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ABSTRACT 

 

Wireless sensor networks (WSN) consist of micro-sensors capable of monitoring physical and 

environmental factors. These are often mainly made up of resource constrained sensor nodes and 

gateways. Networking these nodes presents several challenges because the devices have limited 

computational capability, data storage, energy and communication bandwidth. Therefore, various 

lightweight communication protocols are emerging for Machine to Machine (M2M) 

communications. Among the various application layer protocols for data communication in 

WSNs, the two most popular protocols for constrained devices are the Message Queue Telemetry 

Transport Protocol (MQTT) with a variant for sensor nodes (MQTT-SN) and the Constrained 

Application Protocol (CoAP). Studies have shown that the performance of these different 

protocols are dependent on different network conditions. CoAP is more efficient in terms of 

message overhead while MQTT-SN is more efficient in terms of client complexity. Studies have 

further emphasized the levels of difficulties implementing any of these protocols regarding 

application requirements. This project proposes an integration of MQTT-CoAP protocols using 

an abstraction layer that enables both MQTT-SN and CoAP protocols to be used in a sensor 

node. The performance of the system was evaluated in terms of latency per message size in bytes 

transmitted for different quality of service (QoS) levels and energy consumption per node. The 

result of the study showed that latency values slightly increase as the packet size increased. The 

lowest latency was observed in MQTT-SN QoS 0 while similar latency values were obtained for 

the CoAP and MQTT-SN QoS 1. The average latency was observed to be 163.2ms, 188.5ms and 

191.5ms for MQTT-SN QoS 0, MQTT-SN QoS 1 and CoAP respectively. Energy consumption 

of the node when using MQTT-SN for a single Tx/Rx operation in a 10s interval showed an 

average of 261.6mJ for both QoS 0 and QoS 1 while an average of 261.3mJ was observed for 

CoAP. Performance evaluation of these protocols when integrated shows that the system is 

feasible. While CoAP performs better in terms of energy consumption, the two protocols perform 

almost equally in latency. The observed values of latency and energy consumption in the 

developed integration technique is comparable to other studies. This work has shown that the two 

protocols can coexist in a single sensor node without impacting negatively on its performance. 

Future work will be required to test the integrated system in a more complex network conditions. 
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1 CHAPTER ONE 

 

1.0 INTRODUCTION 
 

 

1.1 Background of the study 

 

In recent years, development of smart sensors has caused interesting advancements in the 

development of wireless sensor networks (WSNs). Smart sensor nodes are low power devices 

equipped with one or more sensors, possibly with an actuator, a processor unit, memory/storage 

unit, a power supply and a wireless communication radio (Akyildiz et al., 2002). 

 

Wireless sensor networks (WSNs) consist of small sensors that can monitor environmental and 

physical factors such as seismic events, motions, vibrations, humidity, temperature. These have 

been applied in different areas, such as, but not limited to, industrial process monitoring and 

control (Peng et al., 2006), environment observation and habitat monitoring (Chen & Liao, 

2011), healthcare applications (Alemdar & Ersoy, 2010; Kulkarni & Ozturk, 2011), home 

automation (Ding et al., 2011; Kaiwen et al., 2017), traffic control (Xu & Lee, 2007) and 

forecast systems (Selavo et al., 2007). 

 

Research in WSN technology in resource constrained devices and using the Internet Protocol (IP) has 

greatly changed the Internet landscape. This showed that in the near future, trillions of smart objects 

would be connected to the Internet to form the Internet of Things (IoT) (Colitti et al., 2011). Internet 

of Things (IoT) is a prominent technology used in today’s era for the establishment of the WSNs for 

anywhere and anyplace communication between sensor nodes (Sharma et al., 2020). The main aim of 

IoT is to create an interconnected network or infrastructure of devices that integrate all the current 

technologies (Gluhak et al., 2011). By the introduction of IoT, everything can be connected to the 

internet. This enables ubiquitous communication and the data sensed for 
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communication can be physical world control signal, a device or regular internet data 

communication (Mohan et al., 2015). 

 

Wireless sensor networks (WSNs) are made up of sensor nodes which are small, inexpensive, 

and intelligent (Yick et al., 2008) thanks to the significant advancements in the development of 

Micro Electrical Mechanical Systems (MEMS) development. Networking these nodes presents 

several challenges because the devices have limited computational capability, data storage, 

energy and communication bandwidth. This implies that, WSNs would currently not be able to 

adequately meet the needs of the IoT unless these challenges are resolved appropriately. 

 

As the Internet of Things (IoT) expands to numerous applications through the availability of 

different sensors, increasing minimization of hardware, and “smart objects” (Giusto et al., 2010), 

many potential protocols are emerging for machine to machine (M2M) communications thus, the 

question of which protocol is most appropriate to use for the Internet of Things (IoT) becomes a 

very interesting topic for research. 

 

The most important IoT protocols are divided into three main scategories: application layer protocols, 

infrastructure protocols and service discovery protocols (Martí et al., 2019). The most relevant 

infrastructure protocols for resource constrained devices in Lossy Networks are the Routing Protocol 

for Low-Power and Lossy Networks (RPL), considered the routing layer standard for IoT (Iova et al., 

2016), 6LowPAN (Shelby & Bormann, 2009) for the network layer, and IEEE 802.15.4 (Molisch et 

al., 2006), LTE-A (Ghosh et al., 2010), EPCglobal (Kürschner et al., 2008), and Z-Wave (Gomez & 

Paradells, 2010) for the data link and physical layers. IETF Routing over Lows-power and Lossy 

networks (ROLL) Working Group has specified and designed a new IP routing protocol for smart 

object internetworking in addition to 6LowPAN. The protocol is called IPv6 Routing Protocol for 

Low-power and Lossy networks (RPL) (Vasseur & 
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Dunkels, 2010). The most widely used service discovery protocols are DNS Service Discovery 

(DNS-SD) and multicast DNS (mDNS), which are used for discovering resources and services 

offered by IoT devices (Al-Fuqaha et al., 2015). In the application layer, several popular 

protocols available today are CoAP (Constrained Application Protocol) (Shelby, 2013), MQTT 

(Message Queuing Telemetry Transport) (MQTT, 2014), DDS (Data Distribution Service) (DDS, 

2015), AMQP (Advanced Message Queueing Protocol) (OASIS, 2012) and XMPP (eXtensible 

Messaging and Presence Protocol) (Saint-Andre, 2011). 

 

One of the most significant advantages of IP based networking in Low-Power and Lossy 

Networks (LLNs) is that typical web service architectures can be used without the necessity of 

application gateways. This has made it possible for smart objects to not only be connected to the 

internet but to be connected with the Web. This connection is defined as the Web of Things 

(WoT) where smart object applications are built on Representational State Transfer (REST) 

architectures. REST architectures allow applications to depend on services that are loosely 

coupled which can be reused and shared (Colitti et al., 2011). 

 

From an end-to-end view, a Wireless Sensor Network (WSN) can be viewed as comprising of two 

subnets; a subnet connecting one or more gateway nodes to sensor nodes in which sensor nodes route 

data until it reaches one of the gateways using WSN protocols (Gnawali et al., 2009), and another 

subnet connecting the backend server or broker and the gateway. Sensor data generated by sensor 

nodes are delivered through the gateway to the server. Meanwhile, clients that are interested to 

receive sensor data connect to the server to obtain the data. To transfer all the sensor relevant data 

collected by a gateway node to a server, the gateway requires a protocol that is energy-efficient, 

bandwidth-efficient and can work with really limited resources in terms of hardware capacity. For 

this purpose, protocols like Message Queue Telemetry Transport (MQTT) (MQTT, 
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2014) and Constrained Application Protocol (CoAP) (Shelby, 2013) have been developed to 

specifically address the stringent requirements of real-world WSN deployment outcomes. 

 

One way data transfer is handled between gateway and clients in WSNs is the “request-response” 

also known as “client-server” architecture which is supported by CoAP. In the client-server 

architecture, request messages begin a transaction with a server, which may send a response to 

the client identified by a matching transaction ID since it uses UDP and this is based on a polling 

method (Davis et al., 2013). CoAP was designed on a web transfer protocol based on REST 

(Representational State Transfer) on top of HTTP (Hypertext Transfer Protocol) functionalities 

(Al-Fuqaha et al., 2015). CoAP works using UDP unlike HTTP, removing all the overhead TCP 

incurs, which makes it simpler, reduces bandwidth requirements, and makes it a good option for 

IoT applications. CoAP uses a client/server or request/response architecture like HTTP. As a 

result, it uses same methods as HTTP: GET, POST, PUT, and DELETE (Richardson & Ruby, 

2007). CoAP also supports unicast as well as multicast (Martí et al., 2019). 

 

Another way data transfer is handled in WSNs is the “publish-subscribe” architecture (Eugster et al., 

2003). In this architecture, a client needing data (known as subscriber) registers its interests with a 

server (also known as broker). The client producing data (known as publisher) sends the data to a 

server and this server forwards the fresh data to the subscriber. One of the most significant 

advantages of this design is the separation of data-sending and data-receiving clients, i.e., sensor 

nodes do not need to know the network address or location or any other information regarding clients 

that are interested in their data and conversely, clients do not need to know about the sensor nodes 

generating the sensor data. This decoupling enables the architecture to be highly scalable (Eugster et 

al., 2003). The “publish-subscribe” architecture is supported by MQTT and CoAP (Davis et al., 

2013; Thangavel et al., 2014). The publish-subscribe architecture was designed 

 

4 



because there was a need to provide loosely coupled, asynchronous and distributed 

communication between data generators and destinations. This solution is seen today in the form 

of numerous publish-subscribe Message-Oriented Middleware (MoM) (Jia et al., 2014) and 

recently has been a subject of many research efforts (Chelloug & El-Zawawy, 2018; Hakiri et al., 

2017; Veeramanikandan & Sankaranarayanan, 2017). 

 

In this study a variant of the MQTT protocol designed for very resource constrained nodes was 

used which is the MQTT for Sensor Nodes (MQTT-SN). While the original MQTT works over 

TCP and TLS, MQTT-SN was designed to work in Wireless Sensor Networks (WSNs) over 

UDP (Lesjak et al., 2015). This protocol was designed to operate and function very much like 

MQTT. This means that because it provides the same semantics as MQTT, it can function with 

the same infrastructure. The sole architectural difference is that MQTT-SN needs a new system 

entity, known as a gateway, which has to convert all MQTT-SN messages sent over UDP to 

MQTT messages sent over TCP. Because of the fact that many brokers currently have this 

capability built in, all the complexity resides at the broker/gateway side, making the client side a 

lot simpler (Martí et al., 2019). 

 

Studies have shown that the performance of these different protocols are dependent on different 

network conditions. MQTT messages had shorter delays than CoAP when there was less packet loss 

and larger delays when there was more packet loss. (Chen & Kunz, 2016; Thangavel et al., 2014). In 

addition, the publisher-subscriber architecture using the broker mechanism of the MQTT protocol 

offers two major advantages over the CoAP technique and these are; publishers and subscribers do 

not need to know about each others existence or presence; to share information, subscriber and 

publisher do not need to be online/active at the same time, because the broker is 
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capable of storing data for clients that are not connected at the time a message is published 

(Sachs et al., 2010). 

 

As a result of the fact that the disadvantages offered by one protocol is complemented by the 

other protocol and vice-versa, this study proposes an integration of MQTT and CoAP protocols 

that bring the advantages of both protocols to be utilized in data communication. 

 

1.2 Research Motivation 

 

Research has revealed that the two most predominantly used communication architectures in internet 

of things are the request/response architecture implemented in CoAP and the publish/subscribe 

architecture implemented in MQTT. Research has also shown that MQTT-SN and CoAP are the two 

most predominantly used application layer communication protocols for resource constrained 

wireless sensor nodes. Because of the design and architecture of each of these two protocols, there 

are certain network conditions and certain network designs that each protocol is better suited for. In 

other words, if the sensor nodes are programmed to work with the MQTT-SN protocol because of the 

network design/conditions, any change to the design/condition that necessitates the need for CoAP 

protocol to be used would require the sensor nodes to be reprogrammed. Furthermore, this would 

constitute a major roadblock to dynamic application layer communication protocol switching in 

resource constrained sensor nodes. 

 

The effort to solve problems that arise from stereotyped application layer architecture for 

communication in WSNs is the main motivation for this research. There is no prior research that 

attempts to implement an integration of the MQTT-CoAP protocols in resource constrained 

devices. 
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1.3 Statement of the Research Problem 

 

There are often expensive tradeoffs when either CoAP or MQTT Protocols are used individually 

and switching them would often require re-programming the node which is difficult in real life 

scenario. Identifying the problems that could arise from using either protocol can only be 

adequately realized after deployment. For better communication efficiency, the engineer would 

be required to retrieve all the nodes and reprogram them which would be an extremely tedious 

task depending on the size of the wireless sensor network. 

 

1.4 Aim and objectives of the study 

 

The aim of this work is to integrate the MQTT and CoAP protocols for data communication in 

wireless sensor networks. To achieve the aim, the objectives of this research are to: 

 
i. Develop an abstraction layer that manages both MQTT and CoAP protocols thereby 

integrating both protocols in a system 

 
ii. Test the integrated protocols by simulating the protocol and measuring Energy 

consumption and Latency 

 
iii. Evaluate the performance of each protocol in the integrated system and compare with the 

performance of MQTT and CoAP protocols for diverse QoS requirements. 

 

1.5 Justification of the Study 

 

Various studies have highlighted the advantages, disadvantages and the performance evaluation 

of the MQTT and CoAP protocols. These show that some disadvantages of MQTT protocol is 

addressed in the CoAP protocol and some disadvantages of the CoAP protocol is addressed in the 

MQTT protocol. For example MQTT messages had shorter delays than CoAP when there was 

less packet loss and larger delays when there was more packet loss (Thangavel et al., 2014). 

CoAP uses RESTful (Representational State Transfer) technique which provides flexibility and 
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interoperability with other HTTP schemes. This enables a request pattern like GET, PUT, POST 

request for accessing or executing a specific function on the Node while the MQTT does not 

support RESTful methods (Dizdarevic et al., 2019). The REST technique would greatly simplify 

node specific configurations as opposed to setting up a subscription topic on the broker for node 

specific configurations in the MQTT protocol. The complementary advantages and disadvantages 

of the MQTT and CoAP protocol justifies the need for a study on integrating both protocols and 

utilizing them for data communication. 

 

1.6 Significance of the Study 

 

This study focuses on creating a technique that uses both MQTT and CoAP protocols for data 

communication in WSNs by creating an abstraction layer that enables leveraging any or both 

protocols for communication. This can then be further improved to facilitate identifying the data 

transmission type, network architecture and utilizing the most appropriate protocol for 

communication. 

 

1.7 Organization of the thesis 

 

Chapter two contains the theoretical background and review of some published literature related 

to this work. The methods and materials used in achieving the research objectives are presented 

in chapter three. In chapter four, the performance evaluation of the two protocols were carried 

out, the results of the research work were presented and discussed. Chapter Five is the 

Conclusion and Recommendations for future research. 
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2 CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 

The Internet of Things (IoT) is gaining traction throughout the world where millions of different 

devices will be interconnected, consuming and providing information accessible on the network. 

One of the most popular application of IoT is Smart city. Smart city includes transportation 

automation, smart surveillance, smart grid (smart energy management), smart environmental 

monitoring, smart water distribution and smart security etc. (Yun & Yuxin, 2010). The ongoing 

improvement in the development of the low cost and high performance hardware manufacturing, 

low cost mobile internet and high speed machine to machine (M2M) communication has led to 

the huge growth of IoT technologies. Internet of Things (IoT) devices will cause huge internet 

traffic. CISCO predicted that Machine 2 Machine (M2M) traffic would increase from 5 billion in 

2015 to 12 billion by 2020 (CISCO, 2016). This increase in traffic has put load on existing 

hardware and network infrastructure therefore a suitable protocol can ease the burden on existing 

computing and network infrastructure (Tandale et al., 2017). 

 

2.1 Wireless Sensor Networks (WSNs) and Internet of Things (IoT) 

 

The Internet of Things (IoT) have been defined in several ways by different researchers. Pena-Lopez 

et al. (2005) defines the Internet of Things as a concept in which networking and computing 

capabilities are embedded in any kind of conceivable object. These capabilities are used to query the 

device status and if possible to alter it. Another definition by Vermesan et al. (2011) defines the 

Internet of Things (IoT) as a simple interface between the physical and digital worlds. Using a variety 

of actuators and sensors, the digital world interacts with the physical world. In common parlance, the 

Internet of Things (IoT) is a term used to define a new kind of world or an era where almost all 

appliances and equipment that we use are connected to a network. These devices can 
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then be used all together to accomplish difficult tasks that require much intelligence (Sethi & 

Sarangi, 2017). For this interconnection and intelligence, IoT devices are developed and designed 

to have embedded transceivers, processors, sensors and actuators. IoT technology is not a 

singular; rather it is an accumulation of many technologies working together at the same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1: IoT communication model through gateway (Open Automation Software, 2021) 
 
 

 

Wireless Sensor Networks (WSNs) have gotten a lot of interest because of their various potential 

uses and benefits. They constitute a prospective area where IoT may be incorporated to improve 

efficiency. When a wireless sensor Network is connected to the internet, often done through a 

gateway or sink node, it can also be referred to as internet of things (IoT). A technique used to 

connect WSN to the Internet is through a single gateway or multiple gateways in the case of a hybrid 

network (Christin et al., 2009). In situations where low latency is a critical issue, single hop internet 

connection can be employed. In Most cases, WSN is organized in a star topology where a central 

gateway can be utilized. The gateway is directly connected to each sensor nodes and also 
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connected to the server autonomously. GPRS or LTE and Internet can be used for the out of field 

communication from gateway to the server. The information processed and stored in the gateway 

is sent to the server periodically (Viswanathan et al., 2018). Figure 2.1 shows the IoT 

communication model with the flow of information and some functions of the gateway and the 

server/cloud. 

 

Wireless Sensor Networks (WSNs) often consist of sensors, actuators and gateways. Actuators and 

sensors are devices, that help us interact with the physical environment. In order for us to derive 

useful inferences from the data collected by sensors, they must be stored and processed intelligently. 

Note that the term sensor was broadly defined; a refrigerator, television or even a mobile phone can 

act/count as a sensor if it provides inputs about its current state (internal state and/or environment). A 

device that can be used to cause some change in the environment is referred to as an actuator e.g. the 

light intensity or temperature controller in smart homes. The Figure 2.2 shows a typical 

communication model for WSN between nodes, between a node and the gateway and between the 

gateway and the internet or a remote data processing and monitoring server. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: WSN communication model from Node to Node (SATHYABAMA, 2021) 
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Data storage and processing can be done on the edge of the network or on a remote server as 

shown in Figure 2.2. Possible data preprocessing is typically done on the sensor or any other 

reachable device and then sent to a remote server. The processing and storage functions of an IoT 

object are also limited by the resources available, which are often very constrained due to 

limitations of energy, size and computational capability. As a result, one major focus in research 

is to ensure that with respect to some predefined accuracy level, the right data is gotten. Another 

challenge is communication aside the challenges of data handling and collection. The connection 

between IoT devices is usually wireless because they are typically deployed at geographically 

distant locations. The wireless channels are unreliable and often frequently distorted. In this 

setting, communicating data reliably with minimal retransmissions is a problem and thus an 

important research interest in IoT are the communication technologies employed. 

 
Now, after working on the data received, some actions, diverse in nature, needs to be taken based 

on certain assumptions. We can change the state the physical world using actuators or we may do 

something virtually like sending some data to other smart things. Context awareness is when the 

state of the physical world or a system at any point in time affects the process of effecting a 

change in that system. Since it is possible for an application to act differently in different 

contexts, the context is seriously considered before any action is taken. For example, a person 

may not like messages sent to him from his office when on vacation to interrupt him. 

 
Communication network, compute servers, Sensors and actuators form the core system of an IoT 

framework. However, there are several software components that need to be put into 

consideration. A lot of standardization is needed to connect different hardware systems to avoid a 

lot of disparity in IoT devices operation from different vendors. We also need a middleware that 

can be used to link and handle all these diverse components. 
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The Internet of Things (IoT) is largely applied in education, entertainment, health care, fitness, 

energy conservation, social life, transport, environment monitoring, and home automation. It is 

evident that, in all these areas of application, IoT technologies have been able to significantly 

improve the quality of living and reduce human effort (Sethi & Sarangi, 2017). 

 

2.2 Architectures of IoT 

 

There is no universally accepted or agreed upon architecture for IoT. Different architectures have 

been proposed by different researchers. The most commonly seen architectures in literature is the 

Three-Layer and Five-Layer architectures as shown in Figure 2.3. The most basic architecture is 

a three-layer architecture (Mashal et al., 2015; Said & Masud, 2013; Yun & Yuxin, 2010). 

 
The three-layer architecture was introduced much earlier in IoT architecture research. It has three 

layers, namely, the perception, network, and application layers. The five-layer architecture has 

the following layers namely, business, application, processing, transport and perception layers 

(see Figure 2.3). The perception layer plays a similar role in the three layer architecture as it does 

in the five layer architecture. The main idea of the Internet of Things (IoT) is defined in the 

three-layer architecture but this is not enough for research in IoT because research often focuses 

on finer aspects of the IoT. 
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Figure 2.3: Architecture of IoT (Left: Three layers) (Right: Five layers) 
 
 

 

Data sensing from the physical environment or system is handled in the perception layer also referred 

to as the physical layer. It senses some physical parameters or identifies other smart objects in the 

environment. Network connection to other network devices, gateways, servers or smart things is 

carried out in the network layer. Its responsible for processing and transmitting sensor data. The 

application layer defines the applications in which the IoT is deployed. It is responsible for delivering 

application specific services to the user. The transport layer transfers the sensor data from the 

processing layer to the perception layer and vice versa through networks such as wireless, LAN, 3G, 

NFC, RFID and Bluetooth. The processing layer stores, analyzes, and processes huge amounts of 

data that comes from the transport layer. It is also known as the middleware layer. It can manage and 

provide a diverse set of services to the lower layers. It employs many technologies such as cloud 

computing, databases and big data processing modules. 
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Then the business layer is in charge of overseeing the entire IoT system, including applications, 

business and profit models, and users’ privacy. 

 
Ning and Wang (2011) proposed another model or system architecture that is based on the layers 

of processing in the human brain and the ability of human beings to feel, have thoughts, 

remember, decide on things, and react to their physical environment. This is made up of the 

human brain, spinal cord and the network of nerves. The human brain is analogous to the data 

processing and management unit or the data center. The spinal cord is analogous to the 

distributed network of smart gateways and various data processing nodes. The network of nerves 

refers to the networking components and sensors. 

 
There has recently been a shift towards another system model referred to as fog computing 

(Bonomi et al., 2014; Stojmenovic & Wen, 2014) where the sensors and network gateways in the 

local WSN do a part of the data processing and data analysis. A fog architecture (Aazam & Huh, 

2014) presents a layered approach as shown in Figure 2.4, which inserts security, storage, 

preprocessing and monitoring layers between the transport and physical layers. The monitoring 

layer monitors services, resources, power and responses. The preprocessing layer is responsible 

for performing processing, filtering and analytics of sensor data for storage. The temporary 

storage layer stores, replicates and distributes processed data. Finally, the security layer ensures 

data privacy and integrity by performing encryption/decryption of data. Before sending the data 

from sensors to the cloud, monitoring and information preprocessing are done on the edge of the 

network. 
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Figure 2.4: Fog architecture for IoT gateway 
 
 

 

Often the terms “edge computing” and “fog computing” are used interchangeably. The former term 

predates the later and is construe to be a more general terminology. Fog computing initially defined 

by Cisco refers to smart sensors and smart gateways, whereas edge computing is slightly more 

penetrative and inclusive in nature. This paradigm is aimed at making physical devices like lights, 

pumps or motors able to preprocess information they collect. The purpose of this is to handle as much 

of information preprocessing as possible in these devices, which are referred to as network edge 

devices. The layered architectural diagram is not significantly different from Figure 2.4 when 

considering the system architecture. Thus, we do not describe edge computing as a separate entity. 

 
 
 
 
 

 

16 



2.3 Communication in WSN and IoT 

 

The Internet Protocol (IP) stack is used to link IoT devices to the Internet. The IP stack is uses a 

lot of memory and power from connecting devices and its also very complex. As a result of the 

issues associated with the IP stack many WSN networks utilize sensors that connect locally 

through non-IP networks, which take up much less power, and connect to the Internet through a 

gateway. Fairly popular non-IP communication channels with limited range (up to a few meters) 

include Bluetooth, RFID, and NFC. Longer range Non-IP communication channels such as LoRa 

and SigFox are equally being widely used. The most widely used communication technologies in 

the IoT world are LoraWAN, SigFox, NFC, RFID, 6LoWPAN, low power WiFi, IEEE 802.15.4 

and other exclusive protocols for wireless networks (Sethi & Sarangi, 2017). 

 

2.4 IoT Network Stack 

 

Notwithstanding the problems associated with IP communication in resource constrained 

devices, IP is a robust and efficient standard. This has led the Internet Engineering Task Force 

(IETF) to develop other protocols for IoT devices to communicate and share information IP 

(Sheng et al., 2013). Various white papers talking about other protocols and standards for the 

layers of the IP stack and an additional adaptation layer used for communication has been 

published by the Internet Protocol for Smart Objects (IPSO) Alliance (Sheng et al., 2013; 

Vasseur et al., 2011; Vasseur & Bertrand, 2010) between smart objects. 

 

2.4.1 Physical and MAC Layer (IEEE 802.15.4) 

 

The IEEE 802.15.4 protocol defines standards for the physical and MAC (link) Layer of the IP 

stack. It is designed to enable communication between inexpensive, compact and low power 

embedded devices that need to last long on battery life. It supports low cost, low power and short 

range communication. Low bandwidth, low transmit power and small frame size is needed in 
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networks with resource constrained devices. In IEEE 802.15.4, transmitting data requires very little 

power (~ 1mW), which is just about one percent (1%) of that used in cellular or WiFi networks and 

this makes the communication range relatively shorter. As a result of the shorter range for 

communication, the devices have to operate together enabling multi-hop routing of data over longer 

distances. The data rate is limited to 250 kbps and the packet size is limited to 127 bytes only. Error 

detection in terms of losses in transmission is handled by the coding scheme in IEEE 802.15.4 which 

has redundancy built in. This makes the communication robust and causes the packets lost during 

transmission to be retransmitted. The protocol also supports short 16-bit link addresses to decrease 

the size of the header, communication overheads, and memory requirements (Hui & Culler, 2008). 

Vasseur et al. (2010) has carried out a survey that contains more data on the different physical and 

link layer technologies for communication between smart objects. 

 

2.4.2 Adaptation Layer 

 

The scalability and stability of IPv6 has made it to be considered the best IP addressing scheme in the 

IoT domain. IP protocols were initially not considered suitable for communication in IEEE 802.15.4 

or any other low power wireless link due to their complexity and high resource usage. 6LoWPAN is a 

widely known standard for wireless communication using IPv6 over the IEEE 802.15.4 protocol. 

6LoWPAN is an acronym for IPv6 over low power wireless personal area networks (Hui et al., 

2011). This standard defines an adaptation layer between the 802.15.4 transport layer and link layer. 

6LoWPAN devices are capable of communicating with all other IP based devices on the Internet. 

IPv6 has a large addressing space available therefore it was chosen as the standard in 6LoWPAN. 

The internet space today has a majority of networks operating in the IPv4 standard therefore 

6LoWPAN networks connect to the Internet via a gateway (Ethernet or WiFi) that supports protocol 

conversion between IPv4 and IPv6. IPv6 headers are not small enough 
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to fit within the small 127 byte MTU of the IEEE 802.15.4 standard. Hence the adaptation layer 

performs an optimization that fragments the packets to carry only the most useful information. 

The adaptation layer specifically performs the following three optimizations for the purpose of 

reducing overhead in communication (Hui & Culler, 2008): 

 
i. Header compression: Some fields that can be gotten from the link level information are 

deleted since they can be shared across packets. This defines header compression of IPv6 

packets for decreasing the overhead of IPv6. 

 
ii. Fragmentation: IPv6 has a minimum MTU (maximum transmission unit) size of 1280 

bytes. On the other hand, IEEE 802.15.4 has a maximum frame size of 127 bytes. 

Therefore the adaptation layer fragments the IPv6 packet. 

 
iii. Link layer forwarding: 6LoWPAN also has the mesh under routing feature where 

packets are forwarded to destination over multiple radio hops. This is carried out at the 

link layer using link level short addresses and can be used within a 6LoWPAN network 

for communication. 

 

2.4.3 Network Layer 

 

The network layer primarily performs the task of routing packets received from the transport layer. 

The IETF Routing over Low Power and Lossy Networks (ROLL) working group has developed a 

routing protocol for Low Power and Lossy Networks (LLNs) referred to as RPL protocol (Vasseur et 

al., 2011). RPL is an open routing protocol based on distance vectors where a set of constraints and 

an objective function is used to build a graph with the best path. This describes the process taken to 

build a destination oriented directed acyclic graph (DODAG) with the nodes after distance vectors 

are exchanged (Vasseur et al., 2011). Design requirements determine the objective function and 

constraints and that’s why they can differ. For example, constraints can be to prefer encrypted 
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links or avoid battery powered nodes. The objective function aims to minimize the number of 

packets expected that need to be sent or the latency. The creation of this graph begins from the 

root node. The root begins to transmit messages to nearby nodes. The neighboring nodes process 

the message received and depending on the objective function, they decide whether or not to join 

the tree. After that, the nodes forward the message they received to nearby nodes. The process 

continues in this way and the message keeps moving till they arrive the leaf nodes then a graph is 

formed. All nodes in the graph can now transmit packets to the root, hop by hop. The following 

is how we can implement a point-to-point routing algorithm. We transmit packets to a common 

ancestor, from whence they move downward (towards leaves) to arrive their destination. 

 

2.4.4 Transport Layer. 

 

Transmission Control Protocol (TCP) is not a viable option for transmitting data in low power 

and low data rate environments since it has a large overhead because it’s a connection oriented 

protocol. Therefore, User Datagram Protocol (UDP) is the preferred option because it is a 

connectionless protocol and it has much lower overhead. 

 

2.4.5 Application Layer. 

 

The application layer handles the responsibility of data presentation and formatting. In the internet, 

the application layer is typically based on HTTP. However, HTTP is not an ideal consideration in 

resource constrained networks because it produces a large parsing overhead due to its verbose nature. 

IoT systems must be able to function in potentially low bandwidth, intermittent and unreliable 

connections because of the remote nature and need for wireless networking of smart objects for its 

access network. Many popular protocols are available today at the application layer and they are 

designed for Machine to Machine (M2M) communication. The most popular ones are MQTT 

(Message Queuing Telemetry Transport) (MQTT, 2014), CoAP (Constrained Application 
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Protocol) (Shelby, 2013), DDS (Data Distribution Service) (Data Distribution Service (DDS), 

2015), AMQP (Advanced Message Queueing Protocol) (OASIS, 2012) and XMPP (eXtensible 

Messaging and Presence Protocol) (Saint-Andre, 2011). 

 
These communication protocols in general, are different in their models of interaction, i.e., 

publish-subscribe and request-reply. The request-reply model of communication is a basic 

communication paradigm that shows a message pattern most commonly used in client/server 

architectures. In this communication model, a client requests information from a server, the 

server receives the request message, processes it and returns a response message back to the 

client. This type of data is often maintained and transferred centrally. 

 
The two most popular protocols based on the request/reply communication architecture are REST 

HTTP and CoAP. Figure 2.6 shows the different client/server interaction processes, for three HTTP 

versions (i.e., v.2.0, v.1.1 and v.1.0) and also for CoAP. After a single HTTP request/reply pair, the 

TCP is closed in HTTP 1.0. In HTTP 1.1, a TCP connection could be used repeatedly for sending 

many requests to the server without awaiting a response (pipelining) from the server via a keep-alive-

mechanism. The client starts listening for responses immediately after all requests are sent. A server 

must send its responses to client requests in the same order that the requests were received as 

required by the HTTP 1.1 specification. The new HTTP 2.0 introduces a method for multiplexing by 

which a single TCP connection can be adequately used in sending multiple HTTP requests and can 

also be used to receive responses asynchronously. The fourth process shown in the figure is for 

CoAP. This makes use of UDP connectionless protocol and does not depend on the reliability of TCP 

connection for the client and server to exchange request/reply messages. 
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Figure 2.5: Publish-Subscribe architecture e.g. MQTT, DDS, AMQP (Dizdarevic et al. 2019) 
 
 

 

In the publish-subscribe based protocols as shown in the Figure 2.5, the client having a 

subscriber role does not make any direct request for information from the server or publisher in 

this scenario. Instead of making a request, the subscriber that wants to receive messages will 

subscribe to particular topics (events) within the system. The subscriber or client in this 

architecture subscribes to the broker. The central point in this system is the broker and it is 

responsible for routing messages between publishers and subscribers. The broker also filters 

incoming messages from publishers (Banavar et al., 1999). The publisher is the third party that 

functions as the information provider. When an event about a certain topic occurs, it publishes it 

to the broker who transmits the data on the desired topic to the subscriber. The publish-subscribe 

communication model can therefore be described as an event-based architecture for the 

previously stated reasons (Hinze et al., 2009). 
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Figure 2.6: Request-Reply Protocols; HTTP and CoAP (Dizdarevic et al., 2019) 
 
 
 
 
 

2.4.5.1 Constrained Application Protocol (CoAP) 

 

This protocol was developed for use in constrained devices having limited processing capability by 

the Constrained RESTful Environments (CoRE) working group of IETF (Shelby, 2013). Similar to 

HTTP it is based on the request/response architecture and one of its most prominent features is its use 

of tested and well accepted REST architecture. CoAP like HTTP supports the REST request/response 

architecture in constrained environments. CoAP is considered a lightweight protocol therefore the 

status codes, methods and headers are all binary encoded, thus reducing the protocol overhead when 

compared with many other protocols. Instead of transmission control protocol (TCP), CoAP runs 

over the less complex user datagram protocol (UDP) protocol, further reducing the overhead. CoAP 

request and response between a CoAP client and server are exchanged asynchronously over CoAP 

messages and not over some established connection. This makes CoAP less reliable in comparison to 

connection oriented protocols like HTTP. Since UDP 
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features reduced reliability, IETF has recently created an additional standard document, 

highlighting the possibility of CoAP running over TCP (Bormann et al., 2018). 

 
CoAP protocol architecture is divided into two logically different layers; the request/response layer 

and the message layer. The request/response layer, implements RESTful paradigm which allows for 

CoAP clients to communicate using HTTP-like methods when sending requests. This means that 

clients can use DELETE, POST, PUT or GET methods to manage the resources identified by URI 

(Universal Resource Indicator) in the network (Nguyen & Iacono, 2015) just like in HTTP. For 

instance in order to obtain sensor values, a client will make a GET request to the server URL and the 

server will reply with the requested data. The request and responses contain a token that is used to 

match them; the token defined in the request has to match the one present in the token. A client can 

also push data, for example updated sensor data, to a server device by using a POST request method 

to its URL. It is clear that in this layer, CoAP uses the same methods as REST HTTP for client/server 

communication. The second layer which is the message layer is what makes CoAP different from 

HTTP. CoAP relies on the message layer for reliability by retransmitting lost packets since the 

underlying protocol UDP does not ensure reliable connection. The message layer defines four types 

of messages: CON (Confirmable message), NON (non-confirmable message), ACK 

(Acknowledgement message), and RST (reset message). The CON messages are used for ensuring 

that communication is reliable by demanding an acknowledgement from the receiver side with an 

ACK message. QoS implementation in CoAP is dependent on this feature that marks whether the 

messages need the acknowledgement. This is a rather limited implementation. 

 
An option known as the observe option can be added to the GET request in CoAP to improve the 

request/response model by allowing clients to continue to receive changes on a requested resource 

from the server (Correia et al., 2016). When the server receives this option, the server adds the client 

to a list known as the list of observers for the specific resource. When the resource state 

24 



changes all clients on the observers list receive notifications. Just like in the publish-subscribe 

paradigm where the server alerts the client of changes, a similar technique is implemented in CoAP 

by setting the observe flag in the GET request. This eliminates the need for repetitive polling to check 

for changes in resource state. In an attempt to get even more like publish/subscribe paradigm and 

support nodes with long interruption in connectivity and/or uptime, IETF recently released the draft 

of Publish-Subscribe Broker that extends the capabilities of CoAP (Koster et al., 2019). 

As a security mechanism, CoAP has a secure version called CoAPS which uses DTLS (Rescorla 

 

& Modadugu, 2012) instead of TLS on its UDP transport protocol with changes necessary to run 

over an unreliable connection. In cases of lost or out of order packets, DTLS is modified to stop 

connection termination. For example, there is a possibility of retransmitting handshake messages. 

The verification technique employed to make sure that messages from the client are authentic is 

that the server sends a verification query. This is an extension of the handshaking process in TLS 

 
where client and server exchange ‘hello’ messages. This mechanism of authenticity verification 

helps prevent Denial-of-Service attacks. Client and server also exchange supported cipher suits 

and keys through these messages and agree on the ones both sides support. This will further be 

used to protect data being exchanged during the process of communication. 

 
New versions of DTLS have been developed and optimized for IoT and constrained devices 

since it was not originally designed for lightweight devices (Panwar & Kumar, 2015; Raza et al., 

2013). Header compression technique in IPv6 over Low-power Wireless Personal Area Network 

(6LoWPAN) to compress DTLS header is one of the optimization mechanisms employed (Raza 

et al., 2012). There is ongoing research in optimizing DTLS for IoT due to its limitations 

(Granjal et al., 2015; Lakkundi & Singh, 2014). 
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2.4.5.2 Message Queue Telemetry Transport Protocol (MQTT) 

 

MQTT is a lightweight messaging protocol released by IBM that is based on the publish-

subscribe paradigm. This makes it suitable for network conditions with low bandwidth and high 

latency and also for resource constrained devices. The latest version used for IoT and specified 

by the OASIS (Cohn & Coppen, 2014) is MQTT v3.1. It has often been recommended as the 

choice communication solution in IoT because it is simple and has a very small message header 

compared to other messaging protocols. 

 
Reliability is ensured in MQTT because it runs on the TCP transport protocol. MQTT is designed 

with a much lighter header compared to other reliable protocols such as HTTP. This has greatly 

reduced the power consumption requirements in devices making it a prominent solution in 

constrained environments and IoT. Clients and servers/brokers are the two communication 

parties in MQTT architecture that take the roles of subscribers and publishers. Clients are the 

devices that can publish messages, subscribe to message topics/events, or both. The publisher 

client must know about the broker that it connects to while the subscriber client needs to know 

the broker as well as the topic so as to receive relevant or corresponding information. When the 

broker receives new messages, all clients that are subscribed to the topic get updates from the 

broker. The broker does not only serve as the central component that accepts messages but also 

uses filtering to deliver the messages to the clients that subscribe to it. 

 
MQTT broker library has to be installed on a device before it can have the role of a broker, for 

example Mosquito broker (Eclipse, 2019), which is one of the most used open source MQTT 

brokers. It should be noted that there are various other MQTT protocol brokers that implemented 

the protocol differently and are open for use. MQTT client libraries are used to drive the protocol 

in client devices/environments. There is a hierarchical organization of Topics in MQTT where 

strings separated by slashes indicate the topic level (Tantitharanukul et al., 2017). One MQTT 
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publisher can publish messages to set of defined topics. For example, the client will publish to 

the topic: topic/1. This message will be published to the broker which can store it in a local 

database for a short time. While the message exists, if a subscriber interested in this topic sends a 

subscribe message to a broker specifying the same topic, the broker will send the message 

content of the topic to that subscriber. The broker will also send the message to other clients that 

subscribed to that topic. 

 
MQTT defines three Quality of Service (QoS) levels, QoS 0, 1, and 2 (Cohn & Coppen, 2014; 

Luzuriaga et al., 2015). The QoS level can be defined both in the publish and the subscribe 

message body. QoS 0 refers to messages that deliver without any confirmation of received 

message. This QoS choice is considered in cases where sensor values do not significantly change 

over long periods of time e.g. when some sensors gather telemetry information. In such cases it is 

acceptable if some messages get missing since the general sensor value is still known due to the 

messages that were previously received. QoS 1 refers to messages that require confirmation of 

receipt to further assure the sender that the message was delivered. When a message with QoS 1 

level is published, the receiver must send an acknowledgement packet back and if no 

acknowledgement is sent back after a defined period of time, the publisher will publish the 

message again. QoS 2 refers to messages that require confirmation but guarantees that the 

message will be delivered exactly once without being duplicated at the receiving end. 

 
As the QoS level increases, the amount of resources needed to process MQTT packet increases. 

It is therefore paramount that the QoS level is adjusted to the specified network condition. 

MQTT offers another important feature which allows the broker to store published messages for 

new subscribers. This is achieved by setting a ‘retain’ flag in the message published. The broker 

normally discards a message if nobody is interested in the published topic. This means that in the 

default case, new subscribers would have to wait for another newly published state in order to 
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receive a message about a topic. The broker is notified to store the published message when the 

’retain’ flag is set to value: true, so it could be delivered to new subscribers. 

 

MQTT runs on TCP transport protocol which is quite resource intensive for constrained devices. 

For this purpose, MQTT for Sensor Networks (MQTT-SN) has been proposed. This version uses 

UDP instead and it supports topic name indexing (Stanford-Clark & Truong, 2013a). This 

solution does not depend on TCP, but instead uses UDP as a more efficient, simpler and faster 

transport option over a wireless link (Govindan & Azad, 2015). The size of payloads reduces and 

this is an important improved feature. The reduction is achieved by numbering the packets with 

numeric topic ids instead of long topic names. Currently, the major disadvantage of MQTT-SN is 

that only a few platforms support it and there is only one free broker implementation called 

Really Small Message Broker (Xu et al., 2017). 

 

From a security standpoint MQTT has an issue where messages are exchanged as plain text 

without any encryption mechanism because of its lightweight design. Therefore, encryption 

needs to be designed separately and integrated, for instance via TLS which would increase the 

message overhead. Many MQTT brokers implement authentication using one of MQTTs 

CONNECT control type message packets. Clients should define username/password combination 

when sending the CONNECT control message and this is used to validate the connection. 

Security is an important and continuous effort for MQTT (Lesjak et al., 2015), since MQTT is 

one of the most widely utilized communication protocol solutions. Improving the security issue 

would be a huge leap for MQTT, when compared with other solutions currently available. 

 

2.5 Tools for simulation of WSNs 

 

Simulators are necessary since cost of experimenting with real life WSN nodes over spatially 

distributed area which could consist of many nodes is expensive. To determine the most suitable 
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simulator based on user requirements various criteria or evaluation parameters are considered; 

type of simulator or level of detail, license, platform or operating systems, WSN platforms, ease 

of code, graphical user interface (GUI) and energy consumption model. Considering the type of 

simulator or level of detail, there are three categories of WSN simulators namely generic, 

firmware level and code level simulators (Anand, 2015; Jevtić & Zogović, 2009). 

 
Based on these criteria, four simulators could have been used which are ns-2, OMNeT++ based 

Castalia, TOSSIM and COOJA/MSPSim. A comparative study (Jevtić & Zogović, 2009) of these 

simulators show that ns-2 and OMNET++ are generic simulators while TOSSIM and 

COOJA/MSPSim are Code Level Simulators. Generic simulators focus on high-level aspects of 

WSN, such as data processing, sensing and networking while hardware architecture and 

operating system (OS) of sensor nodes are neglected. Code level simulators use the same code in 

a real node as in the simulator trying to emulate the behavior of the node completely. TOSSIM 

does not natively support graphical user interface (GUI) or Energy consumption modelling and 

has poor documentation for usage compared to COOJA/MSPSim. The COOJA/MSPSim is the 

simulator that was used in this research because it natively supports a GUI and also Energy 

consumption modelling. 

 

2.5.1 Network simulator-2 (ns-2) 
 

Network Simulator-2 (ns-2) (Varadhan, 2009) is one of the most widely used WSN simulators. It 

began as a general network simulator, and support for mobile ad-hoc wireless networks was 

added later (Mekni & Moulin, 2008). It is a generic, discrete event and object-oriented (OO) 

simulator, written in C++, with an Object oriented Tool Command language (OTcl) interpreter as 

a front-end (Varadhan, 2009). Its components, protocols, modes and simulation kernel are 

implemented in C++, but are also accessible from OTcl. In order to record simulation results, 

specify scenarios, set up network topology, configure simulator etc, OTcl scripts are used. 
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With respect to WSNs, ns-2 provides support for various protocols like IR-UWB, 802.15.4, 

802.16, 802.11 etc. (Jevtić & Zogović, 2009). But even though there are lots of contributions 

from varied researchers around the world, ns-2 faces serious drawbacks in terms of WSN 

simulations (Singh et al., 2008) like the non-existent sensing model. The parameters which are 

used during simulation of nodes in WSN like MAC protocols, packet formats and energy model 

are entirely different as it is seen and used in real world WSN scenario. Another issue regarding 

the use of ns-2 for simulation is that it lacks application support which is a requirement for sensor 

network interaction between protocol and application levels. NS-2 supports dual output which 

can be either graphical-based or text-based. For graphical based simulation NS-2 has an inbuilt 

tool called network animator (NAM) which shows live simulation scenario, node position, 

movement of packets in the nodes and also contains XGraphs which presents a graphical analysis 

of the results at the end of simulation. 

 

2.5.2 Network simulator-3 (ns-3) 
 

Network Simulator-3 (ns-3) is an open-source simulator and was launched in June 2008. The 

latest version is 3.21 released in August 2014 (Anand, 2015). NS-3 is a discrete-event simulator 

just line ns-2. It was developed to enhance research in communication networks. 

 
Unlike ns-2 all the programs in ns-3 are written in pure C++ code with optional python bindings 

and like ns-2 there is still no built in graphical tool except with the Network Animator (NAM). 

For simulating wired networks, ns-3 provides device model of a simple ethernet network which 

uses CSMA/CD as its protocol scheme with an exponentially increasing back-off for contention 

of the shared transmission medium. For WSN simulations, various modules have been integrated 

with ns-3 including modules like RPL, 6LoWPAN and 802.15.4. 
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2.5.3 OMNET++ 
 

OMNet++ (OMNeT++, n.d.) is another powerful discrete event object oriented network simulator for 

WSNs. OMNeT++ is currently in version 5.6.2 released in May, 2020 with primary focus on GUI 

upgrades. It is regarded as cosmponent based, modular and extensible C++ simulation library 

framework for building simulations for wireless networks. OMNeT++ is primarily not a simulator 

but it provides tools and frameworks for developing simulation scenarios. 

 
It can run on MAC OSX, Linux and Windows operating systems is compatible to run on different 

operating systems like Windows, Linux and MAC OS X. OMNeT++ is free to download for research 

and educational purposes but the company has a licensed version called OMNEST. 

 
OMNeT++ is basically made up of three modules; Simple, compound and network modules. The 

simple modules is the part written with C++, the compound module links other modules using 

connections and the network module is a top level compound module. It includes Eclipse IDE for 

debugging modules and editing NED (Network description) files. 

 
The simulator that is primarily built for WSN in OMNeT++ is called CASTALIA. 

 

2.5.4 TOSSIM 
 

TOSSIM is a code level WSN simulator (Levis & Lee, 2003) and a part of the standard TinyOS 

(Levis et al., 2005) distribution. Replacing some low-level component with simulation 

implementation, TOSSIM is able to simulate entire TinyOS applications. Simulation events in 

TOSSIM represent posted tasks, high-level system events and hardware interrupts therefore it is 

regarded as a discrete event simulator (Levis & Lee, 2003). TOSSIM software modules and the 

TinyOS application are compiled and linked into a software library. The Python interpreter is 

used with this library to run simulation, configure simulator, define topology etc. An alternative 

C++ application that is linked to the library can be used instead of Python. 
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Modelling the wireless channel can be done by defining the propagation loss for each pair of 

nodes in the two directions and loss values can be gotten by applying a theoretical model or from 

real-world measurements. TOSSIM provides a tool for calculating loss values for a given 

topology using log-normal shadowing. It also offers different low level implementations that is 

capable of simulating the behaviour of a lot of real radios since it does not provide a specific 

PHY model. Simulation of CC2420 PHY is done by default. Interference and RF noise from 

outside sources and other nodes are also simulated. Noise trace is analyzed using Closest Pattern 

Matching (CPM) algorithm and a statistical model is derived from it. Interference and noise 

simulation is then gotten from this model (Levis & Lee, 2003). 

 
The shortcomings of TOSSIM is that all simulated nodes run the same application code and there 

is lack of proper documentation. Energy consumption in TOSSIM is not natively supported but 

modeled through an add-on called PowerTOSSIM z (Perla et al., 2008). 

 

2.5.5 COOJA/MSPSim 

 

COOJA (Osterlind et al., 2006) and MSPSim (Eriksson et al., 2007) are WSN simulators 

included in Contiki (Dunkels et al., 2004) distribution. MSPSim is integrated into COOJA to 

form COOJA/MSPSim. 

 
MSPSim is designed based on Texas Instruments MSP430 microcontroller and it is a WSN 

firmware level simulator. It is capable of more detailed debugging using single stepping, logging, 

watches and break points. For the purpose of determining power consumption, MSPSim provides 

various statistics like how much time a component spent in different operating modes. COOJA is 

primarily a code level simulator in networks with nodes that are running Contiki OS. In COOJA 

it is possible for nodes with different on-board software and different hardware to coexist and 

function as part of the simulation. In order for COOJA to achieve code level simulation, special 
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simulation glue drivers, user processes and Contiki core are compiled into object code native to 

the simulator and then executed within the COOJA environment. All interaction done with the 

compiled Contiki code is done through JNI (Java Native Interface) because COOJA is a Java 

application. When user processes and Contiki core are compiled into target platform object code 

and executed in MSPSim, firmware level simulation is achieved. Generic WSN simulation is also 

handled in COOJA when non-Contiki nodes with Java functionality is simulated. 

 

2.6 Review of Related Work 

 

An extensive amount of research has been done on both MQTT and CoAP over the last decade. 

 

The most recent advances in this area will be presented in this section. 
 
 

2.6.1 Review of related works on CoAP 

 

The mode of operation and capabilities of CoAP has enabled it to be implemented in various 

domains ranging from health management systems to home automation systems. CoAP is 

specifically developed for constrained devices like microcontroller units (MCU) with less than 

1kb of RAM (Tandale et al., 2017). 

 

Mi and Wei, (2019) worked on a smartphone proxy architecture using CoAP that is aimed at 

helping hospitals monitor patients remotely. The results they obtained through a real testbed on 

common smartphone with modified Bluetooth module, validated their proposed software 

architecture. This was done by showing that CoAP can be implemented to act as a data handler 

and communications proxy without much use of resources in terms of CPU, memory and battery. 

 

Ugrenovic and Gardasevic, (2016) also performed a similar work on healthcare remote monitoring. 

Their solution was to provide patients health conditions through a web browser by implementing 
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CoAP on Mozilla Firefox browser. They first simulated their solution using Contiki OS and 

Cooja/MSPSim with 6LoWPAN protocol stack. 

 

Ge et al. (2016) proposed the design and implementation of an IoT system for healthcare using 

CoAP standards and ISO/IEEE 11073 PHD (Personal Healthcare Device) in order to reduce the 

data loss between the devices and measured information while in transmission and enhance 

interoperability. To demonstrate their proposed architecture, they further implemented 

comparative performance evaluation between CoAP and HTTP in terms of syntax usage between 

XML and JSON, the number of packets by data loss rate during transmission and the number of 

the number of packets in one transaction. 

 

Tariq et al. (2020) presented a survey on enhancements and challenges in CoAP. Their paper 

presented some applications where CoAP is implemented in different domains and it covers the 

enhancements made in congestion control mechanism as well as some application specific 

enhancements made over time in detail. A qualitative and quantitative analysis of enhanced 

congestion control mechanisms of CoAP is also highlighted in the survey. This analysis will 

make it easier for researchers to know which scheme is more appropriate to use depending on the 

requirements of the application. 

 

2.6.2 Review of related works on MQTT 

 

Liao and Lin, (2017) implemented an IPv6 over BLE experimental environment based on 

Raspberry Pi 3, and ran lightweight application layer protocols on it including MQTT-SN and 

MQTT. The sensor nodes running MQTT-SN were able to send the data to the broker and then 

the broker communicated the data to a web server they had developed to display in real-time. 
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Naik (2017) presented a more detailed and relative analysis of four messaging protocols for IoT 

namely HTTP, AMQP, CoAP and MQTT. The author analyzed the protocols using some 

associated criteria and was able to bring out the limitations and strengths of each messaging 

protocol. These messaging protocols are different from each other because different needs and 

processes gave birth to their development. Also, their relative and precise comparisons was 

dependent on the system requirements, specific conditions, applications, resources, devices and 

types of IoT systems. A similar in depth review of these IoT application layer protocols was done 

by Dizdarevic et al. (2019). 

 

Venanzi et al. (2018) worked on the node discovery process in IoT fog environments by briefly 

presenting the application layer protocols in IoT. They also discussed MQTT-driven node 

discovery protocols (PEND and SPEND) and investigated the impact of the dynamicity of the 

advertiser nodes (BLE-A) on the sustainability of battery-powered IoT nodes and device 

discovery success. 

 

Guha Roy et al. (2018) studied the MQTT-SN protocol with a new technique to publish sensor 

data called smart gateway selection technique. They proposed a mathematical model that helped 

to estimate end-to-end content delay and message loss. Their results were compared to other 

researchers (Davis et al., 2013; Piyare & Lee, 2013) who also proposed various models to reduce 

delivery time as message payload size and packet size increased. 

 

2.6.3 Performance and comparative review of MQTT and CoAP 

 

There have been many qualitative reviews of different communication protocols that could 

potentially be applicable to IoT networks (Asensio et al., 2014; Atzori et al., 2010; Sheng et al., 

2013; Sutaria & Govindachari, 2013). For a proper comparative analysis, it important to know the 

 

 

35 



major differences between the two protocols of interest in this research. This is captured in Table 

 

2.1. 
 
 
 

 

Table 2.1 Major differences between the MQTT-SN and CoAP Protocols (Bandyopadhyay et al., 
2013) 

 

 MQTT-SN CoAP 
   

Application Single Layer Single layer with 2 conceptual sublayers 

Layer  (Message  layer  and  Request  Response 

  Layer) 
   

Reliability 3 Quality of Service (QoS) Confirmable/Non-confirmable messages, 

 levels Acknowledgments and retransmissions 
   

Architecture Publish/Subscribe Request/Response, Resource/observe 
   

Header Size 2 or 4 bytes 4 bytes 
   

 

 

Thangavel et al. (2014) compared the performance of CoAP and MQTT under a common 

middleware. In their study they evaluated the effect of packet loss on latency in the different 

protocols as well as overhead vs. packet size. The experimentation showed that MQTT messages 

have lower delay than CoAP messages at lower packet loss rates and higher delay than CoAP 

messages at higher loss rates. Moreover, when the message size is small and the loss rate is equal 

to or less than 25%, CoAP generates lower additional traffic than MQTT to ensure message 

reliability. The influence of some other network conditions such as bandwidth cap and latency 

were not considered. 

 

Bandyopadhyay et al. (2013) compared the performance of CoAP’s resource-observe mode and 

request-response mode with MQTT in terms of overhead vs. various packet sizes among two 

different packet (0% and 20%) conditions. They also evaluated the relationship between power 

consumption and bytes of data communicated, although packet loss was considered as the only 
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factor characterizing the network condition. The analysis of the experimental results depicts that 

CoAP is most efficient in terms of energy consumption as well as bandwidth. De Caro et al. 

(2013) compared the performance of CoAP and MQTT in terms of packet received ratio based 

on a 20% packet loss round trip time (for delay) and per-layer bandwidth usage. They utilized 

smartphones as sensing platforms in their study. 
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3 CHAPTER THREE 

 

3.0 MATERIALS AND METHODS 
 

 

3.1 Research Materials 

 

The materials used in carrying out this research work are listed below: 
 

 

i. Hardware materials 

 

a) HP Elitebook Laptop (Intel core i7, 16GB Ram, 512GB SSD) with 

Hyper-V enabled 

 
ii. Software materials 

 
a) VMWare Workstation Pro v15.0 

 
b) Contiki OS 

 
c) COOJA/MSPSim Simulator 

 
d) Tunslip Utility 

 
e) Mosquitto RSMB (Really small message broker) 

 
f) Microsoft Office Excel 2016 

 

 

The hardware specifications was chosen to be able to support the software that was used to carry 

out the research simulations. The unique feature of the computer hardware is the Microsoft 

Hyper-V being enabled and the larger random access memory (RAM) size (16GB). The 

Microsoft Hyper-V enables one to create virtual machines on Windows OS. This made it easy to 

run the VMWare Workstation tool which is a virtualization software and in it, the Contiki OS. 

The COOJA/MSPSim, Tunslip Utility and Mosquitto RSMB tools ran in the Contiki OS. The 

data was processed in the Microsoft Office Excel 2016. 
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3.2 Research Methodology 

 

After thorough research and feasibility test of the proposed system was conducted, Figure 3.1 

 

shows the steps taken to carry out the research work.  

 

 Objective I 

Get open-source Develop an abstraction layer 

implementations of that can be used to access 

MQTT and CoAP both protocols.  
 
 
 

 

Build network map with 4  

sensor nodes (Zolertia)  

and 1 RPL router node 
 
 
 
 

 

Program the single  

protocol codes to echo  

any packet received 
 
 
 
 

 

Ran the RPL border router  

tool with Tunslip utility  

and the RSMB 

 
 

 

Objective II 

 
 
 
 

 

Setup hardware (PC) and  

install tools for simulation 
 
 
 
 
 

 

Program one integration code  
to transmit repeatedly every  
10s over CoAP and another  

over MQTT 
 
 
 

 

Install the two integration  
codes on 2 nodes, MQTT code  
on 1 node, CoAP code on the  

other node 
 
 
 
 
 

Ran the simulation on  
Cooja/MSPSim and after a  

while the data was copied to  
Microsoft EXCEL 

 

 

Objective III 
 

The data is processed on  
EXCEL and compared with  
existing research on each  

protocol 
 
 

 

Figure 3.1: Research procedure block diagram 
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3.3 MQTT-CoAP Integration Technique and Algorithm 

 

Message Queue Telemetry Transport (MQTT) protocol is primarily designed to work using the 

publish/subscribe technique through a broker while Constrained Application Protocol (CoAP) is 

primarily designed to work using the request/response technique. The resource/observe technique 

of CoAP that is like the publish/subscribe technique of MQTT does not involve a broker and 

therefore is not as scalable as MQTT. 

 

The technique of integrating both protocols carried out in this study is carried out such that both 

protocols are working in a single node and responding based on the communication priority or 

the node programming. Common communication priorities that were tested for the purpose of 

data transmission are energy consumption, latency and reliability. 

 

The current design and implementation of the abstraction layer integrates the two protocols such 

that it exposes APIs that abstracts the complexity of managing the two protocols individually as 

well as APIs that are suited to advanced users who intend to access core functionality of any 

single protocol. Figure 3.2 is a block diagram that illustrates the abstraction layer. 

 
 
 
 
 

 

Data from  
sensors 

 
 

Data to  
Application 

 
 
 
 
 
 

 

Abstraction  
Layer with  
common  

APIs 

 
 
 
 
 

 

MQTT-SN 
 
 

 

CoAP 

 
 
 

 

MQTT-SN Broker 
 
 
 
 
 
 

 

CoAP Server 
 
 
 
 

 

Figure 3.2 Block diagram of how the abstraction layer interfaces the protocols 
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With respect to the three or five layer architecture for IoT, the abstraction layer like the MQTT 

and CoAP protocols is implemented and resides within the application layer. The illustration of 

the three layer architecture with the position of the abstraction layer is shown in Figure 3.3. 

 
 
 

Application Layer 
 

Abstraction Layer  
 
 

 

Network Layer  
 
 

 

Perception Layer 
 
 

 

Figure 3.3: Three layer IoT architecture indicating the position of the Abstraction layer 
 

 

The abstraction layer provides the following APIs; Setup_Coap_Resource(), Init_Mqtt_Coap(), 

Mqtt_Sn_Pub(), Mqtt_Sn_Sub() and data_handler(). The Setup_Coap_Resource() API is used to 

setup the CoAP resource method i.e. GET, POST, PUT or DELETE, endpoint URL and handler. 

 

The Init_MQTT_Coap() API is used to initialize the CoAP resources that have been previously 

setup, create the MQTT connection to the broker and register any topic that would be used 

thereby converting them to numeric topics for MQTT-SN. Immediately after the MQTT-SN 

connects to the broker, it starts sending keep alive pings to the broker. 

 

The Mqtt_Sn_Sub() is specific to the MQTT-SN and it takes two arguments; the topic and the QoS. It 

is responsible for subscribing to a topic on the broker. The Mqtt_Sn_Pub() is also specific to the 

MQTT-SN protocol and it takes four arguments; the topic, the message, the QoS and a retain flag. It 

publishes a message on the broker on a specified topic which should have been previously registered 

during the initialization stage. The retain flag just tells the broker whether to retain the 
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message for new subscribers or to discard it. The APIs in the abstraction layer has been used to 

determine the latency of MQTT-SN and CoAP protocols when they are both used 

simultaneously in the same constrained device. 

 
The data_handler() is used to process received payload like the application would like to. In our 

implementation, this contains logic to echo received data for latency computation. This can be 

specific to each protocol or used for both depending on the mode of initialization. 

 
Figure 3.4 is the algorithm for the integrated protocols during data transmission. The integration 

is implemented via an abstraction layer making both protocols available at the same time. Before 

transmission, there is a block indicating the algorithm implemented to select preferred protocol. 

 
 

Start 
 

 

Algorithm to Select  
Preferred Protocol 

 
 
 

 

Is CoAP  
Selected? 

No 
 

Yes 
 

Transmit over CoAP 
No 

using Abstract API for  
CoAP 

 
 

 

Stop 

 
 
 
 
 
 
 
 
 
 

 

Publish  
available MQTT  
Topic with value 
 
 
 

 

Is 
No 

 

Message Is QoS 0?  
  

Confirmed   

Yes  Yes 
  

 

 

Figure 3.4: Algorithm for design of integrated MQTT-CoAP protocol data transmission 
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This algorithm that selects the preferred protocol for data transmission is user dependent because 

there are different instances that could necessitate the need for one protocol or the other such as 

network conditions, presence or absence of a broker serving as the gateway, status of the RPL 

router for translating MQTT-SN packets etc. 

 

Two user defined algorithms were tested in this study. One of the algorithms is for optimal 

latency or RTT and the other is for reliability. Figure 3.5 shows a user defined algorithm 

implemented to select preferred protocol for transmission based on packet RTT. For reliability 

being the priority, the most reliable is MQTT QoS 1 and that will be the selected protocol. 

 
 
 

 

Start 
 
 
 

Initialize  
dummy echo  

packet 

 

Transmit echo  
packet via CoAP  

and store RTT  
 
 
 

 

Stop 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Transmit echo  CoAP RTT No 
 

packet via MQTT 
  

  > MQTT  

 and store RTT  RTT?  

   

Yes 

 

 Select CoAP   
     

     

 Select MQTT    
      

 

 

Figure 3.5: Algorithm for selecting preferred protocol based on RTT 
 
 

 

In order to carry out a performance evaluation of the protocols individually when in the integrated 

system and compare to existing studies evaluated by other researchers, the algorithm was simply 

implemented to select one protocol at a time and was done twice. The first time CoAP was selected 
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and its performance was evaluated and second time MQTT-SN was selected and its performance 

was evaluated. 

 
 

Start 
 

 

Initialize receive  
sequence for both  

protocols 
 
 
 

 

Is CoAP No Is MQTT No 

Message  subscribe  
 

received? 
 

received?   
   

  Yes  
Yes    

    

Extract message    

payload and push    

to application    

    
 
 
 

 

End 
 

 

Figure 3.6: Algorithm for integrated MQTT-CoAP protocols receiving data 
 
 

 

Figure 3.6 shows the algorithm for the integrated protocols when receiving data. First of all, both 

protocols are initialized. This means that all the CoAP endpoints are registered and all the MQTT 

topics that will be listened for are registered. The algorithm was normally implemented to use the 

same endpoints in CoAP as topics being subscribed to in MQTT-SN. 
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When QoS 1 is used for MQTT-SN, if a PUBACK is not received after the MQTT packet is 

published, the same message is sent via CoAP when a default receiver address is chosen. 

Although there is no acknowledgement when a message is sent via CoAP but it is assumed that 

the broker is unresponsive or unreachable so a redundant technique is applied to still have the 

message transmitted. 

 

Data forwarding is handled in the MAC layer as part of the Routing protocol for low power and 

lossy networks (RPL) which provides IPv6 connectivity for WSN. The radio duty cycling (RDC) 

protocol used was the nullRDC keeping the radio always active. 

 

 

Start 
 
 

 

Initialize DODAG and  
assign IPv6 to nodes in  

network 
 
 
 
 
 
 

Is Packet No  
for node? 

 
 

 

Yes 
 

 

Extract message  
and stop  

forwarding 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Forward to other  
nodes in multicast 

 
 

 

End 
 

 

Figure 3.7: Algorithm for data forwarding 
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The RPL protocol is a distance vector proactive routing protocol that creates a tree-like routing 

topology called the destination-oriented directed acyclic graph (DODAG), routed towards one or 

more root or sink node. The directed acyclic graphs (DAGs) are created based on a user-specified 

specific objective function (OF). The default objective function (hop count) routing metric 

provided by the Contiki RPL border router was used. 

 

The DODAG information object (DIO) and DODAG advertisement object (DAO) messages are 

used to initialize the nodes in the network and provide IPv6 addressing. Figure 3.7 shows the 

algorithm for forwarding packets to other nodes in the routing process. 

 

3.4 Simulation procedure 

 

The performance of the system was evaluated when the abstraction layer was implemented on 

the constrained device. The performance of the protocols was measured in terms of latency per 

message size in bytes transmitted for different QoS levels in terms of MQTT-SN and for CoAP. 

For MQTT-SN, the latency was measured as the difference in time between when a message was 

published and when the subscriber received the message. For CoAP the latency was evaluated as 

the difference in time between when a request was sent to the node and when an echoed response 

was received (the receiving nodes were programmed to echo back any message they receive). 

 

3.4.1 Simulation environment setup 

 

The simulator used in this experiment is the Contiki OS based Cooja Network Simulator (Jevtić 

 

& Zogović, 2009; Mehmood, 2017; Song et al., 2016). This is a firmware level simulator, which 

emulates the target device hardware thereby enabling execution of OS code and application 

compiled for the target platform. Using this simulator, timing-sensitive software can be tested 
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(Eriksson, 2009). Two types of sensor nodes were used, the Zolertia Z1 mote and the Skymote. 

To interface the motes and the RSMB (Really Small Message Broker), an IPV6 Router for Low-

Power and Lossy Networks (RPL) Border router was setup on a Zolertia Z1 mote and using a 

tool called tunslip utility, a Serial Line Interface Protocol (SLIP) bridge was created between the 

RPL network and the local network. Figure 3.8 shows the interface for the simulation as well as 

introducing parts of the simulator. 

 
The part labelled A is the network map. It shows the nodes added to the simulation as 

numbered circles in different colors. It also shows the IPV6 address of the node. 10 x 10m
2
 

background grid for measuring distance, radio coverage area and other relevant information. The 

part labelled B shows the connection status of the border router to the local network via an open 

socket connection. The part labelled C is the simulation controls while D shows the mote 

debug/printed output in different color shades differentiating the nodes. The part labelled E 

shows the power tracker for the motes indicating the radio duty cycle for each mote. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.8: COOJA Simulator user interface 
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Energy estimation was done using the Energest Module in the Cooja Network Simulator. Energest is 

a software-based mechanism that estimates energy by measuring the accumulated time the sensor 

node is in different states such as CPU, IRQ, LPM, Rx and Tx (Schandy et al., 2015). 

 

The focus for energy estimation is the application layer protocols therefore radio duty cycling 

was not considered (nullRDC was used to ensure that the radio is always active). Multi-hop 

transmission and data forwarding was also not considered because the operation of the protocols 

in the application layer is mainly CPU dependent so the energy consumption is focused on the 

information processing during transmission and also during reception. 

 

The average energy consumed in any state is calculated using equation (3.1), therefore the total 

energy consumed on average by the node in the intervals chosen is calculated using equation (3.2). 

 
=(   − )× × ∴=+++ 

 

Where, 
 

→ Average energy at any particular state → Initial time the state was started 
→ Time when the state ended 

→ Current consumed at the particular state  
→ Device supply voltage 
→ Average energy consumed 

→ Average energy consumed by the CPU 

 
→ Average energy consumed during transmission → Average energy consumed during reception 
→ Average energy consumed when in Low Power Mode 

 

(3.1) 
 

(3.2) 
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For the calculation to be done correctly, the current power consumptions of each state was 

obtained from the Sky mote datasheet (Moteiv Corporation, 2006). 

 

Latency was estimated as the round trip time (RTT) between when data is transmitted and when it is 

received (echoed back). Considering Figure 3.7 the MQTT-CoAP node sends data to the CoAP node 

and the CoAP node echoes the received data back to the MQTT-CoAP node. The time difference 

between transmitting and receiving same data is calculated and recorded as the latency for CoAP. 

Same procedure was followed to evaluate the latency for MQTT at different QoS levels. 

 

3.4.2 Software setup 
 

Open source implementations of CoAP and MQTT-SN were CoAP for Contiki OS included in the 

example implementations and also the MQTT-SN for Contiki (Silva, 2016). The implementations 

were modified to incorporate the development of the abstraction layer. This was compiled for both 

mote types, Zolertia Z1 and Skymote and placed according to the network topology in Figure 3.9. 

After organizing the nodes, the RSMB was started then the tunslip utility was run to bridge the RPL 

network and local network thereby enabling the nodes to communicate with the RSMB running on 

the local machine and listening for connections on port 1883. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

49 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.9: Network topology for sensor nodes 
 
 
 

 

Figure 3.10 shows the RSMB being run using the sensor node config and executing the following 

command. 

 

> ./broker_mqtt config-sn.mqtt 

 

Figure 3.11 shows the tunslip utility being run for the RPL router. The tunslip utility is included in 

the Contiki tools. It is first compiled in the Contiki tools directory by executing the command 

‘make tunslip6’. The tunslip utility was used to bridge the 127.0.0.1 local address to the RPL 

network on aaaa::1/64 IPv6 network. The command below was executed to achieve this. 

> ./tunslip6 -a 127.0.0.1 aaaa::1/64 
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The nodes were programmed to send packets in 10 s interval and to increase the packet size by 

10 bytes after sending 10 packets starting from a packet size of 20 bytes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.10: Really Small Message Broker (RSMB) running for MQTT-SN  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.11: Tunslip utility running to convert local to RPL network 
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Figure 3.12: Mote serial output of individual nodes being simulated 
 

From the mote output shown in Figure 3.12, the serial output of the motes being simulated are 

shown. This contains the total time spent per activity in microseconds, the data size being 

transmitted, the total round trip time for a packet received after being sent and the total energy 

that has been consumed per that activity computed in the node. The message payload being 

transmitted or received is also shown. 

 

The data for latency was collected for packet sizes between 20 and 80 bytes. It was observed that 

the maximum packet size that could be transmitted from the node is 87bytes. This is due to the 

fact that the motes ran on Zigbee and this follows the IEEE 802.15.4 standard that has a limit on 

the data size allocated to user application (Burchfield et al., 2007). 

 

For each packet size, 20 latency values and 20 energy consumption values were collected and 

the average latency and energy consumption values were calculated and recorded. 
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4 CHAPTER FOUR 

 

4.0 RESULTS AND DISCUSSION 

 

Several results were obtained and are hereby ordered according to the objectives of this study. The 

abstraction layer results indicate the outcome of the abstraction layer development including the 

organization of nodes to test data transmission and reception. The results for latency and energy 

consumption highlight the results obtained when the abstraction layer was used in a sensor node for 

communication. This section is then concluded with a discussion of the results obtained. 

 

4.1 Results of the abstraction layer development 

 

The results obtained from accomplishing the first objective which is the development of 

the abstraction layer is illustrated in Figure 4.1 and Figure 4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: Simulator nodes setup to test the abstraction layer 
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Figure 4.1 shows the arrangement of the sensor nodes also labelled appropriately. The function of the 

MQTT and CoAP Echo Nodes is to echo back any message that is sent from the node running the 

integrated protocols. This proves that the node running the integrated protocols can receive data from 

both nodes simultaneously. The node that is not circled is the RPL border router node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2: Serial output from sensor nodes 
 
 

 

Figure 4.2 shows the serial output from the sensor nodes. The serial output contains logs for 

publishing and subscribing to messages over MQTT and also sending and receiving messages 

over CoAP. The green box in the figure indicates that the Node 4 which is the node containing 

the integrated protocols published some data over MQTT and received the same data that was 

published because the data was echoed by the MQTT Echo Node. The publish and subscribe 

actions are shown in time logs 05:36.368 and 05:36.389 respectively. 
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Time logs 05:51.236 shows when Node 4 sent some payload over CoAP using the endpoint 

“/coapecho”. Time logs 05:51.345-372 shows that the CoAP Echo nodes received the sent 

payload and sent back the data received over CoAP. The blue boxed enclosing in the figure 

shows that the Node 4 received the echoed data over CoAP. 

 

This proves that via the abstraction layer, we are able to transmit and receive data over MQTT 

and CoAP. 

 
 
 

 

4.2 Results for testing latency and energy consumption 

 

The experimental setup has one publisher, one broker and one CoAP client, thus there was 

zero loss in transmitted packets. 
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Figure 4.3: CoAP and MQTT-SN Latency at different packet sizes 
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The results Figure 4.3 shows the graph of latency against packet size for MQTT-SN and CoAP. 

 

From the figure, the latency values were observed to slightly increase as the packet size increased. 

 

From the results shown in Table 4.1, the lowest latency for single packet transmission was 

 

observed in MQTT-SN QoS 0 which was between 137ms for packet size of 20 bytes and 203ms 

 

for packet size of 80 bytes. Similar latency values were obtained for the CoAP and MQTT-SN 

 

QoS 1. For CoAP we observed between 176.8ms and 202.6ms while we observed between 

 

165.9ms and 219ms for MQTT-SN QoS 1. The average latency was obtained to be 163.2ms, 

 

188.5ms and 191.5ms for MQTT-SN QoS 0, MQTT-SN QoS 1 and CoAP respectively. 
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Figure 4.4: Average energy consumption of CoAP and MQTT-SN transmitting and receiving 
different packet sizes 
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Energy consumption of the node when using MQTT-SN for a single Tx/Rx operation in a 10s 

interval showed an average of 261.6mJ for both QoS 0 and QoS 1 while an average of 261.3mJ 

was observed for CoAP. The results in Figure 4.4 shows the energy consumption for the different 

protocols when transmitting and receiving different packet sizes. Although it is not entirely clear 

as to why there are slightly irregular behaviors of latency and energy consumption at above 60 

bytes, the MQTT-SN Specification (Stanford-Clark & Truong, 2013b) restricts maximum 

payload size to 60 bytes over ZigBee network due to the ZigBee network/APS layer. 

 
 
 

 

Table 4.1 Latency and Energy required to transmit different packet sizes for MQTT-SN 
and CoAP Protocols 

 

  Latency (ms) (RTT)  Energy(µJ)  
 

Packet Size 
      

 MQTT MQTT CoAP MQTT QoS0 MQTT QoS1 CoAP 

  QoS0 QoS1     
        

 20 137 165.9 176.8 261524.4 261535.4 261304.5 

 30 147.2 183.1 183.2 261544.8 261555 261308.1 

 40 151.8 183.9 186.1 261570.9 261579.8 261315 

 50 152.6 192.5 185.5 261590.6 261601.5 261323.8 

 60 182.3 195.6 204.2 261612.9 261634.7 261327.1 

 70 168.1 179.2 201.9 261719.4 261730 261417 

 80 203.4 219 202.6 261663 261673.9 261360.9 
        

 AVERAGE 163.2 188.5 191.5 261603.7 261615.8 261336.6 
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4.3 Discussion of Results 

 

No integration of CoAP and MQTT-SN protocol in constrained WSN devices has been reported 

in literature, however, various authors have carried out comparative evaluation of both protocols. 

For example, authors in (Thangavel et al., 2014) evaluated the performance of MQTT and CoAP 

via a common middleware but it was implemented on devices with no resource constrains for 

running the protocols also classified as high-end IoT devices (Ojo et al., 2018). They found that 

when compared to CoAP, MQTT messages experience lower delays for lower link packet loss 

and higher delays for higher link packet loss. 

 

The latency results obtained for MQTT-SN were comparable to the results of Guha Roy et al., 

(2018). In their study they observed that the end to end delay for MQTT-SN QoS 0 and QoS 1 

were 1.83s and 2.27s respectively for a 1000 byte data size. Since the packet size is directly 

proportional to the end-to-end delay, the results in this study will transmit the 1000 bytes in 20 

different packets of 50 bytes which will amount to a total RTT latency of 3.052s and an end-to-

end delay of approximately 1.5s for QoS 0 and 1.93s for QoS 1. 

 

For CoAP a round trip time of 176.8ms was observed which is 88.4ms end-to-end latency for 20 

bytes packet size while Safaei et al., (2018) recorded 70.4ms latency for 14 byte packet which is 

similar to the results obtained in this study with respect to the packet size. De Caro et al., (2013) 

compared CoAP with MQTT using various metrics and recorded an average of 127ms RTT latency 

for a packet size of 140bytes. This is significantly lower than what was observed in this research and 

may be due to the delays incurred in the border router translating packets between RPL network and 

local network. Their study was performed using an android smart phone and a Windows PC which 

possesses more resources and processing capabilities compared to the resource constrained nodes in 

this study. Mijovic et al., (2016) performed several experiments on CoAP 
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and MQTT over different network conditions. First over LAN, then IoT ISP network and 

Cellular network. The Latency values observed for CoAP was approximately 200ms over cellular 

network, 42ms over LAN and 75ms over IoT ISP network for a packet size of 80bytes. The 

results they obtained over cellular network is similar to the results obtained in this study. 

 

When energy consumption was considered, CoAP was observed to be slightly more energy efficient 

compared to MQTT-SN. This varies with the report of Martí et al., (2019) who recorded that MQTT-

SN was slightly more efficient than CoAP and went further to recommend using MQTT-SN for 

communication when energy saving is a priority in the development. The complexity of MQTT-SN 

lies in the RSMB that does the translation from the UDP protocol supported by MQTT-SN to the 

normal MQTT TCP protocol. The complexity is less for CoAP using the non-confirmable method of 

communication hence the reduction in energy consumption. 

 

The results obtained in this study has proven that it is possible to integrate MQTT-SN and CoAP 

protocols on a constrained sensor node without any significant drop in performance of the 

individual protocols. At the time of research only one author (Thangavel et al., 2014) was able to 

implement something similar with MQTT and CoAP protocol on a device with a lot of 

processing capabilities using a common middleware which is also an abstraction layer. This 

research could also open new doors to the possibility of deploying sensor nodes capable of self-

adjusting communication efficiency in the application layer. 
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5 CHAPTER FIVE 

 

5.0 CONCLUSION AND RECOMMENDATIONS 
 

 

5.1 Conclusion 

 

In this research, an abstraction layer that serves to integrate MQTT-SN and CoAP is 

implemented on constrained devices and the performance of each protocol is evaluated when this 

technique is implemented. This is to take advantage of both protocols on a single sensor node 

under varying application requirements. 

 

The result of the study showed that latency values slightly increase as the packet size increased. 

The lowest latency was observed in MQTT-SN QoS 0 while similar latency values were obtained 

for the CoAP and MQTT-SN QoS 1. The average latency was observed to be 163.2ms, 188.5ms 

and 191.5ms for MQTT-SN QoS 0, MQTT-SN QoS 1 and CoAP respectively. 

 

The performance evaluation and comparisons that have been carried out between the results of 

latency and energy consumption in this study and the results recorded in other studies goes ahead 

to prove that there was no significant drop in performance of the individual protocols when 

MQTT and CoAP protocols were integrated in a constrained device. 

 

The scalability of WSNs implemented using the MQTT-SN system because of the publish/subscribe 

technique through a broker can be further improved using the integrated system with a redundant link 

through the CoAP protocol that would be enabled in the same system. 

 

Although it is evident that even with the implementation of the integrated protocol system there is no 

performance impact on each of the protocols, it would be of added value to have multiple algorithms 

that could be implemented to optimally select a communication protocol based on the network 

conditions or other mitigating factors. Only two protocol selection algorithms were tested 
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therefore this research work fell short of being able to implement more algorithms that could 

optimize the use of the protocols. 

 
 
 

 

5.2 Recommendation 

 

As a significant improvement on this work, further studies can be done to leverage this technique and 

adaptively switching between these protocols in situations of power saving, broker failures, varying 

link performances, quality of service (QoS) or to satisfy other desired network conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

61 



REFERENCES 

 

Aazam, M., & Huh, E. N. (2014). Fog computing and smart gateway based communication for 

cloud of things. Proceedings - 2014 International Conference on Future Internet of Things 

and Cloud, FiCloud 2014, 464–470. https://doi.org/10.1109/FiCloud.2014.83 

 

Akyildiz, I. F., Weilian Su, Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor 
 

networks. IEEE Communications Magazine, 40(8), 102–114. 

https://doi.org/10.1109/MCOM.2002.1024422 

 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of 

Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE 
 

Communications Surveys and Tutorials, 17(4), 2347–2376. 

https://doi.org/10.1109/COMST.2015.2444095 

 

Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer 

Networks, 54(15), 2688–2710. https://doi.org/10.1016/j.comnet.2010.05.003 

 

Anand Nayyar, R. S. (2015). A Comprehensive Review of Simulation Tools for Wireless Smoke 

Network (WSNs). Journal of Wireless Networking and Communications, 19–47(1), 19–47. 

https://doi.org/10.5923/j.jwnc.20150501.03 

 

Asensio, Á., Marco, Á., Blasco, R., & Casas, R. (2014). Protocol and Architecture to Bring 

Things into Internet of Things. International Journal of Distributed Sensor Networks, 10(4), 

158252. https://doi.org/10.1155/2014/158252 

 

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer 

Networks, 54(15), 2787–2805. https://doi.org/10.1016/J.COMNET.2010.05.010 

 

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E., & Sturman, D. C. 

(1999). An efficient multicast protocol for content-based publish-subscribe systems. 

Proceedings. 19th IEEE International Conference on Distributed Computing Systems (Cat. 

No.99CB37003), 262–272. https://doi.org/10.1109/icdcs.1999.776528 

 

Bandyopadhyay, S., & Bhattacharyya, A. (2013). Lightweight Internet protocols for web 

enablement of sensors using constrained gateway devices. 2013 International Conference 

on 

 

 

62 



Computing, Networking and Communications (ICNC), 334–340. 

https://doi.org/10.1109/ICCNC.2013.6504105 

 

Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet 

of things and analytics. Studies in Computational Intelligence, 546, 169–186. 

https://doi.org/10.1007/978-3-319-05029-4_7 

 

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., & Silverajan, B. (2018). CoAP 

(Constrained Application Protocol) over TCP, TLS, and WebSockets (B. Raymor (Ed.)). 

https://doi.org/10.17487/RFC8323 

 

Burchfield, T. R., Venkatesan, S., & Weiner, D. (2007). Maximizing Throughput in ZigBee Wireless 

Networks through Analysis, Simulations and Implementations. Proc. Int. Workshop 
 

Localized Algor. Protocols WSNs, 15–29. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.8350 

 

Chelloug, S. A., & El-Zawawy, M. A. (2018). Middleware for Internet of Things: Survey and 

Challenges. Intelligent Automation and Soft Computing, 24(2), 309–318. 

https://doi.org/10.1080/10798587.2017.1290328 

 

Chen, C. C., & Liao, C. H. (2011). Model-based object tracking in wireless sensor networks. 

Wireless Networks, 17(2), 549–565. https://doi.org/10.1007/s11276-010-0296-5 

 

Chen, Y., & Kunz, T. (2016). Performance evaluation of IoT protocols under a constrained 

wireless access network. 2016 International Conference on Selected Topics in Mobile and 

Wireless Networking, MoWNeT 2016. https://doi.org/10.1109/MoWNet.2016.7496622 

 

Christin, D., Reinhardt, A., & Mogre, P. (2009). Wireless Sensor Networks and the Internet of 

Things: Selected Challenges. Proceedings of the 8th GI/ITG KuVS, 31–33. 

http://www.ti5.tu-harburg.de/events/fgsn09/proceedings/fgsn_031.pdf 

 

CISCO. (2016). Cisco Visual Networking Index: Forecast and Methodology. 
 

http://www.cisco.com/c/en/us/solutions/collateral/service- provider/visual-networking-

index-vni/complete-white-paper-c11- 481360.html 

 

Cohn, R., & Coppen, R. (2014). MQTT Version 3.1.1. In OASIS Standard. 

https://doi.org/10.1073/pnas.1201805109 

 

63 



Colitti, W., Steenhaut, K., & Caro, N. De. (2011). Integrating Wireless Sensor Networks with the 

Web. Extending the Internet to Low Power and Lossy Networks (IP+ SN 2011), 2–6. 

 

Correia, N., Sacramento, D., & Schutz, G. (2016). Dynamic Aggregation and Scheduling in 

CoAP/Observe-Based Wireless Sensor Networks. IEEE Internet of Things Journal, 3(6), 

923–936. https://doi.org/10.1109/JIOT.2016.2517120 

 

Data Distribution Service (DDS). (2015). https://www.omg.org/spec/DDS 

 

Davis, E. G., Calveras, A., & Demirkol, I. (2013). Improving packet delivery performance of 

publish/subscribe protocols in wireless sensor networks. Sensors (Switzerland), 13(1), 648– 

680. https://doi.org/10.3390/s130100648 

 

De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., & Reali, G. (2013). Comparison of two 

lightweight protocols for smartphone-based sensing. IEEE SCVT 2013 - Proceedings of 

20th IEEE Symposium on Communications and Vehicular Technology in the BeNeLux, 0–5. 

https://doi.org/10.1109/SCVT.2013.6735994 

 

Ding, D., Cooper, R. A., Pasquina, P. F., & Fici-Pasquina, L. (2011). Sensor technology for 

smart homes. Maturitas, 69(2), 131–136. https://doi.org/10.1016/j.maturitas.2011.03.016 

 

Dizdarevic, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (2019). Survey of Communication 

Protocols for Internet-of-Things and Related Challenges of Fog and Cloud Computing 

Integration. 1(1), 1–30. https://doi.org/10.1145/3292674 

 

Dunkels, A., Grönvall, B., & Voigt, T. (2004). Contiki - A lightweight and flexible operating 

system for tiny networked sensors. Proceedings - Conference on Local Computer Networks, 

LCN, 455–462. https://doi.org/10.1109/LCN.2004.38 

 

Eclipse. (2019). Eclipse Mosquitto. Mosquitto.Org. https://mosquitto.org/ 

 

Eriksson, J. (2009). Detailed Simulation of Heterogeneous Wireless Sensor Networks. 

 

Eriksson, J., Dunkels, A., Finne, N., Österlind, F., & Voigt, T. (2007). Mspsim-an extensible 

simulator for msp430-equipped sensor boards. Eprints.Sics.Se. http://eprints.sics.se/964 

 

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of 

publish/subscribe.       ACM       Computing       Surveys,       35(2),       114–131. 

 

64 



https://doi.org/10.1145/857076.857078 

 

Ge, S. Y., Chun, S. M., Kim, H. S., & Park, J. T. (2016). Design and implementation of 

interoperable IoT healthcare system based on international standards. 2016 13th IEEE 

Annual Consumer Communications and Networking Conference, CCNC 2016, 119–124. 

https://doi.org/10.1109/CCNC.2016.7444743 

 

Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: 

Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 

10– 22. https://doi.org/10.1109/MWC.2010.5490974 

 

Giusto, D., Iera, A., Morabito, G., & Atzori, L. (Eds.). (2010). The Internet of Things. Springer 

New York. https://doi.org/10.1007/978-1-4419-1674-7 

 

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., & Razafindralambo, T. (2011). A survey 

on facilities for experimental internet of things research. IEEE Communications Magazine, 

49(11), 58–67. https://doi.org/10.1109/MCOM.2011.6069710 

 

Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. 

Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems - SenSys 

’09, 1. https://doi.org/10.1145/1644038.1644040 

 

Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures 
 

and technologies. IEEE Communications Magazine, 48(6), 92–101. 

https://doi.org/10.1109/MCOM.2010.5473869 

 

Govindan, K., & Azad, A. P. (2015). End-to-end service assurance in IoT MQTT-SN. 2015 12th 

Annual IEEE Consumer Communications and Networking Conference (CCNC), 290–296. 

https://doi.org/10.1109/CCNC.2015.7157991 

 

Granjal, J., Monteiro, E., & Sa Silva, J. (2015). Security for the Internet of Things: A Survey of 

Existing Protocols and Open Research Issues. IEEE Communications Surveys & Tutorials, 

17(3), 1294–1312. https://doi.org/10.1109/COMST.2015.2388550 

 

Guha Roy, D., Mahato, B., De, D., & Buyya, R. (2018). Application-aware end-to-end delay and 

message loss estimation in Internet of Things (IoT) — MQTT-SN protocols. Future 

Generation Computer Systems, 89, 300–316. https://doi.org/10.1016/j.future.2018.06.040 

 

65 



Hakiri, A., Berthou, P., Gokhale, A., Abdellatif, S., Hakiri, A., Berthou, P., Gokhale, A., Publish, 

S. A., Hakiri, A., Berthou, P., & Gokhale, A. (2017). Publish / subscribe-enabled software 

defined networking for efficient and scalable IoT communications To cite this version : HAL 

Id : hal-01633323 Publish / Subscribe-enabled Software Defined Networking for Efficient 

and Scalable IoT Communications. 

 

Hinze, A., Sachs, K., & Buchmann, A. (2009). Event-based applications and enabling 

technologies. Proceedings of the Third ACM International Conference on Distributed 

Event-Based Systems - DEBS ’09, 1. https://doi.org/10.1145/1619258.1619260 

 

Hui, J., Culler, D., & Chakrabarti, S. (2011). 6LoWPAN: Incorporating IEEE 802.15. 4 into the 

IP architecture. IPSO Alliance White Paper. 

 

Hui, J. W., & Culler, D. E. (2008). Extending IP to low-power, wireless personal area networks. 

IEEE Internet Computing, 12(4), 37–45. https://doi.org/10.1109/MIC.2008.79 

 

Iova, O., Picco, P., Istomin, T., & Kiraly, C. (2016). RPL: The Routing Standard for the Internet 

of Things... or Is It? IEEE Communications Magazine, 54(11), 16–22. 

https://doi.org/10.1109/MCOM.2016.1600397CM 

 

Jevtić, M., & Zogović, N. (2009). Evaluation of wireless sensor network simulators. Proceedings 

of the 17th, 1303–1306. http://2009.telfor.rs/files/radovi/10_48.pdf 

 

Jia, Y., Bodanese, E., Phillips, C., Bigham, J., & Tao, R. (2014). Improved reliability of large scale 

publish/subscribe based MOMs using model checking. 2014 IEEE Network Operations and 

Management Symposium (NOMS), 1–8. https://doi.org/10.1109/NOMS.2014.6838311 

 

Kaiwen, C., Kumar, A., Xavier, N., & Panda, S. K. (2017). An intelligent home appliance 

control-based on WSN for smart buildings. IEEE International Conference on Sustainable 

Energy Technologies, ICSET, 0, 282–287. https://doi.org/10.1109/ICSET.2016.7811796 

 

Koster, M., SmartThings, Keranen, A., Jimenez, J., & Ericsson. (2019). Publish-Subscribe Broker for 

the Constrained Application Protocol CoAP. http://datatracker.ietf.org/drafts/current/. 

 

Kulkarni, P., & Ozturk, Y. (2011). MPHASiS: Mobile patient healthcare and sensor information 

system. Journal of Network and Computer Applications, 34(1), 402–417. 

https://doi.org/10.1016/j.jnca.2010.03.030 

 

66 



Kürschner, C., Condea, C., Kasten, O., & Thiesse, F. (2008). Discovery Service Design in the 

EPCglobal Network. The Internet of Things, 19–34. https://doi.org/10.1007/978-3-540-

78731-0_2 

 

Lakkundi, V., & Singh, K. (2014). Lightweight DTLS implementation in CoAP-based Internet of 

Things. 2014 20th Annual International Conference on Advanced Computing and 
 

Communications, ADCOM 2014 - Proceedings, 7–11. 

https://doi.org/10.1109/ADCOM.2014.7103240 

 

Lesjak, C., Hein, D., Hofmann, M., Maritsch, M., Aldrian, A., Priller, P., Ebner, T., Ruprechter, 

T., & Pregartner, G. (2015). Securing smart maintenance services: Hardware-security and 

TLS for MQTT. 2015 IEEE 13th International Conference on Industrial Informatics 

(INDIN), 1243–1250. https://doi.org/10.1109/INDIN.2015.7281913 

 

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., 

Welsh, M., Brewer, E., & Culler, D. (2005). TinyOS: An operating system for sensor 

networks. Ambient Intelligence, 115–148. https://doi.org/10.1007/3-540-27139-2_7 

 

Levis, Philip, & Lee, N. (2003). Tossim: A simulator for tinyos networks. UC Berkeley, 

September, 1–17. http://www.tinyos.net/dist-1.1.0/snapshot-1.1.11Feb2005cvs/doc/nido.pdf 

 

Liao, K., & Lin, C. (2017). Implementation of IoT Applications based on MQTT and MQTT-SN 

in IPv6 over BLE. 6(1), 48–49. 

 

Luzuriaga, J. E., Cano, J. C., Calafate, C., Manzoni, P., Perez, M., & Boronat, P. (2015). Handling 

mobility in IoT applications using the MQTT protocol. 2015 Internet Technologies and 

Applications (ITA), 245–250. https://doi.org/10.1109/ITechA.2015.7317403 

 

Martí, Garcia-Rubio, & Campo. (2019). Performance Evaluation of CoAP and MQTT_SN in an 

IoT Environment. Proceedings, 31(1), 49. https://doi.org/10.3390/proceedings2019031049 

 

Mashal, I., Alsaryrah, O., Chung, T. Y., Yang, C. Z., Kuo, W. H., & Agrawal, D. P. (2015). 

Choices for interaction with things on Internet and underlying issues. Ad Hoc Networks, 28, 

68–90. https://doi.org/10.1016/j.adhoc.2014.12.006 

 

Mehmood, T. (2017). COOJA Network Simulator: Exploring the Infinite Possible Ways to 

Compute the Performance Metrics of IOT Based Smart Devices to Understand the Working 

 

67 



of IOT Based Compression & Routing Protocols. http://arxiv.org/abs/1712.08303 

 

Mekni, M., & Moulin, B. (2008). A survey on sensor webs simulation tools. Proceedings - 2nd 

Int. Conf. Sensor Technol. Appl., SENSORCOMM 2008, Includes: MESH 2008 Conf. Mesh 

Networks; ENOPT 2008 Energy Optim. Wireless Sensors Networks, UNWAT 2008 Under 

Water Sensors Systems, 574–579. https://doi.org/10.1109/SENSORCOMM.2008.13 

 

Mi, Z., & Wei, G. (2019). A CoAP-Based Smartphone Proxy for Healthcare with IoT 

Technologies. Proceedings of the IEEE International Conference on Software Engineering 
 

and Service Sciences, ICSESS, 2018-Novem, 271–278. 

https://doi.org/10.1109/ICSESS.2018.8663785 

 

Mijovic, S., Shehu, E., & Buratti, C. (2016). Comparing application layer protocols for the 

Internet of Things via experimentation. 2016 IEEE 2nd International Forum on Research 

and Technologies for Society and Industry Leveraging a Better Tomorrow, RTSI 2016. 

https://doi.org/10.1109/RTSI.2016.7740559 

 

Mohan, L., Jinesh, M. K., Bipin, K., Harikrishnan, P., & Sathyadevan, S. (2015). Implementation 

of scatternet in an intelligent IoT gateway. Advances in Intelligent Systems and Computing, 

338, 275–287. https://doi.org/10.1007/978-3-319-13731-5_31 

 

Molisch, A. F., Balakrishnan, K., Chong, C. C., Emami, S., Fort, A., Karedal, J., Kunisch, J., 

Schantz, H., Schuster, U., & Siwiak, K. (2006). IEEE 802.15. 4a channel model-final report. 

Ieee P, 15, 802.1504--0662. https://mentor.ieee.org/802.15/file/04/15-04-0662-00-004a-

channel-model-final-report-r1.pdf 

 

Moteiv Corporation. (2006). Moteiv: tmote sky low power wireless sensor module. In Product 

Data Sheet. https://doi.org/6020-0094-01 Rev. B 

 

MQTT. (2014). MQ Telemetry Transport. https://mqtt.org 

 

Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, 

AMQP and HTTP. 2017 IEEE International Symposium on Systems Engineering, ISSE 

2017 - Proceedings, 1–7. https://doi.org/10.1109/SysEng.2017.8088251 

 

Nguyen, H. V., & Iacono, L. Lo. (2015). REST-ful CoAP Message Authentication. 2015 

International Workshop on Secure Internet of Things (SIoT), 35–43. 

 

68 



https://doi.org/10.1109/SIOT.2015.8 

 

Ning, H., & Wang, Z. (2011). Future internet of things architecture: Like mankind neural system 

or social organization framework? In IEEE Communications Letters (Vol. 15, Issue 4). 

https://doi.org/10.1109/LCOMM.2011.022411.110120 

 

OASIS. (2012). OASIS Advanced Message Queuing Protocol (Issue October). docs.oasis-

open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf 

 

Ojo, M. O., Giordano, S., Procissi, G., & Seitanidis, I. N. (2018). A Review of Low-End, Middle- 
 

End, and High-End Iot Devices. IEEE Access, 6, 70528–70554. 

https://doi.org/10.1109/ACCESS.2018.2879615 

 

OMNeT++. (n.d.). Retrieved July 8, 2021, from http://www.omnetpp.org/ 

 

Open Automation Software (2021). IoT Edge Computing Vs. Cloud Computing. Retrieved 

October 10, 2021 from https://openautomationsoftware.com/open-automation-systems-

blog/iiot-edge-computing-vs-cloud-computing/ 

 

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-Level Sensor 

Network Simulation with COOJA. Proceedings. 2006 31st IEEE Conference on Local 

Computer Networks, 641–648. https://doi.org/10.1109/LCN.2006.322172 

 

Panwar, M., & Kumar, A. (2015). Security for IoT: An effective DTLS with public certificates. 

2015 International Conference on Advances in Computer Engineering and Applications, 

163–166. https://doi.org/10.1109/ICACEA.2015.7164688 

 

Pena-Lopez, I. (2005). ITU Internet Report 2005: The Internet ofThings (Issue December). 

 

Peng, W. C., Ko, Y. Z., & Lee, W. C. (2006). On mining moving patterns for object tracking 

sensor networks. Proceedings - IEEE International Conference on Mobile Data 

Management, 2006, 41–44. https://doi.org/10.1109/MDM.2006.114 

 

Perla, E., Catháin, A. Ó., Carbajo, R. S., Huggard, M., & Mc Goldrick, C. (2008). PowerTOSSIM 
 

z: Realistic energy modelling for wireless sensor network environments. PM2HW2N’08 - 

Proceedings of the 3rd ACM International Workshop on Performance Monitoring, 

Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks, 35–42. 

 

69 



https://doi.org/10.1145/1454630.1454636 

 

Piyare, R., & Lee, S. R. (2013). Towards Internet of Things (IOTS): Integration of Wireless 

Sensor Network to Cloud Services for Data Collection and Sharing. International Journal of 
 

Computer Networks & Communications, 5(5), 59–72. 

https://doi.org/10.5121/ijcnc.2013.5505 

 

Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight Secure 

CoAP for the Internet of Things. IEEE Sensors Journal, 13(10), 3711–3720. 

https://doi.org/10.1109/JSEN.2013.2277656 

 

Raza, S., Trabalza, D., & Voigt, T. (2012). 6LoWPAN Compressed DTLS for CoAP. 2012 IEEE 

8th International Conference on Distributed Computing in Sensor Systems, 287–289. 

https://doi.org/10.1109/DCOSS.2012.55 

 

Rescorla, E., & Modadugu, N. (2012). Datagram Transport Layer Security Version 1.2. 

https://doi.org/10.17487/rfc6347 

 

Richardson, L., & Ruby, S. (2007). RESTful Web Services (1st ed.). O’Reilly Media, Inc. 

 

Sachs, K., Appel, S., Kounev, S., & Buchmann, A. (2010). Benchmarking Publish/Subscribe-

Based Messaging Systems (pp. 203–214). https://doi.org/10.1007/978-3-642-14589-6_21 

 

Safaei, B., Monazzah, A. M. H., Bafroei, M. B., & Ejlali, A. (2018). Reliability side-effects in 

Internet of Things application layer protocols. 2017 2nd International Conference on System 
 

Reliability and Safety, ICSRS 2017, 2018-Janua(December), 207–212. 

https://doi.org/10.1109/ICSRS.2017.8272822 

 

Said, O., & Masud, M. (2013). Towards internet of things: Survey and future vision. International 
 

Journal of Computer Networks, 5(1), 1–17. 

http://www.cscjournals.org/csc/manuscript/Journals/IJCN/volume5/Issue1/IJCN-265.pdf 

 

Saint-Andre, P. (2011). Extensible Messaging and Presence Protocol (XMPP): Address Format. 

https://doi.org/10.17487/rfc6122 

 

SATHYABAMA - Institute of Science and Technology (2021). Unit - II - Internet of Things - 

SCSA5301. Department of Computer Science and Engineering. Retrieved 20 October, 2021. 

 

70 



https://www.sathyabama.ac.in/sites/default/files/course-material/2020-11/U2.pdf 

 

Schandy, J., Steinfeld, L., & Silveira, F. (2015). Average power consumption breakdown of 

wireless sensor network nodes using IPv6 over LLNs. Proceedings - IEEE International 

Conference on Distributed Computing in Sensor Systems, DCOSS 2015, June, 242–247. 

https://doi.org/10.1109/DCOSS.2015.37 

 

Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., 

Stankovic, J., Young, D., & Porter, J. (2007). LUSTER: Wireless sensor network for 

environmental research. SenSys’07 - Proceedings of the 5th ACM Conference on Embedded 

Networked Sensor Systems, 103–116. https://doi.org/10.1145/1322263.1322274 

 

Sethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, Protocols, and Applications. 
 

Journal of Electrical and Computer Engineering, 2017. 

https://doi.org/10.1155/2017/9324035 

 

Sharma, R., Prakash, S., & Roy, P. (2020). Methodology, Applications, and Challenges of WSN-

IoT. International Conference on Electrical and Electronics Engineering, ICE3 2020, 502– 

507. https://doi.org/10.1109/ICE348803.2020.9122891 

 

Shelby, Z. (2013). Constrained Application Protocol (CoAP) draft-ietf-core-coap-17. 

http://tools.ietf.org/html/draft-ietf-core-coap-17 

 

Shelby, Zach, & Bormann, C. (2009). 6LoWPAN: The Wireless Embedded Internet. In 
 

6LoWPAN: The Wireless Embedded Internet. https://doi.org/10.1002/9780470686218 

 

Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey on the ietf 

protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE 

Wireless Communications, 20(6), 91–98. https://doi.org/10.1109/MWC.2013.6704479 

 

Silva, Â. I. da. (2016). MQTT-SN for Contiki. Github. https://github.com/aignacio/mqtt-sn-

contiki_example 

 

Singh, C. P., Vyas, O. P., & Tiwari, M. K. (2008). A survey of simulation in sensor networks. 

2008 International Conference on Computational Intelligence for Modelling Control and 

Automation, CIMCA 2008, 867–872. https://doi.org/10.1109/CIMCA.2008.170 

 

 

71 



Song, Y., Zendra, O., & Zendra, O. (2016). Using Cooja for WSN Simulations : Some New Uses 

and Limits. 

 

Stanford-Clark, A., & Truong, H. L. (2013a). MQTT for sensor networks ( MQTT-SN) protocol 
 

specification. In Ibm. http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-

SN_spec_v1.2.pdf 

 

Stanford-Clark, A., & Truong, H. L. (2013b). MQTT for sensor networks ( MQTT-SN) protocol 
 

specification. Ibm, 28. http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-

SN_spec_v1.2.pdf 

 

Stojmenovic, I., & Wen, S. (2014). The Fog computing paradigm: Scenarios and security issues. 

2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014, 

1–8. https://doi.org/10.15439/2014F503 

 

Sutaria, R., & Govindachari, R. (2013). Making sense of interoperability: Protocols and 
 

Standardization initiatives in IOT. 2nd International Workshop on Computing and 
 

Networking for Internet of Things (CoMNet-IoT) Held in Conjunction with 14th International 
 

Conference on Distributed Computing and Networking (ICDCN 2013), 2–5. 
 

http://rsutaria.net/wp- 
 

content/uploads/2013/02/Low_power_IoT_ComNet_2013_Mindtree.pdf 

 

Tandale, U., Momin, B., & Seetharam, D. P. (2017). An empirical study of application layer 

protocols for IoT. 2017 International Conference on Energy, Communication, Data Analytics 

and Soft Computing (ICECDS), 2447–2451. https://doi.org/10.1109/ICECDS.2017.8389890 

 

Tantitharanukul, N., Osathanunkul, K., Hantrakul, K., Pramokchon, P., & Khoenkaw, P. (2017). 

MQTT-Topics Management System for sharing of Open Data. 2017 International 

Conference on Digital Arts, Media and Technology (ICDAMT), 62–65. 

https://doi.org/10.1109/ICDAMT.2017.7904935 

 

Tariq, M. A., Khan, M., Khan, M. T. R., & Kim, D. (2020). Enhancements and challenges in 

coap—a survey. Sensors (Switzerland), 20(21), 1–29. https://doi.org/10.3390/s20216391 

 

Thangavel, D., Ma, X., Valera, A., Tan, H. X., & Tan, C. K. Y. (2014). Performance evaluation 

of MQTT and CoAP via a common middleware. IEEE ISSNIP 2014 - 2014 IEEE 9th 

 

72 



International Conference on Intelligent Sensors, Sensor Networks and Information 
 

Processing, Conference Proceedings, April, 21–24. 

https://doi.org/10.1109/ISSNIP.2014.6827678 

 

Ugrenovic, D., & Gardasevic, G. (2016). CoAP protocol for Web-based monitoring in IoT 

healthcare applications. 2015 23rd Telecommunications Forum, TELFOR 2015, 79–82. 

https://doi.org/10.1109/TELFOR.2015.7377418 

 

Varadhan, N. T. F. and K. (2009). "The ns manual”, User’s manual, UC Berkeley, LBL, 

USC/ISI, and Xerox PARC. 

 

Vasseur, J.-P., & Dunkels, A. (2010). Interconnecting Smart Objects with IP: The Next Internet. 
 

Interconnecting Smart Objects with IP, 335–351. 

http://www.sciencedirect.com/science/article/pii/B9780123751652000223 

 

Vasseur, J, Agarwal, N., Hui, J., & Shelby, Z. (2011). RPL: The IP routing protocol designed for 
 

low power and lossy networks. In Internet Protocol for. 

http://www.academia.edu/download/35564908/RPL_The_IP_routing_protocol_designed_fo 

r_low_power_and__lossy_networks.pdf 

 

Vasseur, JP, & Bertrand, C. (2010). A survey of several low power Link layers for IP Smart 

Objects. … for Smart Objects ( …, June. http://www.ipso-alliance.org/wp-

content/media/low_power_link_layer.pdf 

 

Veeramanikandan, M., & Sankaranarayanan, S. (2017). Publish/subscribe broker based 

architecture for fog computing. 2017 International Conference on Energy, Communication, 
 

Data Analytics and Soft Computing (ICECDS), 1024–1026. 

https://doi.org/10.1109/ICECDS.2017.8389592 

 

Venanzi, R., Kantarci, B., Foschini, L., & Bellavista, P. (2018). MQTT-Driven Node Discovery 

for Integrated IoT-Fog Settings Revisited: The Impact of Advertiser Dynamicity. 

Proceedings - 12th IEEE International Symposium on Service-Oriented System 

Engineering, SOSE 2018 and 9th International Workshop on Joint Cloud Computing, JCC 

2018, 31–39. https://doi.org/10.1109/SOSE.2018.00013 

 

Vermesan, O., Peter, F., Patrick, G., Sergio, G., Harald, Sundmaeker Alessandro, B., Ignacio Soler, 
 
 

73 



J., Margaretha, M., Mark, H., Markus, E., & Pat, D. (2011). Internet of Things: Strategic 

Research Roadmap. In Internet of Things-Global Technological and Societal Trends (pp. 9– 

52). http://sintef.biz/upload/IKT/9022/CERP-IoT SRA_IoT_v11_pdf.pdf 

 

Viswanathan, A., Sai Shibu, N. B., Rao, S. N., & Ramesh, M. V. (2018). Security Challenges in 

the Integration of IoT with WSN for Smart Grid Applications. 2017 IEEE International 

Conference on Computational Intelligence and Computing Research, ICCIC 2017, 1–4. 

https://doi.org/10.1109/ICCIC.2017.8524233 

 

Xu, Yiming, Mahendran, V., Guo, W., & Radhakrishnan, S. (2017). Fairness in fog networks: 

Achieving fair throughput performance in MQTT-based IoTs. 2017 14th IEEE Annual 

Consumer Communications & Networking Conference (CCNC), 191–196. 

https://doi.org/10.1109/CCNC.2017.7983104 

 

Xu, Yingqi, & Lee, W. C. (2007). Compressing moving object trajectory in wireless sensor 

networks. International Journal of Distributed Sensor Networks, 3(2), 151–174. 

https://doi.org/10.1080/15501320701204756 

 

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer 

Networks, 52(12), 2292–2330. https://doi.org/10.1016/j.comnet.2008.04.002 

 

Yun, M., & Yuxin, B. (2010). Research on the architecture and key technology of Internet of 

Things (IoT) applied on smart grid. 2010 International Conference on Advances in Energy 

Engineering, ICAEE 2010, 69–72. https://doi.org/10.1109/ICAEE.2010.5557611 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

74 



APPENDICES 

 

APPENDIX I: MQTT-CoAP Code for Contiki 
 

/*********************************************************************  
* @file mqtt-coap.c  
* @author Emmanuel N.  
* @date 5th December, 2019  
* @brief Main code to MQTT-COAP-SN hybrid protocol on Contiki-OS  
* @license This project is licensed by APACHE 2.0.  
********************************************************************/  

 

#include "contiki.h"  
#include "contiki-net.h"  
#include "rest.h"  
#include "lib/random.h"  
#include "clock.h"  
#include "sys/ctimer.h"  
#include "../core/net/uip.h"  
#include "../core/net/uip-ds6.h"  
#include "mqtt_sn.h"  
#include "../core/net/rime.h"  
#include "../core/net/uip.h"  
#include <stdio.h>  
#include <string.h>  
#include <stdlib.h>  
#include "sys/energest.h"  

 

// #define LOCAL_PORT 1884  
// #define REMOTE_PORT 1883   
#define PUBLISH_DELAY 10*CLOCK_SECOND 

#define SUBSCRIBE_DELAY 5*CLOCK_SECOND  
 

// #define NUMBER_OF_RESOURCES 10   

static uint16_t udp_port = 1883; 

static uint16_t keep_alive = 10; 

static uint16_t broker_address[] = {0xaaaa, 0, 0, 0, 0, 0, 0, 0x0001}; 
  

static struct etimer time_poll; 

static struct ctimer t_init; 

static struct ctimer t_publish; 

static struct ctimer t_subscribe; 

static char device_id[17]; 

static char *topics_mqtt[] = {"/datagen"}; 

static uint8_t qos = 1;   
//static resource_t resources[NUMBER_OF_RESOURCES]; 
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static mqtt_sn_con_t mqtt_sn_connection; 

//uint8_t resources_pos = 0; 
 

uint64_t current_time;  
uint32_t data_size = 20;  
uint32_t sent_count = 0;  
uint32_t received_count = 0;  

 

//Function declarations   
void init_broker(void*);   
//void temp_handler(REQUEST*, RESPONSE*); 

//void humid_handler(REQUEST*, RESPONSE*); 
 
 

void data_populate(char * data)  
{   
size_t i;   
for (i = strlen(data); i < data_size-1; i++) 

{ *(data+i) = (char)((sent_count%10)+31);  
}  
*(data + data_size-1) = 0;  

}  

 

/* Define Resource for data generation as used for simulation 

*/ RESOURCE(data, METHOD_GET, "datagen");  
 

 

void data_handler(REQUEST* request, RESPONSE* response)  
{   
char cdata[data_size];  

 

sent_count++;  
 

sprintf(cdata, "ID:%lu\n", sent_count);  
 

data_populate(cdata);  

 

rest_set_response_payload(response,(uint8_t*)cdata,strlen(cdata)); 

rest_set_header_content_type(response,APPLICATION_LINK_FORMAT);  
 

if(sent_count % 10 == 0) data_size += 10;  
}  

 

void init_mqtt_coap(uint8_t random_time)  
{   
// Init Rest for CoAP 
rest_init();  

 

rest_activate_resource(&resource_data);  
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// Init mqtt at a random interval to ease load on border router 
ctimer_set(&timer_init, random_time, init_broker, NULL);   

}  
 

void setup_coap_resources(method_t method, const char*url, const  
void(*resource_handler))  
{   
// resources[resources_pos] = (resource_t){NULL, method, url, 

resource_handler, NULL, NULL, NULL};  
// resources_pos++;  

}  
 

void get_current_time()  
{   
current_time = (uint64_t) clock_time();  

}  
 

 

void publish_callback(void *ptr)  
{  
ctimer_reset(&timer_publish);  

 

get_current_time();  
 

sent_count++;  
 

char cdata[data_size];   
sprintf(cdata, "ID:%lu TxTime:%lu", sent_count, 

current_time); data_populate(cdata);  
mqtt_sn_pub(topics_mqtt[0], cdata, false, qos);  

 

printf("\n\n=====>>>>>Published == %s\nDatasize: %d bytes", cdata, 

data_size);  
 

get_current_time();  
 

if(sent_count % 10 == 0) data_size += 10;  
}  

 

 

void subscribe_callback()  
{   
if(mqtt_sn_check_status() == MQTTSN_TOPIC_REGISTERED)  
{   
size_t k;  
for(k = 0; k < ss(topics_mqtt); k++)  
{  

mqtt_sn_sub(topics_mqtt[i], qos); //Subscribe to topic with  
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certain QOS  
}  

 

init_sub();  
 

ctimer_stop(&timer_subscribe);  
ctimer_set(&timer_publish, PUBLISH_DELAY, publish_callback, NULL);  

}   
else ctimer_reset(&timer_subscribe);  

}  
 

 

void mqtt_sn_callback(char *topic, char *message){ 

//get_current_time();   
uint64_t ct = (uint64_t) clock_time();   
uint64_t latency = ((ct - current_time)*1000L)/CLOCK_SECOND; 

uint8_t mesglen = strlen(message); 
 

printf("\n===== Message received: Topic:%s Message:%s \nRxTime:%lu  
=====\n", topic, message, ct);   
printf("\nDatasize:%d bytes \nLatency:%lu\n", mesglen+1, latency); 

//printf("=== CLOCKSECONDS - %lu ===\n", CLOCK_SECOND);  
}  

 

void init_broker(void *ptr){  
sprintf(device_id,"%02X%02X%02X%02X%02X%02X%02X%02X",  

rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1],  
rimeaddr_node_addr.u8[2],rimeaddr_node_addr.u8[3],   
rimeaddr_node_addr.u8[4],rimeaddr_node_addr.u8[5],  
rimeaddr_node_addr.u8[6],rimeaddr_node_addr.u8[7]);   

mqtt_sn_connection.client_id = device_id; 

mqtt_sn_connection.udp_port = udp_port; 

mqtt_sn_connection.ipv6_broker = broker_address; 

mqtt_sn_connection.keep_alive = keep_alive; 

//mqtt_sn_connection.will_topic = will_topic;   // Configure as 

0x00 if you don't want to use  

//mqtt_sn_connection.will_message = will_message; // Configure as 

0x00 if you don't want to use  

mqtt_sn_connection.will_topic = 0x00; 
  

mqtt_sn_connection.will_message = 0x00; 

mqtt_sn_init();  

   
 

mqtt_sn_create_sck(mqtt_sn_connection,topics_mqtt,ss(topics_mqtt),mqt

t _sn_callback);  
 

ctimer_stop(&timer_init);  
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ctimer_set(&timer_subscribe, SUBSCRIBE_DELAY, subscribe_callback,  
NULL);  
}  

 

 

/*--------------------------------------------------------------------  
-------*/  
PROCESS(init_system_process, "[Contiki-OS] Initializing OS");  
AUTOSTART_PROCESSES(&init_system_process);   
/*--------------------------------------------------------------------  
-------*/  

 

PROCESS_THREAD(init_system_process, ev, data) {  
// setup_coap_resources(METHOD_GET, "temp", temp_handler);  
// setup_coap_resources(METHOD_GET, "humid", humid_handler);  

 

static unsigned long  
rx_start_time,lpm_start_time,cpu_start_time,tx_start_time = 0;   
static unsigned long  

rx_new_time,lpm_new_time,cpu_new_time,tx_new_time = 0;  
 

PROCESS_BEGIN();  
 

debug_os("\nInitializing the MQTT_COAP_SN\n");  
 

uint32_t random_delay = CLOCK_SECOND * rimeaddr_node_addr.u8[7];  
 

init_mqtt_coap(random_delay);  
 

// Check sensor data at some interval 
 

// ctimer_set(&timer_sensor, SENSOR_CHECK_DELAY, 

check_temp_humid_callback, NULL);  
energest_flush();  

 

rx_stime = energest_type_time(ENERGEST_TYPE_LISTEN);  
lpm_stime = energest_type_time(ENERGEST_TYPE_LPM);  
cpu_stime = energest_type_time(ENERGEST_TYPE_CPU);  
tx_stime = energest_type_time(ENERGEST_TYPE_TRANSMIT);  

 

etimer_set(&time_poll, 10*CLOCK_SECOND);  
 

while(1) {  
PROCESS_WAIT_EVENT();   
energest_flush();   
if (etimer_expired(&time_poll)){  
etimer_reset(&time_poll);  

//if(mqtt_sn_check_status() >= MQTTSN_CONNECTED){  
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rx_new_time=energest_type_time(ENERGEST_TYPE_LISTEN);  
lpm_new_time=energest_type_time(ENERGEST_TYPE_LPM);  
cpu_new_time=energest_type_time(ENERGEST_TYPE_CPU);  
tx_new_time=energest_type_time(ENERGEST_TYPE_TRANSMIT);  

 

printf("Time spent (usec) rx: %lu, tx: %lu, cpu: %lu, lpm:  
%lu\n",   

(unsigned long)(1e6*(rx_new_time - rx_stime) 

/ RTIMER_SECOND),   
(unsigned long)(1e6*(tx_new_time - tx_stime) 

/ RTIMER_SECOND),   
(unsigned long)(1e6*(cpu_new_time - cpu_stime) 

/ RTIMER_SECOND),   
(unsigned long)(1e6*(lpm_new_time - lpm_stime) 

/ RTIMER_SECOND));  
 

 

printf("Total Energy: %lu uJ\n",   
(unsigned long)( (21800*3*(rx_new_time - 

rx_start_time) / RTIMER_SECOND) +  
(19500*3*(tx_new_time - tx_start_time) /  

RTIMER_SECOND) +  
(1800*3 *(cpu_new_time - cpu_start_time) /  

RTIMER_SECOND) +   
(2.6*3 *(lpm_new_time - lpm_start_time) 

/ RTIMER_SECOND) ) );  
 

rx_stime = energest_type_time(ENERGEST_TYPE_LISTEN);  
lpm_stime = energest_type_time(ENERGEST_TYPE_LPM);  
cpu_stime = energest_type_time(ENERGEST_TYPE_CPU);  
tx_stime = energest_type_time(ENERGEST_TYPE_TRANSMIT);  

//}  
}  

}  
PROCESS_END();  

}  
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