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Abstract   
In this article, we give a simpler proof of Chebyshev inequality and use the result to obtain 
some properties of Binomial, Poisson and Geometric distributions.  Furthermore, analysis of 
the results has shown that Chebyshev inequality is effective for determining convergence 
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Introduction 
Chebyshev stated, without proof, a theorem called Chebyshev’s inequality in 1874. Although 
it was first formulated without proof by his friend and colleague Irue-jules Bienaym  in 1853 
(Chebyshev, 1874). However, Markov in 1884 provided a proof in his PhD thesis under the 
supervision of Chebyshev. It states that in any data sample or probability distribution, nearly 
all the values are close to the mean value, and provides a quantitative description of nearly 
all or close to all. We can usually guarantee that more data is a certain number of standard 
deviations away from the mean if the distribution is clearly known (Steliga.& Szynal, 2010). 
This inequality is a tool in probability theory; it relates the distribution of numbers in a set 
(Pitman, 1993). In a general term, the formula helps in determining the number of values 
that reside in and outside the standard deviation. The standard deviation, however, is a 
statistically determined number that tells how far away values tend to be from the average 
of the set. Analytically, about two-thirds of the values should always fall within one standard 
deviation up or down. It is unlike the empirical relationship between the mean and mode or 
the rule of thumb that connects the range and standard deviation together. 
 
The inequality is of great significant in the theory of probability distributions and is usually 
stated for random variables, but can be extended and generalized to a statement about 
measure spaces (DasGupta, 2000). 
 
In this paper, Chebyshev theorem is proved in a simpler version. The results obtained were 
used to analysed Binomial, Geometric and Poisson distributions and also to obtain probability 
bound for some random variables. For recent work see Stein & Shakarchi 2005, Oguntolu 
2013, Gauss 1995 and Clarkson et.al. 2009. 
 
Materials and Methods 
This section considered the prove of some inequalities and their applications. 
The prove of Chebyshev Inequality 
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Theorem 3.1: Let X  be a random variable with mean ][XE   and finite variance Var[X]. 

For any real number 0>A , we have 
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Proof:              
 By Chebyshev inequality, ][XE=m  called the mean (expected value) of the random 

variable X and 
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Properties of Binomial Distribution 
The Binomial Distribution is given by: 
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Variance ( 222 ])[(][][) XEXExVar -==s ) 
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Prove of Chebyshev’s Inequality from Binomial distribution 
By Binomial distribution, we have 
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Poisson Distribution 
The Poisson distribution is given by: 
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Thus, we have the variance as:                                                                    
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The prove of Chebyshev’s Inequality from Poisson distribution 

By Poisson distribution, we have, 

å
¥

=-

--

-
=³-º³-

222

2

)(
2

)(
222

!)(
])Pr[(]|Pr[|

sm

lm

m
l

smsm
tx

x

x
e

tXtX  

lll ll eee .2 -- +=



Journal of Science, Technology, Mathematics and Education (JOSTMED), 10(3), August, 2014 

 

97 
 

      å
¥

=-

--

--
-

=
222

2

)(
2

)(

2

2

!)()(
)(

sm

lm

m
l

m
m

tx

x

x
e

x
x

 

      å
¥

=-

---

---
£

0)(
2

1)(

2
2

2

]!1)[(
.

)(
1

m

lm

m
ll

m x

x

x
e

x
 

Hence,     

    1.
)(

])Pr[(]|Pr[|
2

222

m
l

smsm
-

=³-º³-
x

tXtX  

But, 

    
222

222 1
)(

1
)(

sm
sm

tx
tx £

-
Þ³-    

    
22

222 ])Pr[(]|Pr[|
s
l

smsm
t

tXtX £³-=³-  

Since  ls =2  

Then,  
2

222 1
])Pr[(]|Pr[|

t
tXtX £³-=³- smsm  

 
Geometric Distribution 
The Geometric Distribution is given by: 
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Prove of Chebyshev’s Inequality from Geometric distribution 
By Geometric distribution we 
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Tightness of Chebyshev’s Inequality 
Let us define a random variable  X  as 
  cX += m   With  Probability  P  

  cX -= m  With Probability P  
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If we want to find the Probability that the variable deviates from mean by constant c, 
the bound provided by Chebyshev is 
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which is sharp (DasGupta (2000)). 
 

Results 
Chebyshev inequality is realised from Binomial distribution, Poisson distribution and 

Geometric distribution, if the initial probability distribution is 
a
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natural number. By plotting the graph of Chebyshev inequalities, we obtain, 
 
Chebyshev Inequality from binomial distribution 
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Chebyshev Inequality from Poisson distribution 
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Chebyshev Inequality from Geometric distribution 
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Discussion 
In Figures 1, 2 and 3, we observed that an increase in the values of ''a will steadily reduce 
their respective probabilities of the deviation. Also, we observed that as the deviations 
increase, the probabilities reduce. 
 
Conclusion 
The use of Chebyshev inequality to analyze the distribution; Binomial, Poisson or Geometric 
shows a realistic positive bound for the deviation of the number of trials in the distribution, 
hence the inequality establishes a good probability bound for certain range of values and as 
such could be used to forecast any of the distribution.  
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