  
#xanchor = 'center',  
x = 0.5,  
yanchor = 'top',  
font = dict(  
size = 34)  
),  
xaxis = dict(title = "Timestamp"), 

 
yaxis = dict(title = 'Time(seconds)'), 

xaxis_rangeslider_visible=True  
) 

 
 
 
 
 
 
 
 

 

A2 



 
trace_c1 = go.Scatter(x = timestamp_edge, y = 

failed_requests_rate_edge, name = 'Edge Site')  

trace_c2 = go.Scatter(x = timestamp_cloud, y = 

failed_requests_rate_cloud, name = 'Cloud')  

layout_c = dict (    
  font = dict(family = 'Times New Roman', 

  size = 24   

  ) ,    

 title = dict(text = 'Failed Request per  

 second(req/s)',   

 #xanchor = 'center',  

 x = 0.5,    

 yanchor = 'top',   

 font = dict(    

   size = 34)  

   ),   

 xaxis = dict(title = "Timestamp"),  

 yaxis = dict(title = 'Requests/s'),  

 xaxis_rangeslider_visible=True  

  )    

trace_d1 = go.Scatter(x = timestamp_edge, y = 

min_response_time_edge, name = 'Edge Site Minimum Response Time') 

trace_d2 = go.Scatter(x = timestamp_cloud, y = 

min_response_time_cloud, name = 'Cloud Minimum Response Time') 

#trace_d3 = go.Scatter(x = timestamp_edge, y = 

med_response_time_edge, name = 'Edge Site Median Response Time') 

#trace_d4 = go.Scatter(x = timestamp_cloud, y = 

med_response_time_cloud, name = 'Cloud Median Response Time') 

layout_d = dict (    
  font = dict(family = 'Times New Roman', 

    size = 24  

    ) ,  

 title = dict(text = 'Application Minimum Response 

 Time',     

 #xanchor = 'center',  

 x = 0.5,    

 yanchor = 'top',   

 font = dict(   

   size = 34  

   )   

   ),   

 xaxis = dict(title = "Timestamp"),  

 yaxis = dict(title = 'Time(milliseconds)'),  
xaxis_rangeslider_visible=True  

) 

 
 
 
 
 

 

A3 



APPENDIX B 
 

 

#locustfile.py 
 

#These were used to define user behaviour to load test the deployed web applications 

#and for the generation of CSV result dataset for further analysis # 

 
 

 
#Cloud locustfile 

 
#locust --csv=locust_log_cloud --host /67.172.223.157 --no-web -c 30 -r 

3 from locust import HttpLocust, TaskSet, task, between import random 

 
from random import randrange 

 
#import test_random_integer 

 

 
#Importing Logging 

 
import logging 

 
import os.path 

 
from datetime import datetime 

 

 
#Define target host 

 
#HOST = "http://167.172.223.157" 

 
#PORT = ":9082/" 

 
 

 

#Creating log filename 
 

locust_current_time=datetime.now() 
 

logfilename = str(locust_current_time) + '.log' 
 

logfile = 
 

os.path.join('/home/mosudi/Documents/mio_drive/mengloadtest/locust_log_d

i 
 

r/', 
 

logfilename) 
 

print(logfile) 
 

logging.basicConfig(filename="logfile.log", level=logging.INFO) #, 
 

# format='%(asctime)s %(levelname)s %(name)s %(threadName)s 

: %(message)s') 
 

#logging.basicConfig(filename=logfile, level=logging.DEBUG) 
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class UserBehaviour(TaskSet): 

 
def on_start(self): 

 
""" on_start is called when a Locust start before any task is 

 

scheduled """ 
 

#http://167.172.223.157:9082/ 
 

self.client.get("http://167.172.223.157:9082/"

) pass 

 

@task(3) 
 

def index(self): 
 

#self.client.get("/") 
 

n = randrange(3, 14) 
 

print(n) 
 

self.client.post("http://167.172.223.157:9082/", {"n": n }) 
 

pass 

 

 
@task(2) 

 
def contact(self): 

 
self.client.get("http://167.172.223.157:9082/contact") 

 
pass 

 

 
@task(1) 

 
def about(self): 

 
self.client.get("http://167.172.223.157:9082/about") 

 
pass 

 

 
class WebsiteUser(HttpLocust): 

 
task_set = UserBehaviour 

 
wait_time = between(90, 140) 

 
"""class WebsiteUser(HttpLocust): 

 
task_set = UserBehaviour 

 
wait_time = lambda self: random.expovariate(1)*1000""" 
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#Edge locustfile 
 

#locust --csv=locust_log_edge --host 192.168.5.155 --no-web -c 30 -r 

3 from locust import HttpLocust, TaskSet, task, between import random 

 
from random import randrange 

 
#import test_random_integer 

 

 
#Importing Logging 

 
import logging 

 
import os.path 

 
from datetime import datetime 

 

 
#Define target host 

 
#HOST = "http://192.168.5.155" 

 
#PORT = ":9082/" 

 
 

 

#Creating log filename 
 

locust_current_time=datetime.now() 
 

logfilename = str(locust_current_time) + '.log' 
 

logfile = 
 

os.path.join('/home/mosudi/Documents/mio_drive/mengloadtest/locust_log_d

i 
 

r/', 
 

logfilename) 
 

print(logfile) 
 

logging.basicConfig(filename="logfile.log", level=logging.INFO) #, 
 

# format='%(asctime)s %(levelname)s %(name)s %(threadName)s 

: %(message)s') 
 

#logging.basicConfig(filename=logfile, level=logging.DEBUG) 
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class UserBehaviour(TaskSet): 
 

def on_start(self): 
 

""" on_start is called when a Locust start before any task is 
 

scheduled """ 
 

#self.client.get("http:/167.172.223.157:9082/") 
 

self.client.get("http://192.168.5.155:9082/"

) pass 

 

@task(3) 
 

def index(self): 
 

#self.client.get("/") 
 

n = randrange(3, 14) 
 

print(n) 
 

#self.client.post("http://167.172.223.157:9082/", {"n": n }) 
 

self.client.post("http://192.168.5.155:9082/", {"n": n }) 
 

pass 

 

 
@task(2) 

 
def contact(self): 

 
#self.client.get("http://167.172.223.157:9082/contact") 

 
self.client.get("http://192.168.5.155:9082/contact") 

 
pass 

 

 
@task(1) 

 
def about(self): 

 
#self.client.get("http://167.172.223.157:9082/about") 

 
self.client.get("http://192.168.5.155:9082/about") 

 
pass 

 
class WebsiteUser(HttpLocust): 

 
task_set = UserBehaviour 

 
wait_time = between(90, 140) 

 

 
"""class WebsiteUser(HttpLocust): 

 
task_set = UserBehaviour 

 
wait_time = lambda self: random.expovariate(1)*1000""" 
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APPENDIX C 

 

Bash Commands  
#Install requirements 
 
sudo apt-get update 
 
sudo apt-get upgrade -y 
 
sudo apt-get install -y debootstrap curl git wget snapd vi 

 

#Installing Go 
 
sudo snap install go --classic 

 

#Installing kata-runtime, kata-proxy and kata-shim 
 
ARCH=$(arch) 
 
BRANCH="${BRANCH:-master}" 
 
sudo sh -c "echo 'deb 
 
http://download.opensuse.org/repositories/home:/katacontainers:/releases:/${ARCH}:/${BRAN  
CH}/xUbuntu_$(lsb_release -rs)/ /' > /etc/apt/sources.list.d/kata-containers.list" 
 
curl -sL 
 
http://download.opensuse.org/repositories/home:/katacontainers:/releases:/${ARCH}:/${BRAN 

CH}/xUbuntu_$(lsb_release -rs)/Release.key | sudo apt-key add - sudo -E apt-get update 

sudo -E apt-get -y install kata-runtime kata-proxy kata-shim 

 

#Installing Docker CE 
 
sudo -E apt-get -y install apt-transport-https ca-certificates software-properties-common 
 
curl -sL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - 
 
arch=$(dpkg --print-architecture) 
 
sudo -E add-apt-repository "deb [arch=${arch}] https://download.docker.com/linux/ubuntu 
 
$(lsb_release -cs) stable" 
 
sudo -E apt-get update 
 
sudo -E apt-get -y install docker-ce 
 
sudo usermod -aG docker ${USER} 

 

#Image build procedures 
 
git clone https://github.com/imosudi/osbuilder.git 

 

# Creating Rootfs with systemd as init 

export USE_DOCKER=true 

 

# Building guest O/S rootfs based on Ubuntu 
 
sudo image-builder/image_builder.sh -r "${PWD}/rootfs-builder/rootfs-bionic/" 
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# Building Ubuntu Docker image based rootfs created above 

sudo -E PATH=$PATH make USE_DOCKER=true rootfs 

 

#Application packaging procedures #Clone Mobile web application from git 

repo git clone https://imosudi@bitbucket.org/imosudi/rubiks3.git 

 

#Prepare Ubuntu Docker image for app 

deployment docker run -it ubuntu-rootfs-osbuilder 

/bin/bash 2baf2236122d# apt update && apt 

upgrade -y 2baf2236122d# apt install python3-pip 

 

#Create image for app deployment 
 
docker commit 2baf2236122d imosudi/ubuntu-rootfs-osbuilder:v10.0 

 

#Edit application image Dockerfile 
 
cd rubiks3/ 
 
#Dockerfile 
 
FROM imosudi/ubuntu-rootfs-osbuilder:v10.0 

 

#Dockerfile Author / Maintainer 
 
MAINTAINER mosudi.pg7331@st.futminna.edu.ng 
 
| 
 
| 
 
| 
 
ENV PORT 9082 
 
CMD ["/usr/bin/python3", "app.py"] 
 
#Building a versioned Docker application container 
 
docker build -t imosudi/rubiks3ubuntufs-kataruntime:v1.5 . 

 

#Ship the built images to repository for future use 

docker push imosudi/ubuntu-rootfs-osbuilder:v10.0 

docker push imosudi/rubiks3ubuntufs-kataruntime:v1.5 

 

#Deploy application 
 
docker run -it -p 9082:9082 imosudi/rubiks3ubuntufs-kataruntime:v1.5 

 

#Web application available via Docker host IP address 

http://HOST-IP-ADDRESS:9082 
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APPENDIX D 

 

Table 4.1: Experiment Data  
 

Timestamp_edge Timestamp_cloud # requests_edge # requests_cloud  ... 50%_edge 50%_cloud 95%_edge 95%_cloud  
 

0 2020-01-03 11:28:04 2020-01-03 11:28:01 0.0 0 ... NaN NaN NaN NaN 

1 2020-01-03 11:28:06 2020-01-03 11:28:03 2.0 0 ... 2100.0 NaN 2100.0 NaN 

2 2020-01-03 11:28:08 2020-01-03 11:28:05 8.0 0 ... 2100.0 NaN 3000.0 NaN 

3 2020-01-03 11:28:10 2020-01-03 11:28:07 12.0 3 ... 2500.0 5300.0 4600.0 5600.0 

4 2020-01-03 11:28:12 2020-01-03 11:28:09 13.0 5 ... 2500.0 5600.0 4900.0 6700.0 

5 2020-01-03 11:28:14 2020-01-03 11:28:11 16.0 8 ... 3000.0 6400.0 8100.0 8500.0 

6 2020-01-03 11:28:16 2020-01-03 11:28:13 21.0 10 ... 4100.0 6400.0 8200.0 9500.0 

7 2020-01-03 11:28:18 2020-01-03 11:28:15 24.0 13 ... 7300.0 6700.0 9100.0 11000.0 

8 2020-01-03 11:28:20 2020-01-03 11:28:17 29.0 17 ... 7600.0 8200.0 11000.0 13000.0 

9 2020-01-03 11:28:22 2020-01-03 11:28:19 29.0 19 ... 7900.0 9500.0 11000.0 15000.0 

 
10 2020-01-03 11:28:24 2020-01-03 11:28:21 30.0 21 ... 8700.0 11000.0 15000.0 16000.0 

11 2020-01-03 11:28:26 2020-01-03 11:28:23 35.0 22 ... 10000.0 13000.0 16000.0 18000.0 

12 2020-01-03 11:28:28 2020-01-03 11:28:25 39.0 25 ... 15000.0 15000.0 16000.0 19000.0 

13 2020-01-03 11:28:30 2020-01-03 11:28:27 41.0 27 ... 15000.0 15000.0 18000.0 19000.0 

14 2020-01-03 11:28:32 2020-01-03 11:28:29 47.0 32 ... 16000.0 18000.0 24000.0 21000.0 

15 2020-01-03 11:28:34 2020-01-03 11:28:31 49.0 33 ... 16000.0 18000.0 24000.0 22000.0 

16 2020-01-03 11:28:36 2020-01-03 11:28:33 49.0 34 ... 16000.0 19000.0 24000.0 25000.0 

17 2020-01-03 11:28:38 2020-01-03 11:28:35 49.0 35 ... 18000.0 20000.0 24000.0 25000.0 

18 2020-01-03 11:28:40 2020-01-03 11:28:37 49.0 37 ... 14000.0 21000.0 24000.0 31000.0 

19 2020-01-03 11:28:42 2020-01-03 11:28:39 50.0 39 0... 11000.0 27000.0 19000.0 31000.0 

20 2020-01-03 11:28:44 2020-01-03 11:28:41 52.0 440 ... 14000.0 29000.0 35000.0 32000.0 

21 2020-01-03 11:28:46 2020-01-03 11:28:43 52.0 45 ... 15000.0 30000.0 35000.0 32000.0 

22 2020-01-03 11:28:48 2020-01-03 11:28:45 52.0 47 ... 15000.0 30000.0 35000.0 32000.0 

23 2020-01-03 11:28:50 2020-01-03 11:28:47 54.0 47 ... 34000.0 30000.0 38000.0 32000.0 

24 2020-01-03 11:28:52 2020-01-03 11:28:49 54.0 47 ... 35000.0 30000.0 38000.0 32000.0 

25 2020-01-03 11:28:54 2020-01-03 11:28:51 54.0 47 ... 35000.0 4100.0 38000.0 32000.0 

26 2020-01-03 11:28:56 2020-01-03 11:28:53 54.0 48 ... 38000.0 4100.0 38000.0 22000.0 
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27 2020-01-03 11:28:58 2020-01-03 11:28:55 54.0 49 ... 34000.0 22000.0 34000.0 44000.0 

28 2020-01-03 11:29:00 2020-01-03 11:28:57 55.0 49 ... 34000.0 22000.0 34000.0 44000.0 

29 2020-01-03 11:29:02 2020-01-03 11:28:59 56.0 49 ... 34000.0 44000.0 36000.0 44000.0 

 
... ... ... ... ... ... ... ... ... .. .       

3925 2020-01-03 13:39:37 2020-01-03 13:39:19 1939.0  1743 ... 61000.0 12000.0 94000.0 12000.0 

3926 2020-01-03 13:39:39 2020-01-03 13:39:21 1939.0  1743 ... 61000.0 12000.0 94000.0 12000.0 

3927 2020-01-03 13:39:41 2020-01-03 13:39:23 1940.0  1747 ... 26000.0 39000.0 94000.0 93000.0 

3928 2020-01-03 13:39:43 2020-01-03 13:39:25 1940.0  1747 ... 26000.0 39000.0 94000.0 93000.0 

3929 2020-01-03 13:39:45 2020-01-03 13:39:27 1941.0  1748 ... 3600.0 39000.0  94000.0 93000.0 

3930 2020-01-03 13:39:47 2020-01-03 13:39:29 1942.0  1748 ... 3600.0 39000.0  94000.0 93000.0 

3931 2020-01-03 13:39:49 2020-01-03 13:39:31 1944.0  1748 ... 3600.0 39000.0  60000.0 93000.0 

3932 2020-01-03 13:39:51 2020-01-03 13:39:33 1945.0  1748 ... 7700.0 49000.0  62000.0 93000.0 

3933 2020-01-03 13:39:53 2020-01-03 13:39:35 1945.0  1748 ... 7700.0 16000.0  62000.0 16000.0 

3934 2020-01-03 13:39:55 2020-01-03 13:39:37 1946.0  1748 ... 7700.0 16000.0  62000.0 16000.0 

3935 2020-01-03 13:39:57 2020-01-03 13:39:39 1946.0  1749 ... 7700.0 16000.0  62000.0 16000.0 

3936 2020-01-03 13:39:59 2020-01-03 13:39:41 1946.0  1750 ... 7700.0 9800.0  62000.0  16000.0 

3937 2020-01-03 13:40:01 2020-01-03 13:39:43 1948.0  1750 ... 120.0 9800.0  62000.0  9800.0 

3938 2020-01-03 13:40:03 2020-01-03 13:39:45 1949.0  1750 ... 120.0 9800.0  12000.0  9800.0 

3939 2020-01-03 13:40:05 2020-01-03 13:39:47 1949.0  1750 ... 120.0 9800.0  12000.0  9800.0 

3940 2020-01-03 13:40:07 2020-01-03 13:39:49 1951.0  1752 ... 120.0 5200.0  20000.0  9800.0 

3941 2020-01-03 13:40:09 2020-01-03 13:39:51 1951.0  1752 ... 120.0 1200.0  20000.0  5200.0 

3942 2020-01-03 13:40:11 2020-01-03 13:39:53 1953.0  1752 ... 17.0 1200.0 20000.0  5200.0 

3943 2020-01-03 13:40:13 2020-01-03 13:39:55 1954.0  1752 ... 37.0 5200.0 20000.0  5200.0 

3944 2020-01-03 13:40:15 2020-01-03 13:39:57 1954.0  1752 ... 17.0 5200.0 20000.0  5200.0 

3945 2020-01-03 13:40:17 2020-01-03 13:39:59 1954.0  1752 ... 17.0 1200.0  37.0 1200.0 

3946 2020-01-03 13:40:19 2020-01-03 13:40:01 1954.0  1752 ... 17.0 1200.0  37.0 1200.0 

 
3947 NaT 2020-01-03 13:40:03 NaN 1753 ... NaN 6500.0 NaN 6500.0 

3948 NaT 2020-01-03 13:40:05 NaN 1753 ... NaN 6500.0 NaN 6500.0 

3949 NaT 2020-01-03 13:40:07 NaN 1754 ... NaN 45000.0 NaN 45000.0 

3950 NaT 2020-01-03 13:40:09 NaN 1754 ... NaN 45000.0 NaN 45000.0 
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3951 NaT 2020-01-03 13:40:11 NaN 1754 ... NaN 45000.0 NaN 45000.0 

3952 NaT 2020-01-03 13:40:13 NaN 1754 ... NaN 45000.0 NaN 45000.0 

3953 NaT 2020-01-03 13:40:15 NaN 1755 ... NaN 45000.0 NaN 45000.0 

3954 NaT 2020-01-03 13:40:17 NaN 1756 ... NaN 24000.0 NaN 45000.0 
        

 

 

[3955 rows x 22 columns] 
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